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We study a natural notion of decoherence on quantum random walks over the hypercube. We prove that this
model possesses a decoherence threshold beneath which the essential properties of the hypercubic quantum
walk, such as linear mixing times, are preserved. Beyond the threshold, we prove that the walks behave like
their classical counterparts.
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I. INTRODUCTION

The notion of a quantum random walk has emerged as an
important element in the development of efficient quantum
algorithms. In particular, it makes a dramatic appearance in
the most efficient known algorithm for element distinctness
�1�. The technique has also provided simple separations be-
tween quantum and classical query complexity �2�, improve-
ments in mixing times over classical walks �3,4�, and some
interesting search algorithms �5,6�.

The basic model has two natural variants, the continuous
model of Childs et al. �7�, on which we will focus, and the
discrete model introduced by Aharonov et al. �8�. We refer
the reader to Szegedy’s �9� article for a more detailed discus-
sion. In the continuous model, a quantum walk on a graph G
is determined by the time evolution of the Schrödinger equa-
tion using kL as the Hamiltonian, where L is the Laplacian of
the graph and k is a positive scalar to which we refer as the
“jumping rate” or “energy.” In addition to being a physically
attractive model, it has been successfully applied to some
algorithmic problems as indicated above.

Such walks have been studied over a variety of graphs
with special attention given to Cayley graphs, whose alge-
braic structure has provided immediate methods for deter-
mining the spectral resolution of the linear operators that
determine the system’s dynamics. Once it had been discov-
ered that quantum random walks can offer improvement over
their classical counterparts with respect to such basic phe-
nomena as mixing and hitting times, it was natural to ask
how robust these walks are in the face of decoherence, as this
would presumably be an issue of primary importance for any
attempt at implementation �10–12�.

In this paper, we study the effects of a natural notion of
decoherence on the hypercubic quantum walk. Our notion of
decoherence corresponds, roughly, to independent measure-
ment “accidentally” taking place in each coordinate of the
walk at a certain rate p. We discover that for values of p
beneath a threshold depending on the energy of the system,
the walk retains the basic features of the nondecohering
walk; these features disappear beyond this threshold, where
the behavior of the classical walk is recovered.

Moore and Russell �4� analyzed both the discrete and the
continuous quantum walk on a hypercube. Kendon and Tre-
genna �13� performed a numerical analysis of the effect of
decoherence in the discrete case. In this paper, we extend the
continuous case with the model of decoherence described
above. In particular, we show that up to a certain rate of
decoherence, both linear instantaneous mixing times and lin-
ear instantaneous hitting times still occur. Beyond the thresh-
old, however, the walk behaves like the classical walk on the
hypercube, exhibiting ��n ln n� mixing times. As the rate of
decoherence grows, mixing is retarded by the quantum Zeno
effect.

A. Results

Consider the continuous quantum walk on the
n-dimensional hypercube with energy k and decoherence rate
p, starting from the initial wave function �0= �0��n, corre-
sponding to the corner with Hamming weight zero. We prove
the following theorems about this walk.

Theorem 1. When p�4k, the walk has instantaneous mix-
ing times at

tmix =
n�2�c − arccos�p2/8k2 − 1��

�16k2 − p2

for all c�Z, c�0. At these times, the total variation distance
between the walk distribution and the uniform distribution is
zero.

This result is an extension of the results in Ref. �4�, and an
improvement over the classical random walk mixing time of
��n ln n�. Note that the mixing times decay with p and dis-
appear altogether when p�4k. Further, for large p, we will
see that the walk is retarded by the quantum Zeno effect.

Theorem 2. When p�4k, the walk has approximate in-
stantaneous hitting times to the opposite corner �1,…,1� at
times

thit =
2�n�2c + 1�
�16k2 − p2

for all c�Z, c�0. However, the probability of measuring an
exact hit decays exponentially in c; the probability is
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Phit = �1

2
+

1

2
e−p��2c+1�/��16k2−p2�	n

.

In particular, when no decoherence is present, the walk hits
at thit=n��2c+1� /2k, and it does so exactly, i.e., Phit=1. For
p�4k, no such hitting occurs.

This result is a significant improvement over the exponen-
tial hitting times of the classical random walk, with the ca-
veat that decoherence has a detrimental effect on the accu-
racy of repeated hitting times.

Finally, we show that under high levels of decoherence,
the measurement distribution of the walk actually converges
to the uniform distribution in time ��n ln n�, just as in the
classical case.

Theorem 3. For a fixed p�4k, the walk mixes in time
��n ln n�.

In the remainder of the introduction, we describe the con-
tinuous quantum walk model, and recall the graph product
analysis of Moore and Russell �4�. In the second section, we
describe our model of decoherence, derive a superoperator
that governs the behavior of the decohering walk, and prove
that it is decomposable into an n-fold tensor product of a
small system. We then fully analyze the small system in the
third section, and use those results to draw conclusions about
the general walk in three distinct regimes: p�4k, p=4k, and
p�4k. These regimes are roughly analogous to underdamp-
ing, critical damping, and overdamping �respectively� of a
simple harmonic oscillator with damping rate p and angular
frequency 2k.

