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The intermediate quantum states of multiple qubits, generated during the operation of Shor’s factoring
algorithm are analyzed. Their entanglement is evaluated using the Groverian measure. It is found that the
entanglement is generated during the preprocessing stage of the algorithm and remains nearly constant during
the quantum Fourier transform stage. The entanglement is found to be correlated with the speedup achieved by
the quantum algorithm compared to classical algorithms.
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I. INTRODUCTION

The potential speedup of quantum algorithms is demon-
strated by Shor’s factoring algorithm, which is exponentially
faster than any known classical algorithm �1�. Several other
quantum algorithms, which are more efficient than their clas-
sical counterparts were introduced �2–5�. Factorization is of
special interest due to its role in current methods of cryptog-
raphy. Although the origin of the speedup offered by quan-
tum algorithms is not fully understood, there are indications
that quantum entanglement plays a crucial role �6,7�. In par-
ticular, it was shown that quantum algorithms that do not
create entanglement can be simulated efficiently on a classi-
cal computer �8�. Therefore, it is of interest to quantify the
entanglement produced by quantum algorithms and examine
its correlation with their efficiency. This requires us to de-
velop entanglement measures for the quantum states of mul-
tiple qubits that appear in quantum algorithms. Recently, the
Groverian measure of entanglement was introduced and used
for the evaluation of entanglement in certain pure quantum
states of multiple qubits �9�. Using computer simulations of
the evolution of quantum states during the operation of a
quantum algorithm, one can obtain the time evolution of the
entanglement. Such an analysis was performed for Grover’s
search algorithm with various initial states and different
choices of the marked states �10�. It was shown that Grover’s
iterations generate highly entangled states in intermediate
stages of the quantum search process, even if the initial state
and the target state are product states.

In this paper, we analyze the quantum states that are cre-
ated during the operation of Shor’s factoring algorithm. The
entanglement in these states is evaluated using the Groverian
measure. It is found that the entanglement is generated dur-
ing the preprocessing stage. When the quantum Fourier
transform �QFT� is applied to the resulting states, their en-
tanglement remains unchanged. This feature is unique to pe-
riodic quantum states, such as those that result from the pre-
processing stage of Shor’s algorithm. When other states,
such as product states or random states are fed into the QFT,
their entanglement does change. Another interesting feature
is that the entanglement is found to be correlated with the
speedup achieved by the quantum factoring algorithm com-
pared to classical algorithms. This means that the cases
where no entanglement is created are those in which classical
factoring is efficient.

The paper is organized as follows. In Sec. II, we briefly
review Shor’s factoring algorithm, the QFT algorithm, and
the quantum circuit used to perform it. In Sec. III, we de-
scribe the Groverian entanglement measure and the numeri-
cal method in which it is calculated. In Sec. IV, we use the
Groverian measure to evaluate the entanglement created by
Shor’s algorithm. The results are discussed in Sec. V and
summarized in Sec. VI.

II. SHOR’S FACTORING ALGORITHM

Shor’s algorithm factorizes a given nonprime integer N,
namely, it finds integers p1 and p2, such that their product
p1p2=N. The algorithm consists of three parts: �a� prepro-
cessing stage, in which the quantum register is prepared us-
ing classical algorithms and quantum parallelism; �b� quan-
tum Fourier transform, which is applied on the output state
of the previous stage; �c� measurement of the register and
postprocessing using classical algorithms.

A. Preprocessing

Given an integer N to be factorized, choose any integer
y�N and find the integer q=2L that satisfies

N2 � q � 2N2. �1�

Prepare a register of L qubits �later referred to as the main
register� in the equal superposition state

��� =
1
�q

�
a=0

q−1

�a� . �2�

Next, use quantum operations to calculate ya mod N for all
the indices, a=0, . . . ,q−1, of the basis states above, and
store the results in an auxiliary register, giving rise to the
joint state

