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Structure of the sets of mutually unbiased bases for N qubits
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For a system of N qubits, living in a Hilbert space of dimension d=2", it is known that there exists d+1
mutually unbiased bases. Different construction algorithms exist, and it is remarkable that different methods
lead to sets of bases with different properties as far as separability is concerned. Here we derive four sets of
nine bases for three qubits, and show how they are unitarily related. We also briefly discuss the four-qubit case,
give the entanglement structure of 16 sets of bases, and show some of them and their interrelations, as
examples. The extension of the method to the general case of N qubits is outlined.
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I. INTRODUCTION

Every quantum system is associated with some state (pure
or mixed) in a Hilbert space. It is possible to ascertain this
quantum state by performing a series of measurements on an
ensemble consisting of many identical members. Each mea-
surement will modify the measured ensemble member in
such a way that it is, in general, not possible to get any
additional information about the original state. Several tech-
niques, such as state tomography [1,2], maximum likelihood
[3-5], and maximum-entropy methods [6] (or combinations
thereof [7]), have been devised for efficient state estimation.

When the Hilbert space is finite, it has been shown that
the optimal approach to get the information is related to a
special set of states that are “mutually unbiased” [8—10], for
which the uncertainty spread of the inferred state is mini-
mized. Note, however, that we are ignoring more general
measurements, such as joint measurements on all the mem-
bers of the ensemble [11-13] or adaptive measurements
[14,15], which surpass the ability of a priori fixed, single-
copy measurements.

Let us denote basis sets by A=1,2,... and states within a
basis by |A,a>, with a=1,2,...,d, d being the dimension of
the Hilbert space. We recall that two bases |A,a) and |B,b)
are said to be mutually unbiased bases (MUBSs) if a system
prepared in any element of A has a uniform probability dis-
tribution of being found in any element of B, that is

[A,a

B.b)|*=1/d,

where orthonormality among states of the same basis is as-
sumed. These MUBs are central to the formulation of the
discrete Wigner function [16-19]. They have also been used
in cryptographic protocols [20,21] due to the complete un-
certainty about the outcome of a measurement in some basis
after the preparation of the system in another, if the bases are
mutually unbiased. MUBs are also used for quantum error
correction codes [22,23] and recently they have also found
uses in quantum game theory, in particular to provide a so-
lution to the mean king problem [24-29].

It has been shown that the maximum number of MUBs
can be at most d+1 [8]. Actually, it is known that if d is
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prime or the power of prime, the maximal number of MUBs
can be achieved [8,10]. Remarkably though, there is no
known answer for any other values of d, although there are
some attempts to find a solution to this problem in some
simple cases, such as d=6 or when d is a nonprime integer
squared [30-32]. Recent works have suggested that the an-
swer to this question may well be related with the nonexist-
ence of finite projective planes of certain orders [33,34] or
with the problem of mutually orthogonal Latin squares in
combinatorics [35,36].

Experimental quantum information and computation have
already moved from single-qubit protocols to several qubits
(at present, around eight [37]), so there is a need to extend
our knowledge, specially about entanglement properties of
several qubits. This also includes extensions of measurement
techniques to systems with more than two qubits. Therefore,
a new problem related with MUBs naturally appears, namely
that for more than two qubits, different MUB structures ex-
ist, where the word “structure” refers to the entanglement
properties of the bases. We are already aware of the existence
of three MUB structures for three qubits [10,38]. In this pa-
per we will show that, in fact, there exists exactly four dif-
ferent MUB structures in this space. We will also show how
they are interrelated. For the experimentalist, this informa-
tion is very important, because the complexity of an imple-
mentation of two or more MUBs will, of course, greatly
depend on how many of the qubits need to be entangled. We
will also briefly discuss the four-qubit case and show that in
this space there exist sixteen different MUB structures. We
will exhibit which they are and derive some of them explic-
itly. It is then possible to continue and analyze the general
N-qubit MUBs much in the same manner, although, for brev-
ity and simplicity, we will stop at four qubits.

II. MUBS FOR ONE AND TWO QUBITS

Because states belonging to the same basis are usually
taken to be orthonormal, to study the property of “mutually
unbiasedness” it is possible to use either mutually unbiased
bases or the operators which have the basis states as eigen-
vectors. We thus need d>— 1 operators to obtain the whole set
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TABLE 1. Five sets of three operators defining a (3,2) MUB.

