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Entanglement of trapped-ion clock states
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A Mglmer-Sgrensen entangling gate is realized for pairs of trapped H1Cd* jons using magnetic-field insen-
sitive “clock” states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used
to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state
tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical
noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion
qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum

computing.
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Entangled states such as the famous Einstein-Podolsky-
Rosen (EPR)-Bohm states [1,2] have long been of interest in
the interpretation of quantum mechanics [3]; however, their
generation has become a rapidly growing field with the rec-
ognition of entanglement as a powerful resource for quantum
information processing [4]. Laser-addressed trapped ions
with qubits embedded in long-lived internal hyperfine levels
hold significant advantages for quantum information applica-
tions [5,6]. A critical issue is the robust generation of scal-
able entanglement. In the context of trapped ions, this is
reduced to the problem of two-qubit entanglement, as plau-
sible multiplexing schemes have been proposed to create a
scalable architecture for a quantum processor [7,8].

Trapped-ion entangling gates mediated by phonons of the
collective ion motion are susceptible to various forms of
noise—qubit and motional decoherence, impure initial con-
ditions, and technical issues associated with the optical Ra-
man lasers driving the gate [5]. Robust schemes for gates
based on spin-dependent forces have been proposed [9—12]
and experimentally implemented [13,14] that, for example,
relax the purity requirement on the initial motional state of
the ions. Here, we report the realization of one such entan-
gling gate for pairs of trapped '''Cd* ions that uses an ad-
vantageous implementation [15,16] of the Mglmer-Sgrensen
(MS) scheme [9,13]. The implementation reduces sensitivity
to optical phase drifts through an appropriate Raman beam
setup and reduces sensitivity to magnetic field fluctuations
through the use of magnetic-field insensitive clock states
[17].

Quantum state tomography [18-21] is used to character-
ize the gate performance for the creation of all four entangled
Bell-like states. Previous applications of quantum state to-
mography with ions include the reconstruction of nonclassi-
cal states of motion [22-24] as well as entangled states of
optical ion qubits composed of electronic levels [20]. Here,
we present the first such implementation for hyperfine qubits,
in the process demonstrating universal quantum control of
two clock-state ion qubits.

The MS gate for two trapped ions is based on optical
Raman couplings to the first vibrational sidebands of the
ions’ collective motion, assumed along the z axis. The ions
are equally illuminated by a bichromatic Raman field induc-
ing simultaneous red and blue sideband interactions [22] that
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couple each ion’s spin to the vibrational levels {|n)} of a
single collective mode of motion—stretch or center of mass
[Fig. 1(a)]. With the Raman fields far detuned from the side-
bands, negligible direct coupling occurs; however, the fields
can combine to provide a resonant two-step coupling be-
tween, for example, |||) and |]7), generating the entangled
state (1/42)(|| | )+i|T 1)) [Fig. 1(a)]. In general, the bichro-
matic field provides an entangling gate based on a nonlinear

two-qubit interaction such as H=—%(&, ® ¢,)/2, written in

terms of Pauli operators. The coupling strength Q, which in
the Lamb-Dicke limit is independent of the initial value of
|n), is given by (702)?/8, where () is the carrier Rabi fre-
quency and & the detuning. The Lamb-Dicke parameter
n=kz, for the motional mode of interest is characterized by
Raman wave vector difference k along the z axis of motion
and zero-point wave packet size z,=\%/2M w, where w and
M are the frequency and total mass of the excitation,
respectively.

Reducing the detuning & accelerates the gate speed at the
expense of populating intermediate motional states [25]. In
this situation, it is more natural to view the bichromatic field
as generating a spin-dependent force constructed from red
and blue sideband couplings with balanced Rabi frequencies
and detunings [15,16,26]. The resulting interaction on each
ion is equivalent to H~G.zF,sinw,t describing a
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FIG. 1. Two views of the Mglmer-Sgrensen ¢, ® &, entangling
gate for two ions in (a) energy space [9] and (b) motional phase
space [14] for the gate-diagonal spin basis. The quantum number n
and phase-space coordinates describe a given collective motional
mode. Red and blue Raman sideband couplings are labeled by r and
b and have detuning J&,=0=-9,. For a closed phase-space trajec-
tory, the phase ® depends only on the area enclosed.
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J,-dependent force near resonance (w,;=w+ ) with strength
F,z,=n€). The total Hamiltonian is the sum of interactions
on each ion. For a force resonant with the stretch mode and
acting in-phase on the two ions, the time-evolution operator
can be expressed in the &,-diagonal gate basis as a spin-
dependent displacement as follows:

U@ = 1000+ 1L XLl + e D(@)]1,L XL
+eD(= )| [T T (1)

where ﬁ(a) is the displacement operator in the phase space
of the driven normal mode [Fig. 1(b)]. The value of the dis-
placement is a(t,d)=a,(1-e7¥) and the corresponding
phase accumulated over the trajectory is ®(t,8)=a’(dt
—sin &) in terms of the parameter a,= 7}/ . In general, the
spin-dependent displacement entangles the spin and motional
degrees of freedom; however, for a closed trajectory (&¢
=2mm, m is an integer), the spin and motion disentangle
leaving only a spin-dependent geometric phase &,
=27m(nQ/ 6)* applied to the gate basis. A maximally entan-
gling phase gate is constructed from a geometric phase of
/2. We achieve this in the fastest time possible with m=1
requiring detuning 6=27() and gate time 7,=27/45. Ex-
pressed in the computational basis, the MS gate structure,
although slightly more complicated, makes the entangling
action manifest

1 .
1) = Wy =—=(11) +ie'®|| 1)),
V2
1 .
1) =Wy = —= (L 1)+ ie 11,
V2
1 .
IT1y = Wy=—=(|T1) +ie'%|[ 1)),
V2

1 .
1) — W, = \—E(Iu>+ ie”%|T])). (2)

The phases ¢, and ¢, have been included in the even and
odd parity states, ¥, , and W5 4, respectively, to account for
the effect of both ac Stark shifts and Raman laser coher-
ences, the latter modifying the spin dependence of the gate
[16,27]. For ¢,=¢,=0, the gate’s action reduces to that of a
G,® a, coupling.

Our qubit resides in the hyperfine clock states |T)=|F
=0,mp=0) and || )=|F=1,mz=0) of a ""'Cd" ion with fre-
quency separation w;/27=14.53 GHz and second-order
Zeeman shift (300 Hz/G?)B? near zero magnetic field B. A
pair of ions, confined in a three-layer linear Paul trap [28] is
aligned along the weak z axis. The ions’ secular harmonic
motion in the z direction is characterized by center-of-mass
and stretch normal modes with frequencies w.=2.05 MHz
and w;=\3w,. All requirements for arbitrary two-qubit con-
trol are implemented as follows. Both modes of motion are
initialized to near their ground state (1.~ 0.4,71,~0.2) with
60 pulses of Raman sideband cooling [28]. Due to the sim-
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plicity of the hyperfine structure (nuclear spin /= %), the qu-
bits are directly initialized with optical pumping to |1). Fol-
lowing coherent operations, the qubits can be read out with
high fidelity using a photomultiplier tube (PMT) allowing
[TT), |L1) and {|T]), || T)} to be distinguished by virtue of
state-dependent fluorescence [6]. Unambiguous readout of
all four qubit states, in particular |T]) and ||1), is achieved
with an intensified charge-coupled device (CCD) camera that
can independently and simultaneously image the fluores-
cence collected from each ion qubit. A camera detection
fidelity of 97% is achieved in 15 ms limited by readout
electronics.

Coherent single qubit operations are achieved through a
combination of applied microwave fields and ion-selective ac
Stark shifts. Resonant microwaves provide simultaneous
Rabi flopping of both qubits with a Rabi frequency of
56 kHz. Arbitrary independent qubit rotations are achieved
by combining microwave operations with pulses of an off-
resonant laser beam 200 GHz detuned from resonance. The
laser beam with moderate waist (=10 wm compared with the
2.5 pum ion spacing) is aligned to be off-center with respect
to the two ions, giving rise to an intensity gradient and dif-
ferential ac Stark shift between the two ions. A 10 us expo-
sure results in a phase shift difference between the two qubits
of approximately /2.