1
�q

�
a=0

q−1

�a��ya mod N� . �3�

This essentially completes the preprocessing stage. However,
in order to present the next stage of the algorithm more
clearly, it is helpful to measure the auxiliary register in the
computational basis. Suppose that the result of the measure-
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ment is a state �z�, where z=yl�mod N� and l is the smallest
positive integer that gives the value z. The order of y mod N
is defined as an integer r that satisfies yr=1�mod N�. The
equality

yjr+l = yl�mod N� �4�

is thus satisfied for any integer j. From Eq. �4�, it follows
that the measurement will select from the main register all
values of a= l , l+r , l+2r , . . . , l+Ar, where A is the largest
integer which is smaller than �q−1� /r. The state of the reg-
ister after the measurement is, therefore,

��l� =
1

�A + 1
�
j=0

A

�jr + l� . �5�

B. Quantum Fourier Transform

The quantum Fourier transform is given by

�
a=0

q−1

f�a��a� � �
c=0

q−1

f̃�c��c� , �6�

where

f̃�c� =
1
�q

�
a=0

q−1

exp	2�iac

q

 f�a� . �7�

The quantum circuit of the QFT is shown in Fig. 1. To obtain
the transformation in Eq. �6�, the L qubits of register �a� in
the input �and throughout the quantum circuit� are indexed
by k=1, . . . ,L, from bottom to top. The output of the circuit
is stored in register �c�, whose qubits are indexed from top to
bottom. We define the operator Ak to be the Hadamard gate
applied to qubit k, and the operator Bk,m �where m�k� to be
a controlled phase operator, which applies a phase of �k,m
=� /2m−k only if both qubits k and m are 1. We also define

Fk = AkBk,k+1Bk,k+2 . . . Bk,L, �8�

for k=1, . . . ,L, where we follow the standard notation for
quantum operators, namely, those on the right-hand side op-
erate first. With these definitions, the sequence of quantum
operations that perform the QFT is given by

QFT = F1F2 . . . FL. �9�

The number of one-qubit and two-qubit gates required in the
quantum circuit which performs QFT is a polynomial in the
size of the register.

In the simple case in which r divides q exactly, namely
A+1=q /r, one obtains

QFT��l� =
1
�r

�
j=0

r−1

exp	2�ilj

r

� j

q

r
� , �10�

where ��l� is defined in Eq. �5�. The resulting state is a su-
perposition of all basis states with indices which are products
of q /r. If r is not a divisor q, namely, q /r is not an integer,
Eq. �10� should be modified such that the large amplitude
states are those which correspond to integers adjacent to
jq /r, j=0,1 , . . . ,r−1. Our choice of q in Eq. �1� ensures
that, with high probability, the measurement will yield only
states whose indices are the nearest integers to jq /r.

C. Measurement and postprocessing

The third part of the algorithm starts with a measurement
of the register. It yields an integer approximation c of one of
the values jq /r, j=0,1 , . . . ,r−1. Thus, cr is approximately
an integer multiple of q. Here, again, our choice of q in Eq.
�1� ensures that in most cases there exists another integer c�
which satisfies �rc−c�q��r /2. As a result

� c

q
−

c�

r
� �

1

2q
. �11�

Using a continued fraction expansion of c /q, it is possible to
efficiently find c� and r. There is only one such approxima-
tion which satisfies Eq. �11� for r�N. Thus, the correct value
of r is obtained. If r is even, we can define x=yr/2 which
satisfies

x2 − 1 = �x − 1��x + 1� = 0�mod N� . �12�

From Eq. �12�, we obtain that x+1�mod N� and x
−1�mod N� are candidates for having a common divisor with
N. Using Euclid’s greatest common divisor �GCD� algo-
rithm, this common divisor is found and the factoring pro-
cess is completed.

III. THE GROVERIAN MEASURE OF ENTANGLEMENT

A. Formal definition

Consider a quantum algorithm, given by the unitary op-
erator U, applied to the equal superposition state ���. For a
certain class of quantum algorithms, the final, or target state

�t� = U��� , �13�

is a computational basis state. This state stores the correct
result of the calculation, which can be extracted by measure-
ment. Not all quantum algorithms can be expressed in this
form, because the final state, before the measurement is
done, may be a superposition state. However, in the case of
Grover’s search algorithm with a single marked state, this
description applies �9�. Consider the case in which such an
algorithm U is applied to an arbitrary pure state �	�. The
probability of success is defined as the probability that the
measurement will still give the state �t�. This probability is
given by Ps= �t �	��2.