1 5.6, is, 5.1 2
2 5.0 16, ol 2
3 Ay A.V i A\ 6-\1i 2
4 6,6, 6.6, 6,6 1
5 6,6, 5.6, 6.6, 1

of states. In the case of power of prime dimension, this set
can be constructed as d+1 classes of d—1 commuting opera-
tors, which is related with the grading of a Lie algebra
[39,40]. For N qubits (2V-dimensional case), we need N com-
muting operators to define uniquely a pure state [41,42].

In finite-dimensional systems is also possible to define a
discrete phase space, and when the dimension of the system
is either a prime or a power of prime the phase space is a
finite geometry. The above operators are related with trans-
lations in this phase space and (without a phase factor) they
are the so-called displacement operators, which satisfy the
covariant property of the discrete Wigner function defined
there [18].

The two-dimensional Hilbert vector space (one qubit) is
spanned, e.g., by the two orthonormal eigenvectors of the
spin 1/2 observable &, which will be used in the following
as our computational basis. In this Hilbert space, the MUB
set of 2!+ 1=3 bases is given by the eigenvectors of the Pauli
matrices &y, 6y, and .. Any unitary operation preserves the
angles between the axes of the transformed operators, so we
can redefine our coordinates to have a new set of Pauli ma-
trices. We can then say that the structure of the MUBs re-
mains invariant under any unitary transformation. This is
akin to saying that only one MUB structure exists in the
two-dimensional Hilbert space.

A similar result also holds for two qubits, although, in
addition, the extra feature of entanglement appears. Several
methods have been presented for the explicit construction of
MUBS [8,10,23,31,43-45]. Here we will only focus on one
of them, which is based on the use of the finite Fourier trans-
form, employing the operators &,, &, and tensor products
[46,47]. Because this work attempts to delineate the structure
and interrelation between MUBs, and not their explicit math-
ematical construction, we omit such a discussion and refer
the interested readers to the aforementioned work. If we fol-
low the algorithm in Ref. [47], we get a table with five rows
of three mutually commuting (tensor products of) operators,
shown in Table I, which reproduces Egs. (3.30) and (3.32)-
(3.35) in Ref. [47]. We have suppressed the tensor multipli-
cation sign in all the tables.

By construction, the algorithm guarantees that the simul-
taneous eigenstates of the operators in each row give a com-
plete basis, and each basis is mutually unbiased to each
other. The number on the left enumerates the bases, while the
number on the right denotes how many subsystems the bases
can be factorized into.

It is easy to see that the three first bases are fully sepa-
rable (the three operators in each of the first three rows com-
mute for each of the two subsystems, separately), and that
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the last two bases are not separable. In fact, their simulta-
neous eigenstates are all maximally entangled states. We call
this MUB construction with three (bi-)separable and two
nonseparable MUBS a (3,2) construction. This is equivalent,
under local unitary transformations, to the construction given
in Fig. 1 of Ref. [38].

The algorithm imposes several characteristic features of
the table, which is composed of binary tensor products of the

four operators &, 6, 6,=i6,6,=—i6.7,, and 1= 6= o-f = o’f

In all, there exists 4>=16 combinations of such products, but
the operator T®1 must be excluded because it commutes
with every operator in the set. Each of the 15=3 X5 remain-
ing operators is represented once. Moreover, the table is
uniquely defined by the four entries in the two first columns
of the first two rows. All other operators O, . are determined
by the relations O, =0, .,0, ., and O, =0, O ,,_3 for
r>2, where the indices r and ¢ denote the row and the
column of the operator, respectively, and must be taken
modulo four.

Noting that each separable basis (i.e., the first three rows)
has two eigenoperators containing the identity, that a non-
separable basis cannot have any eigenoperator containing the
identity, and that there must be six entries, i® Iy,
i® é'y, ,&y®ﬂ, é'z®]f containing the identity in the table,
we can conclude that the (3,2) set is the only possible con-
struction in this space. That is, any nonlocal unitary transfor-
mation that yields either separable or maximally entangled
basis (that is, a transformation from the Clifford group), will
yield an isomorphic table with respect to the separability,
except, perhaps, for some row permutations.

III. MUB STRUCTURES FOR THREE QUBITS

Lawrence, Brukner, and Zeilinger [38] have shown ex-
plicitly two different sets of MUBs in the case d=8. One of
them has three fully separable bases (every eigenvector of
these three bases is a tensor product of states embedded in
the Hilbert space of each single qubit) and six GHZ bases
[48]. The other structure has nine sets of bases with eigen-
vectors where one qubit can be factorized and the other two
qubits are in a maximally entangled state. If we follow again
the algorithm in Ref. [47] we get Table II.