The MS entangling gate is achieved using a pair of Ra-
man laser beams 200 GHz detuned from optical resonance.
An electroptic modulator (EOM) provides optical sidebands
near the qubit frequency splitting, and together with acousto-
optic modulators in each Raman beam provides the required
bichromatic Raman beatnotes [29]. The collective stretch
mode is chosen for gate implementation due to the signifi-
cantly suppressed heating rate [30]. The stretch sideband
Rabi frequency is typically 6 kHz. The wave vectors of the
red and blue Raman fields are arranged in a counterpropa-
gating geometry so that the spin coherence of the MS gate,
included in ¢,, is insensitive to optical phase drifts between
the Raman beams [15,16]. Although this setup requires an
accurate ion spacing to maximize gate speed, the stability of
the spin coherence is crucial for keeping the MS gate syn-
chronized with the microwave fields during tomography. Fi-
nally, because the ac Stark shift of the Raman beams during
the gate is large compared to the gate speed, fluctuations of
the Raman beam intensity can lead to poor gate operation.
We suppress these errors using a noise eater to stabilize the
Raman beam power. Ultimately, improvements to the Raman
laser can reduce the ac Stark shifts altogether (see below for
a detailed account).

The sequence to implement the gate begins with balanc-
ing the sideband strengths to better than 10% and the
detunings to ~100 Hz. Applying the bichromatic field
for time 7 to the initial state |T) while scanning the detuning
S pinpoints the required gate detuning to near 27()
[Fig. 2]. The dynamics of the frequency scan can be under-
stood in terms of the evolution of entangled states of
spin and motion [14,15]. Assuming the initial spin state |]T)
and motional ground state |n,=0), the average ion bright-
ness defined as S,,=2P  +P; +P is S,(7, 5):%[1

+cos O(r, 5)8"0‘(7’5”2/2]. With the detuning now fixed, the
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FIG. 2. Average brightness S, (see text) versus MS gate detun-
ing 8. Applied gate time (75 us) is within 10% of the ideal. Dotted
line indicates expected signal modified to include an initial tem-
perature i7,=0.3 [15]. Solid line is a fit including offset and contrast
factors to account for imperfections such as spontaneous emission.
The fit gives a sideband Rabi frequency 7{)/27=6.3 kHz and ini-
tial stretch mode temperature 77,=0.3. Vertical line shows ideal gate
operation point 6=27X), roughly at S,,=1. Each point is the aver-
age of 150 PMT measurements.

average brightness is monitored while scanning the gate
time. The time evolution reveals the overall spin dynamics
modulated by faster dynamics associated with the phase-
space evolution [Fig. 3(a)]. Each location of zero slope cor-
responds to the ion motion returning on itself to form a
closed trajectory. The return points are most clearly visual-
ized in the parity signal, H:(PTT+P11)_(PTL+PLT):%(1
+e2lalr, 5)‘2) [Fig. 3(b)]. At the gate operation time (80 ws),
corresponding to the first return, the initial state |T1) has
evolved ideally to W, =(1/\2)(|T 1)+ie'®|] |)).

The simplest indicator for the quality of the entangled
states formed is the fidelity F=(W|p|¥) with which the ac-
tual density matrix p matches the target state W. The fidelity
for creating the Bell-like states of Eq. (2) is simply the sum
of the two relevant diagonal population terms of p and the
corresponding pair of off-diagonal coherences. It is easy to
directly extract the coherences for the even parity states ¥ ,
without single-qubit operations. A single global 7/2 analysis
pulse is applied to the state; varying the phase of the analysis
pulse yields an oscillating parity signal [Fig. 4] with ampli-
tude equal to twice the off-diagonal coherence [31,13]. For
the case of W, as shown in Fig. 4, a typical fidelity of 0.80
is achieved (which must exceed 0.5 to achieve entanglement
[13,32]).