FIG. 1. The circuit of the quantum Fourier transform �QFT�
performed on a four-qubit register. The operator A is the Hadamard
gate. The operators B1, B2, and B3 are the controlled-phase gates
Bk,m, where m−k=1, 2, and 3, respectively.

SHIMONI, SHAPIRA, AND BIHAM PHYSICAL REVIEW A 72, 062308 �2005�

062308-2



The success probability can be used to evaluate the en-
tanglement of the state �	�. To this end, before the algorithm
U is applied, one applies a local unitary operator Uk on each
qubit k=1,2 , . . . ,L. These operators are chosen such that the
success probability of the algorithm will be maximized. The
maximal success probability is

Pmax = max
U1,. . .,UL

�t�UU1 � ¯ � UL�	��2. �14�

Using Eq. �13�, the success probability Pmax can be ex-
pressed by

Pmax = max
U1,. . .,UL

���U1 � ¯ � UL�	��2. �15�

This can be rewritten as

Pmax = max
�e1�,. . .,�eL�

�e1 � ¯ � eL�	��2, �16�

where the �ek�’s are single-qubit states. Equation �16� means
that for a given initial state �	�, the maximal success prob-
ability of such algorithm U is equal to the maximal overlap
of �	� with any product state.

The Groverian measure of entanglement G�	� is defined
by

G�	� = �1 − Pmax. �17�

For the case of pure states, for which G�	� is defined, it is
closely related to an entanglement measure introduced in
Refs. �11–13� and was shown to be an entanglement mono-
tone. The latter measure is defined for both pure and mixed
states. It can be interpreted as the distance between the given
state and the nearest separable state and expressed in terms
of the fidelity of the two states. Based on these results, it was
shown �9� that G�	� satisfies: �a� G�	�
0, with equality
only when �	� is a product state; �b� G�	� cannot be in-
creased using local operations and classical communication
�LOCC�. Therefore, G�	� is an entanglement monotone for
pure states. A related result was obtained in Ref. �14�, where
it was shown that the evolution of the quantum state during
the iteration of Grover’s algorithm corresponds to the short-
est path in Hilbert space using a suitable metric.

B. Numerical evaluation

Consider a pure quantum state of L qubits

�	� = �
j=0

2L−1

aj�j� . �18�

In order to find G�	�, we form a convenient representation of
the tensor product states used in Eq. �16�. The state of each
qubit in the product state is given by

�ek� = ei�k�cos �k�0� + ei�k sin �k�1�� . �19�

Let us denote

bj
�k� = �cos �k if jk = 0

ei�k sin �k if jk = 1
� , �20�

where jk, k=1, . . . ,L is the kth most significant bit in the
binary representation of j. The overlap between �	� and the

product state �e1 � ¯ � eL� is given by
f�	 ,�1 , . . . ,�L ,�1 , . . . ,�L�= e1 � ¯ � eL �	�. It can then be
written as

f�	,�1, . . . ,�L,�1, . . . ,�L� = �
j=0

2L−1

bj
�1�bj

�2� . . . bj
�L�aj . �21�

The phases �k only introduce a global phase which can be
ignored. The Groverian entanglement measure for the state
�	� is given by

Pmax = max
�1,. . .,�L,�1,. . .,�L

�f�	,�1, . . . ,�L,�1, . . . ,�L��2, �22�

namely, the dimension of the parameter space in which the
maximization is obtained is 2L. However, the number of
terms summed up in the calculation of f increases exponen-
tially with the number of qubits. Therefore, to make the cal-
culation of G�	� feasible, one should minimize the number
of evaluations of f . The commonly used steepest descent
algorithm, requires a large number of evaluations of f and is
thus computationally inefficient. Here we accelerate the cal-
culation by performing the maximization analytically and
separately for a single pair of �k and �k. During each maxi-
mization step, all the other parameters are held fixed. In the
maximization, we have a function of the form

f = ck cos �k + dke
i�k sin �k, �23�

where ak= �ak�eik and bj = �bj�ei�j depend on the other 2L−2
parameters. The maximization of �f �2 vs �k and �k leads to

�f �2 → �ck�2 + �dk�2, �24�

where

cos �k →
�ck�

��ck�2 + �dk�2
�25�

and

�k → k − �k. �26�

Using this method, the number of evaluations of f is signifi-
cantly reduced. To find the global maximum, Pmax and then
G�	�, we perform several rounds of maximization over all
the 2L parameters. Trying different initial conditions, we find
that the convergence to the global maximum is fast and no
other local maxima are detected.