Table II is equivalent to the first MUB construction dem-
onstrated in this space by Fields and Wootters [10] or to the
example 2 of Sec. V in Ref. [44], in that it has two fully (that
is, tri-) separable bases (marked with a 3 in the rightmost
column), three biseparable bases (marked with a 2), and four
nonseparable bases (marked with a 1). We will denote such a
set of MUBs as a (2,3,4) structure.

Lawrence, Brukner, and Zeilinger [38] have pointed out
that two other constructions are possible, namely a (3,0,6) set
where three of the bases are fully separable, and the remain-
ing six bases are nonseparable, and a (0,9,0) one, in which all
the bases are biseparable. The corresponding operators are
given in Figs. 2 and 4 of Ref. [38]. We would like to derive
these bases from the ones in Table II. To this end we use the
controlled-Z operator
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TABLE II. Nine sets of operators defining a (2,3,4) MUB.

I &0 fis, . sie. 166 066 el 3
2 Al A 1, 66,1 16,6, 5400 516, 3
3 &yﬁi ][&XAZ E&ZAX Ay AxAz iA}OA'y Ay AyAy A\ AZAX 2
4 sde. sl ale, 666, 666, 6,66, sls, 2
5 OA'XAZI &Z&XAZ Ji(/]\'z/\y AyAyAZ AzAvAx AyAxAx ij‘,\y 1
6 OA-yjH/:Az :/[OA-VV AZ UA-Z AZ&}’ é-y ij[ AZaA_X A)C AX AX A\ AXAZ&X 1
7 &xé-z Az 6-76-}/6-2 Az&z Ax Ay&xf ]ié’x Ay Ax Ay Ax AyJ[ Ay 1
8 0,00 .61 .16, 5,00 16,6, 5,00 5,60y !
9 sl 5.6,1 fis, G601 666, 66,6, 666, 2

100 0 Now we apply the nonlocal unitary operator 1®Z, to

R 010 0 the three qubits (evidently, the operator is only nonlocal in

Z.= 001 0 (3.1) the four-dimensional subsystem constituting the rightmost

two qubits). The local transformation we performed above

000 -1 on the first qubit will of course not change the structure of

This operator is unitary, nonseparable and, moreover, has the
property that it is its own inverse and its own conjugate. It
commutes with { ® 0,0,® 1, and 0,® 0. Let us first convert
the (2,3,4) into an equivalent basis set by applying the local
unitary (permutation) transformation x—y—z—x to the
leftmost qubit. The operator performing this transformation
(up to an overall phase factor) is

Ij 1 (eiﬂ'/4 ei37‘r/4)

P_VE eiﬂ'/4 e—iﬂ'/4 (32)

We also apply the permutation y < z to the middle and right-
most qubits. The corresponding operator is

o 1(1 i)
“Ta\i 1)

Applying the operator U »® Uc ® UC to Table II above, we are
left with an equivalent operator table, Table III, still defining
a (2,3,4) MUB.

(3.3)

the MUB, not even after subsequently applying the operator

11@26. The reason we made this local transformation is only
to facilitate a comparison with the construction in Ref. [38].

We note that Z,(I® 63)23:20(1 ® 6,)Z.=6,® 6., and there-
fore ZC(&Z ® &X)Zzsz@ 0,. The corresponding transforma-
tions for the other products are

>

0,®1l—0d,®0,

l® 0y < 0,9 7y,

6,01 6,06.. (3.4)
From these, the remaining relations

6,® G, 6, G,

G, ® Gy« Gy, ® G, (3.5)

follow. Hence, applying this transformation to Table III, will
result in Table IV. From the unitarity of 2C it follows that all

TABLE III. A local unitary rotation of Table II defining a “different,” but isomorphic (2,3,4) MUB.