Parity IT
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FIG. 3. Time scan of MS gate showing (a) average brightess S,
and (b) parity I1. Ideal gate evolution shown as dotted lines with
best fit including exponential damping shown with solid line. The fit
gives a sideband Rabi frequency 7€)2/27=6.6 kHz and detuning
6/21=12.8 kHz=2%) /2 with other parameters the same as in
Fig. 2. Vertical line shows gate operation time 7=2/ 5=~ 80 us.
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FIG. 4. Parity versus phase of analysis 77/2 pulse applied to the
W, state. The solid line is a sinusoidal fit yielding an amplitude
0.79(2). The fidelity of the state shown is 0.83(2). Each point is an
average over 50 PMT measurements and other parameters are as in
text.

A full evaluation of the entangled state including a quan-
titative measure of the entanglement requires access to the
full density matrix, in particular all the off-diagonal coher-
ences. To determine the 15 free parameters for a normalized
two-qubit density matrix requires at least as many indepen-
dent measurements. We follow closely the tomographic ap-
proach outlined in Refs. [19,21]. The density matrix can be
decomposed in terms of a tensor product basis p
:Eij=0rijai ® o, where oy =1, oy =0, 0,= oy, and o3=0,
are the usual single-qubit Pauli matrices satisfying Tr(o;07)
=23, and r;;=Tr(po;® 0;) are real numbers. In the experi-
ment, we choose to perform projective measurements in the
nine basis combinations {o;® gj.i, Jj=x,y,z} each yielding
four possible outcomes for a total of 27 independent mea-
surements accounting for normalization. The fluorescence
measurement accesses o, projections. To implement trans-
verse o, projections, we make use of independent single-
qubit rotations to transform into the o, basis before measure-
ment. Repeated preparation of a target state followed by
tomographic measurement is performed for 200 shots per
measurement basis. The total reconstruction time takes about
60 s, dominated by the cooling cycle and camera readout
time.

A fast, direct inversion for the density matrix can be made
with a minimum complete measurement set of 15 values r;;.
However, this process in general leads to an unphysical den-
sity matrix due to experimental error. Instead, maximum
likelihood estimation is used to fit the data to a density ma-
trix form constrained to be Hermitian, normalized and posi-
tive semidefinite. The inclusive and mutually exclusive na-
ture of the four measurement outcomes for each basis is
taken into account by least-squares weighting according to a
multinomial distribution [33]. Systematics of the tomogra-
phic process are assessed after the fact based on tomographic
control runs of input states |17) and || |) assumed to be ideal.
The results from the controls are used to extract detection
biases (on the order of a few percent), microwave Rabi fre-
quency, and applied ac Stark shifts used for qubit rotations.
Statistical errors for parameters calculated from the recon-
structed density matrix are difficult to extract directly and so
are obtained using a simple numerical bootstrap method
[34]: the raw shot-by-shot data are randomly resampled with
replacement to generate successive data sets from which a
distribution of a parameter’s value can be obtained.

All four Bell-like entangled states are created according to
Eq. (2) by applying the MS gate to the different computa-
tional states. Figure 5 shows their reconstructed density ma-
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FIG. 5. Tomographically reconstructed density matrices (a)—(d)
for the four Bell-like entangled states W'; through W, as per Eq. (2).
To allow direct comparison of diagonal and off-diagonal elements,
the reconstructed matrices were rotated into the real coordinate us-
ing fit parameter ¢,=—1.1 rad for (a) and (b), and ¢,=0.43 rad for
(c) and (d). Each state reconstruction uses 27 independent projec-
tive camera measurements averaged over 200 runs.

trices. The inferred fidelities for the target states W, through
v, are F={0.82(3),0.89(3),0.78(3),0.66(3)} where the
phases ¢,=—1.1 rad and ¢,=0.43 rad are considered free pa-
rameters obtained from the fits. The tomographically ob-
tained fidelity for W, agrees well with a simple parity-based
assessment like that discussed above. The fidelity for creat-
ing the odd-parity states W5 4 is worse because of inaccurate
preparation of the input states |T]) and |[T) (F=0.85). Ac-
counting for this factor, the fidelities of all states are on par.