IV. ENTANGLEMENT DURING SHOR’S ALGORITHM

Shor’s factoring algorithm includes a preprocessing stage
followed by QFT. Here we analyze the quantum states gen-
erated in each of these stages and evaluate their entangle-
ment using the Groverian measure.

A. Entanglement generated by the QFT procedure

Here we evaluate the time evolution of the Groverian en-
tanglement during the QFT process, shown in Fig. 1. The
Groverian measure is evaluated after each operation of the
Bk,m operator. The Ak operators are local and do not change
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the entanglement. We first perform this analysis for general
quantum states and then focus on the specific quantum states
that appear in the factoring algorithm.

1. QFT applied on general quantum states

To examine the effect of QFT on the Groverian entangle-
ment, we construct an ensemble of random product states as
well as random states of n qubits. The state of each qubit in
the random product states is described by Eq. �19�, where
0��k�� and 0��k�2� are chosen randomly. The ran-
dom states are drawn from an isotropic distribution in the
2L-dimensional Hilbert space �10�. These states turn out to be
highly entangled.

In Fig. 2, we present the time evolution of the Groverian
measure during the processing of QFT on three random
product states as well as on a random state of nine qubits.
For the random product states, one observes that during most
time steps, the entanglement remains unchanged. Most of the
variation takes place at specific times, common to all the
different states. Clearly, the entanglement is generated by the
controlled phase operators Bk,m. The large variations in G�	�
are found to take place when �m−k� is small, namely when
Bk,m is applied on pairs of adjacent qubits. The Groverian
measure during the operation of QFT on a highly entangled
random state is also shown in Fig. 2. It exhibits only small
variations with no obvious regularity.

2. QFT within Shor’s factoring algorithm

In Fig. 3, we present the time evolution of the Groverian
measure during QFT, when it is applied on states obtained
from the preprocessing stage of Shor’s factoring algorithm.
The different lines correspond to the factorization process of
different numbers. Surprisingly, for all numbers that we have
tested, the entanglement was essentially unchanged through-
out the process, as implied by the horizontal lines. This is in
contrast to the behavior observed when QFT is applied to
general quantum states.

A special property of the states generated by the prepro-
cessing is that they are periodic. This motivated us to exam-
ine the time evolution of the Groverian measure during QFT
of general periodic states. The state �m�l+mr� �up to normal-
ization factor� is a periodic state of L qubits, with period r
and shift l. The summation is over all integers m such that
0� l+mr�q−1, where q=2L. It was found that the Grover-
ian measure essentially does not change during the QFT pro-
cess of such states and that the changes which do occur van-
ish exponentially with the number of qubits. The value of the
Groverian measure for these states depends almost solely on
the odd part of the period r. More precisely, for a periodic
state with period r=2Md �where d is odd�, we obtain Pmax
�1/d. This is easy to explain for states with a period r
=2M, which are known to be tensor product states. For these
states, d=1, thus the correct result of Pmax=1 is obtained.
For general periodic states, we do not have an analytical
derivation of the expression for Pmax.

B. Entanglement in the preprocessing stage

Having found that the QFT stage of Shor’s algorithm does
not alter the entanglement of states created by the prepro-
cessing stage, it is clear that all the entanglement is produced
during preprocessing �see Fig. 4�. We have evaluated this
entanglement generated during the factoring process of all
the integers in the range 3�N�200. To factorize an integer
N, one has to choose another integer 1�y�N−1. In our
analysis, we examined all possible choices within this range,
and for each of them, we applied the preprocessing stage as
described in Sec. II. At the end of the preprocessing stage,
we evaluated the Groverian measure of the resulting state of
the main register, following a measurement of the auxiliary
register. In Fig. 4, we present the Groverian measure for the
states obtained after preprocessing vs N for 3�N�200.