1 500 ifs, 6,0 6,16, 16,6, 5.0,y 66,1 3
2 6,01 61 6, 6,60 6.6, 5,60, 6,16, 3
3 .11 6.6, 16,6, 5,00y 16.6. 5,00, 6,6, 2
4 &V}I A} ié‘zi &XJIAZ Y sz &x Az&” Az Az Ax AZ]I AX 2
5 6,6,1 6.0, 16,6. G:6:0y 6,00 5.640 6,16, 1
6 .16, 16.6, 6.6,0, Al 0,00 5,60, 5,66 1
7 OA-_V&y Ay &x&z&} Ax A)'é'x Zﬁ'xi 1[6')5 AZ A\ Az Ax é'z][ AZ 1
8 5.6,0y 6,61 616, Oy i6.6, 5.6,6, 0,6,0 1
9 66,0 60,1 iis, Al .00 5,50 5.0, 2
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TABLE IV. Nine sets of operators defining a (0,9,0) MUB.
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TABLE V. Nine sets of operators defining a (1,6,2) MUB.
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TABLE VI. A table, isomorphic to Table V, defining a (1,6,2) MUB.

= B E g B vy v
s MMZ S &g 2E sz
Ky = bR & AG,AUx <—
AUH AU“. AUM AUM & AU” &
AUZ AUx AUV, AU AUX AUx AHZ AUX HZ
B R KK =B <«

— D

& & AM @’ < = s &'
—~, W AU” AUH AU“ AU” AU” AU” AUZ
AUV/ = AUV AUx, AUV, AUZ AUZ AUX =
ST A S MR
= =

= T B o B W R
AA_HAG AUH AUX AUV, AUZ Awy :H.Ux A]x AUZ
AR RS R IR TR

= =

R PR U T R S I
AU” AU” . e AU” AMV, AUX AMZ HZ
AU AU AU AUZ AU AU AUX <— <=

— AN N <t N O &~ 0 &
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TABLE VII. Nine sets of operators defining a (3,0,6) MUB.

1 5,00, 166, 5,6 00
2 5,0,0, 6,6,0, 16,6, 6,
3 A). Ai &v&y A} OA'\i Ay ][

4 66,6, 16,6. 56,0 G

5 5,60, 6,16, 5,00 0,0,
6 50,0 16,6, 6,61 y

7 OA-on-yOA-v &x&zé-x g Ay A)c

8 Mo, 601 6.6.6,

9 6.1 6.6.1 1ie, G

) 6,16, 5.6,0, G20, !
ZA A)'oA-y Ax OA'XJ[ AV Az&x&x 1
G, 16,1 6,6, e, 3
Gy 516, 5,65 5,65, 1

¥ 5.0.0, 16,6, 6.6, 1

z &Zi Ay &X&z AZ &X&y Ax 1

5,5 6.6.0, 516, 1
6.6, 61 66,1 3
OA-Z AZ AZ &Zi Az :/[0,\'2 Az 3

inner products between the eigenstates of the simultaneous
eigenvectors of the operators in the same or in different rows
of the two tables will be identical. We can therefore be con-
fident that Table IV corresponds to a set of MUBs.
However, this set of MUBs represents a different en-
tanglement structure, because here every basis is biseparable.
In our nomenclature it is a (0,9,0) set. In fact it is the same
table (with some rows interchanged) as Fig. 4 in Ref. [38].

We can now continue and apply the operator 2C®JI to
Table III, above. Again the set of simultaneous eigenstates of
the operators in any row will define a complete basis, and the
set of bases will form a MUB. The result can be seen in
Table V.

This yields a (1,6,2) MUB. That is, only one of the bases
is fully separable. This construction is neither a structure of
the Fields’ and Wootters’ type, nor is it one of Lawrence et
al.’s two structures. We note from the tables above, that there
are nine operators containing two identity operators and 27
containing a single identity operator. In each one of the s sets
of operators defining a fully separable basis (i.e., in each one
of the s rows), there are three entries with two identity op-
erators and three entries with a single identity operator. Each
one of the b operator sets defining a biseparable basis con-
tains one operator with two identities and three operators
with a single identity. Finally, the n sets of operators defining
nonseparable bases contain no operators with two identities,
and three operators with a single identity. In consequence,
we have the equations

3s+b=9,

3(s+b+n)=27, (3.6)

for all non-negative integers (smaller or equal to nine),
which yields the four solutions [(2,3,4), (0,9,0), (1,6,2),
(3,0,6)]. We conclude that, so far, we have derived explicit
constructions for the first three structures, and have one more
left to construct.

Before doing that, we make a small digression and note
that for three qutrits [49], similar considerations lead to the
conclusion that in this 27-dimensional Hilbert space, with 28
MUBES, there exist five MUB structures, namely [(0,12,16),
(1,9,18), (2,6,20), (3,3,22), (4,0,24)].