Inseparability (entanglement) of the reconstructed two-
qubit states can be tested by performing a partial transpose
of the density matrix and searching for a negative value
in the resultant eigenvalue spectrum [35,36]. For example,
the eigenvalue spectrum obtained for the W, case is
{-0.42(3),0.40(3),0.49(2),0.53(2)} compared with the
ideal case {-0.5,0.5,0.5,0.5}. The negativity N [37,38],
twice the absolute value of the negative eigenvalue, is
obtained for all four target states W; with values N
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={0.74(6),0.84(7),0.60(5),0.42(6)}. Ranging from zero for
a separable state to one for the maximally entangled one, the
value gives an indication of the degree of the entanglement.
Several quantitative measures of entanglement exist in the
literature [39], although lacking a closed form they are, in
general, difficult to calculate. One standard measure that is
directly calculable for two qubits is the entanglement of for-
mation Ej [40] again ranging from zero for a separable state
to one for the maximally entangled one. In the context of
pure states, the value of Ep can be interpreted as the
number nE of maximally entangled states required to recon-
struct n copies of a given state [32]. The experimental
values for the four states shown in Fig. 5 are
Er={0.65(8),0.77(9),0.49(6),0.32(6)}. The entanglement of
formation is a manifestly more strict indicator for the quality
of an entangled state than the fidelity and drops quickly with
decreasing fidelity.

Among the experimental sources of gate imperfection,
spontaneous emission and fluctuating ac Stark shifts stand
out as the likely primary sources of the observed infidelity.
For our setup, the gate speed ({2,=27/7,=27(}), which is
proportional to the stimulated Raman Rabi frequency (),
scales as Iy?/A in terms of the optical linewidth /27
=60 MHz, the Raman laser intensity / and its detuning A
(not to be confused with the detuning & of the net two-photon
Raman transition). In addition to generating the desired gate
action, the Raman beams are responsible for a spontaneous
scattering rate vy,. per ion and residual differential ac Stark
shift dv,; of the hyperfine qubit levels. The probability of a
spontaneous photon being scattered during a gate operation
is pye=2v,.7,=2By/ A, where the factor of 2 accounts for the
presence of two ions. A rough theoretical estimate can be
made for the prefactor B=v2/ el 7~400, which includes a
\J’E factor accounting for the bichromatic field, a factor e
~0.2 characterizing the EOM Raman transition efficiency
[29], a Clebsch-Gordon related factor {=0.5 and the Lamb-
Dicke parameter 7=0.1 for the stretch mode. Similarly, the
ac Stark phase acquired during a gate is ¢,=0v,T,
=Bwy/A. The relatively large value of w,/2m=14.5 GHz
for Cd*, while useful for high fidelity qubit detection, re-
quires a significant detuning A to suppress Stark shifts. Ex-
perimentally, for our modest detuning A/27=200 GHz, we
measure a value of dv,/2m=75 kHz, from which we obtain
¢,=127 and infer p,.=~0.3. The value of p,. agrees roughly
with the direct theoretical estimate and predicts an infidelity
1-F=0.73p,.=0.2, roughly in agreement with the observed
value for creating ¥, ,. The factor of 0.73 appears in the
infidelity since a spontaneous scattering event will result in a
mixed state that still has some residual overlap with the en-
tangled target state.

Increasing the detuning A can reduce the relative effect of
both spontaneous emission and Stark shift (see also Ref.
[41]); however, a concomitant increase in the power of the
Raman beams is required to maintain the speed of the entan-
gling gate (and Raman cooling), thereby avoiding slower
sources of noise such as magnetic field drift or laser-beam-
steering noise. In the short term, a reasonable increase in
Raman laser detuning and power (currently ~1 mW) by a
factor of 10 would reduce the spontaneous emission and sen-
sitivity to ac Stark shifts by the same amount. Ultimately,
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detunings on the order of the large fine structure (74 THz) of
Cd* [29] allow for significant suppression of both effects
(see also Ref. [42]).

In conclusion, a Mg@lmer-Sgrensen gate has been realized
to generate pairwise entanglement of clock-state ion qubits
with reduced sensitivity to interferometric phase fluctuations
of the Raman beams. The tomographic reconstruction used
to assess the resultant entangled states demonstrates univer-
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sal two-qubit control, which is being directly applied to in-
vestigate prototype quantum algorithms [43].
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