FIG. 2. The Groverian measure of entanglement for states cre-
ated during the operation of the QFT on three randomly chosen
tensor product states �dashed, dotted, and dashed-dotted� as well as
on a single random state �solid line�. All the states are of nine
qubits.

FIG. 3. The Groverian measure of entanglement for states cre-
ated during the QFT stage of Shor’s factoring algorithm. The solid
line shows the factorization of N=91 using y=41. The dotted line
�with zero entanglement� shows the factorization of N=33 using
y=23. The dashed line shows the factorization of N=33 using y
=4.
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Each dot represents the Groverian measure after preprocess-
ing for the integer N and for a specific choice of 1�y�N
−1. The solid line represents the function �1−1/ �2N�. We
observe that all the dots are below this line, which resembles
the upper bound of the Groverian measure, namely that for
any state �	� of L qubits G�	���1−1/2L.

Additionally, there are many values of N and choices of y
for which the Groverian measure is G=0, namely the factor-
ing process does not involve any entanglement. For these
particular choices, it should thus be possible to perform the
factoring of N efficiently using a classical algorithm �8�. We
find that for some of the pairs of N and y which produce no
entanglement, GCD�N ,y��1, thus a divisor of N can be
easily found classically. The rest of these pairs are found to
satisfy y2n

=1 mod N, for some integer n, which means that
GCD�y2n−1

+1 ,N� or GCD�y2n−1
−1 ,N� are divisors of N,

which can be easily found by classical algorithms. We thus
find that in cases in which no entanglement is produced by
the quantum algorithm, it offers no speedup compared to
classical algorithms. This is consistent with the assumption
that the entanglement generated by a quantum algorithm is
correlated with the speedup it provides.

V. DISCUSSION

It is found that the states prepared by the preprocessing
stage of Shor’s algorithm, like all periodic states, exhibit the

property that their Groverian entanglement does not change
throughout the QFT stage. One may take the view that the
Groverian entanglement somehow represents the amount of
quantum information present in a quantum state. This is
rather like the von Neumann entropy. Taking this view, our
result may seem natural because the information needed to
perform the factoring is already present after the preprocess-
ing stage. The QFT only rearranges the information such that
it can be extracted by measurement.

It is found that the Groverian measure of the states gen-
erated by Shor’s algorithm is lower than that of random
states, which are almost maximally entangled, with G�	�
��1−1/q �10,15�. Yet, the maximal entanglement created
by the algorithm exhibits the same functional behavior,
where q is replaced by 2N.

Considering the fact that Shor’s algorithm is exponen-
tially faster than its known classical counterparts, it is ex-
pected to use all the entanglement available. Thus, our result
provides further indication that classical algorithms are un-
likely to perform factoring in polynomial time.

Unlike Shor’s algorithm, Grover’s search algorithm is
only polynomially more efficient than its classical counter-
parts �2,3�. Grover’s algorithm also creates entanglement,
which is bound by a constant lower than unity �15�.

A different approach to the analysis of the entanglement
generated by Shor’s factoring algorithm was presented in
Ref. �16�, where the bipartite entaglement between the main
register and the auxiliary register was evaluated during both
the preprocessing and QFT stages, using the negativity
�17,18� as an entanglement measure. It was found that the
entanglement is primarily generated during the preprocessing
stage, in agreement with our results.

VI. SUMMARY

The quantum states created during the operation of Shor’s
factoring algorithm have been analyzed and the entangle-
ment in these states was evaluated using the Groverian mea-
sure. It was found that the entanglement is generated during
the preprocessing stage and remains unchanged during the
QFT stage. It was shown that the latter feature is unique to
periodic states, such as those obtained from the preprocess-
ing stage, while QFT does affect the entanglement of general
quantum states. Another interesting feature is that the en-
tanglement is found to be correlated with the speedup
achieved by the quantum algorithm compared to classical
algorithms. This means that the cases where no entanglement
is created are those in which classical factoring is efficient.
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