Now we return to the three qubit space. The last possible
(3,0,6) structure can be built up in the following way: Take
Table V and perform the transformation y < z on the leftmost
two qubits and the transformation x«y on the rightmost
qubit. As we are transforming only the two rightmost qubits
in a nonlocal fashion, the transformation on the leftmost
qubit gives a table identical to one of the constructions
in Ref. [38]. The operator performing the transformation

X<y is
. ei‘rr/4 0
U= ( 0 i ) :

The result of the local transformations lA]E ® UC® l}r is shown
in Table VI.

If we subsequently transform Table VI with Jf@ic, we get
the last of the possible MUB constructions in this eight-
dimensional space, which is reproduced in Table VII.

This table is a (3,0,6) MUB. It is, in fact, exactly the same
(with some rows permuted) as in Fig. 2 of Ref. [38]. The
possibilities in the eight-dimensional space are now ex-
hausted. No other MUBs with different entanglement struc-
tures within the considered context can be constructed. We
summarize the operational relationship between the different
MUB structures one can construct in Fig. 1.

(3.7)

IV. MUB STRUCTURES FOR FOUR QUBITS

With four qubits, the MUBs can take five different
forms with respect to their separability. We have fully sepa-

A A A A N
Tablen 9 ®Ue®Uc oy, 187 Table v
(2,3,4) (2,3,4) ¢ ) (0,9,0)
A A
Z.®1
A A A A
19210 Ug® Uy
Table v Table vii
(1,6,2) (3,0,6)

FIG. 1. The operational relationship between the different MUB
constructions.
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TABLE VIIIL. Seventeen sets of four operators defining a (2,0,4,2,9) MUB.

] AZAZA"AZ’ AZ&ZE&Z
2 Ax A)C AX AX OA-XJTJ[I

3 Ay AyAv Ay &y&ziAZ
4 5,0,0,0, 5,6.6.1
5 AyAvAvAx AyIJiJi
6 Ay Ax Ax Ax Ax&z&z AZ
7 5,000y 5,061
8 5,666, 66,11
9 5,600 6,611
10 076,60 5,16.6.
11 5,000y &XJI\AAZ
12 AxAxAxAy AXOA'ZT[AZ
13 Axé'y Ax&v 6'),1[}[ AZ
14 5,6.6,0, EALA
15 AXAXA\ AX (ATX-EAZAZ
16 50,6, 66,01
17 6,6,6,0, 6,6.6.6.

5,6,0,1 ¢ 111 4
e 11 6,616, 4
6.6,6.1 6,616, 1
Az&xﬂ AJCOA'VOA'7 Ay 2
16,6.6. 56,60 2
5,661 66,16, 1
Tg, 01 6,6,16, 2
66,01 5,656, 2B
5.6.6.0, 6,616, 1
16,16, 6.6,16, 1
16,16, 6,616, 2
56,16, 5,000 1
16,61 0,6,6,0, 2B
JIAX Azé'z &xAy&z Ax 1
]AAyOA'z-Ii\ AVAY AZ Ay 1
G:6,6:6; 6,616, 1
5,6,16, 0,0,6,0 1

rable bases, triseparable bases (2X2X4), two kinds of
biseparable bases (one that factors 2X8 and the other
that factors 4 X4), and finally nonseparable bases. If we
follow once more Ref. [47], but write explicitly only the
first four columns of each basis to save space, we get
Table VIII.

The remaining 11 columns of the table can be generated
through the relation O, =0, .40, ;. The 2 in the last col-
umn indicates a basis biseparable in a 2 X 8 space, while 2B
indicate a basis biseparable in a 4 X4 space. This basis will
be denoted as a (2,0,4,2,9) MUB, referring how many of the
bases that are fully separable, triseparable, biseparable (in a

TABLE IX. Seventeen sets of four operators defining a (0,4,4,2,7) MUB.

1 6-2 AZ AX AX 6’76-7 AZ’ AV
2 5,6,6,0, 601

3 5,666 6,6.6.6,
4 56,6, 1 6,6.6,0;
5 6,6,16, 5 101

6 6,66, 66,00
7 6')(0'} 6.6 AyIOA'y 5,
8 6,616, 66,11
9 &x&» Ay A) OA'y AZJ/[]/I
10 G,6,6,Gy Ay][é'x 5,
11 6,6.6.6, 6.16.6,
12 66,61 5.0.6.0,
13 6.6,6.0 6,16.6,
14 6,6,6,0 6166,
15 6,616, 6.16.6,
16 66,66, 6,6.6,6.
17 Ux&yjé'x A}a—z&x&x

.6.6,0, ¢ 1if 3
1o 11 0,0x0 0y 3
G,6,G,0, 040,00, 2B
6.6, 11 6,6,6,1 2
16,66, 0y0,0:0)y 3
20x0y0; x0y0;0% 2B
lg,11 yOTy0 O 2
A AT A A oA T 3
20,11 G,6,G,1
O-Z(TXUXUX OA-X&X]‘ AZ 1
A A A A AT A l
16,66, G,0y16,
T A A A A AT A 2
16,66, G,6,16,
00,0y 0,0,0,0, 2
S A A A A A oAT l
16,66, O'XO'X(Tyl
16,66, 0,0,0,0, 1
TA A A A A oAT 1
16,66 0y0y0y
20700 6,6,16, 1
0,00, 0,0,0.,0, 1
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TABLE X. The separability of the bases (left column) and the
number of triplets, pairs, and single identity operators contained in
the basis defining operator set.

=
=i

R T T O N~

Basis separability Toiel
4 4
3 2
2 1

2B 0
1 0

Available entries 12 54 108

0 O N N B~ =

2 X8 and in a 4 X4 space, respectively), and nonseparable.
We now apply the operator

ielez leiel oU, (4.1)
which first locally rotates the two rightmost qubits so that
Gy G, and then entangles (or disentangles) the same two
qubits. The result is Table IX.

Before venturing further, it is instructive to see how many
different MUB structures there are in the four-qubit space.
Again we use the fact that identity operators play a special
role in defining the separability of the bases. Table X shows
how many products of three, two, and single identity opera-
tors define a basis of a certain kind. In the table we have
disregarded the ordering of the multiple identities. We shall
briefly come back to this issue, below.

Solving the three equations for the different number of
identity operators, we find 16 different MUB structures:
[(3,0,0,2,12), (2,04,29), (2,1,2,2,10), (2,2,0,2,11),
(1,0,8,2,6), (1,1,6,2,7), (1,2,4,2,3), (1,3,2,2,9), (1,4,0,2,10),
(0,0,12,2,3), (0,1,10,2,4), (0,2,8,2,5), (0,3,6,2,6), (0,4,4,2,7),
(0,5,2,2,8), (0,6,0,2,9)]. Of these, we have explicitly
given the tables for the (2,0,4,2,9) and the (0,4,4,2,7)
structures. Deriving the transformations between any
two of the 16 structures goes beyond the scope of this
paper. However, note that applying the operator

1®Z.@1 to the entries of Table IX will yield a (0,3,6,2.6)
structure. Moreover, using instead the operator

Z.0lel U.0U0.01lel (4.2)
in each entry of Table IX will yield a (1,2,4,2,8) structure.
Since we know that a sequence of controlled-NOT or
controlled-Z operations, together with local unitary rotations,
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suffice to make any entanglement transformation on qubits, it
is clear that similar transformations will yield the whole set
of different MUB structures, starting from Table VIII.

An interesting observation, which is neither obvious from
Table VIII nor from Table IX, is that the eigenstates of the
nonseparable bases are not generalized GHZ states. Instead,
they are more akin to four-qubit graph states [50]. In particu-
lar, they have a high “persistency of entanglement” [51] in
that tracing over any one of the qubits will leave the ensuing
state entangled.

V. CONCLUSIONS

For one and two qubits, there exist only one MUB struc-
ture (in which for two qubits the bases are either separable or
maximally entangled). For more qubits, the situation is more
involved, four different MUB structures appear for three qu-
bits and 16 for four qubits. The difference between these
structures lies in how the bases are entangled. For both three
and four qubits, MUBS exist that have 3, 2, 1, and no fully
separable basis set(s). For three qubits it is possible to find
one MUB that have no fully nonseparable bases. This is no
longer possible in the four-qubit case.

In a quantum protocol relying on MUBs, the entangle-
ment structure of the MUB is usually inconsequential. What
counts is usually only the mutual unbiasedness, not the sepa-
rability of the bases. Experimentally, however, it may be
easier to generate one set of bases rather than another. Some
of the bases can be generated locally, accessing each qubit
separately. However, as we have shown, when several qubits
are involved, most bases are entangled in one way or an-
other, requiring joint operations on the qubits. In this paper
we have tried to delineate the possible MUB structures for
up to four qubits. The method we have employed can of
course be extended to any number of qubits, although the
complexity and variety of bases grows very rapidly with the
number of qubits.
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