B. Continuous quantum walk on the hypercube

A continuous quantum walk on a graph G begins at a
distinguished vertex �0 of G, the initial wave function of the
walk being �0, where 
�0 ���=1 if �=�0 and 0 otherwise.
The walk then evolves according to the Schrödinger equa-
tion. In our case, the graph is the n-dimensional hypercube.
Concretely, we identify the vertices with n-bit strings, with
edges connecting those pairs of vertices that differ in exactly
one bit. Since the hypercube is a regular graph, we can let the
Hamiltonian H be the adjacency matrix instead of the La-
placian �14�; the dynamics are then given by the unitary
operator Ut=eiHt and the state of the walk at time t is �t
=Ut�0.

The following analysis makes use of the hypercube’s
product graph structure; this structure will be useful again
later when we consider the effects of decoherence. The
analysis below diverges from that of Moore and Russell �4�
only in that we allow each qubit to have energy k /n instead
of 1/n. The energy of the entire system is then k. Let

�x = � 0 k/n

k/n 0
� ,

and let

H = 
j=1

n

1 � ¯ � �x � ¯ � 1 ,

where the jth term in the sum has �x as the jth factor in the
tensor product. Then we have

Ut = eiHt = �
j=1

n

1 � ¯ � eit�x � ¯ � 1 = �eit�x��n

= � cos�kt/n� i sin�kt/n�
i sin�kt/n� cos�kt/n� 	�n

.

Applying Ut to the initial state �0= �0��n, we have

Ut�0 = �cos� kt

n
��0� + i sin� kt

n
��1�	�n

which corresponds to a uniform state exactly when kt /n is an
odd multiple of � /4.

II. A DERIVATION OF THE SUPEROPERATOR

We begin by recalling a model of decoherence commonly
used in the discrete model, with the intention of deriving a
superoperator Ut, acting on density matrices, which mimics
these dynamics in our continuous setting. The discrete
model, described in Ref. �13�, couples unitary evolution ac-
cording to the discrete-time quantum random walk model of
Aharonov et al. �8� with partial measurement at each step
occurring with some fixed probability p. Specifically, the
evolution of the density matrix can be written as

	t+1 = �1 − p�U	tU
† + p

i

PiU	tU
†Pi,

where U is the unitary operator of the walk, i runs over the
dimensions where the decoherence occurs, and the Pi project
in the usual “computational” basis �13�.

In the continuous setting, the unitary operator that gov-
erns the nondecohering walk is Ut=e−iHt, where H is the
normalized adjacency matrix of the hypercube times an en-
ergy constant. To extend the above decoherence model to
this setting, recall that the superoperator Ut � Ut

† associated
with these dynamics has the property that

dUt � Ut
†

dt
= i�e−iHt

� eiHt��1 � H − H � 1�;

wishing to augment these dynamics with measurement oc-
curring at some prescribed rate p, we desire a superoperator
St that satisfies

St+dt = St�e−iHdt
� eiHdt���1 − pdt�1 + pdt�P�� ,

where P is the operator associated with the decohering mea-
surement. Intuitively, the unitary evolution of the system is
punctuated by measurements taking place with rate p, analo-
gous to the discrete case.

Letting e−iHdt=1− iHdt, we can expand and simplify:

St+dt = St�e−iHdt
� eiHdt���1 − pdt�1 + pdt�P��

= St��1 − iHdt� � �1 + iHdt����1 − pdt�1 + pdt�P��

= St�1 � 1 + idt�1 � H − H � 1� − pdt1 � 1 + pdt�P�� .

In terms of a differential equation,
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dSt

dt
=

St+dt − St

dt

=
St�1 � 1 + idt�1 � H − H � 1� − pdt�1 � 1 + P�� − St

dt

= St�i�1 � H − H � 1� − p1 � 1 + p�P�� .

The solution is

St = exp��i�1 � H − H � 1� − p1 � 1 + p�P��t� . �2.1�

We now define the decoherence operator P. This operator
will correspond to choosing a coordinate uniformly at ran-
dom and measuring it by projecting to the computational
basis ��0� , �1��. Let 
0 and 
1 be the single qubit projectors
onto �0� and �1�, respectively. We define

P =
1

n


1�i�n

�
0
i

� 
0
i + 
1

i
� 
1

i � ,

where 
0
i =1 � ¯ � 1 � 
0 � 1 � ¯ � 1 with the nonidentity

projector appearing in the ith place. We define 
1
i similarly,

so that 
 j
i ignores all the qubits except the ith one, and

projects it onto �j� where j� �0,1�. Note that


 j
i

� 
 j
i = �1 � 1� � ¯ � �
 j � 
 j� � ¯ � �1 � 1�

for j� �0,1�.

A. Superoperator as an n-fold tensor product

The pure continuous quantum walk on the n-dimensional
hypercube is easy to analyze, in part, because it is equivalent
to a system of n noninteracting qubits. We now show that,
with the model of decoherence described above, each dimen-
sion still behaves independently. In particular, the superop-
erator that dictates the behavior of the walk is decomposable
into an n-fold tensor product.

Recall the product formulation of the nondecohering
Hamiltonian

H = 
j=1

n

1 � ¯ � �x � ¯ � 1 ,

where

�x = � 0 k/n

k/n 0
�

with �x appearing in the jth place in the tensor product. We
have given each single qubit energy k /n, resulting in a sys-
tem with energy k. This choice will allow us to precisely
describe the behavior of the walk in terms of the relationship
between the energy of the system and the rate of decoher-
ence.

We can write each of the terms in the exponent of the
superoperator from Eq. �2.1� as follows:

1 � H = 
j=1

n

�1 � 1� � ¯ � �1 � �x� � ¯ � �1 � 1� ,

H � 1 = 
j=1

n

�1 � 1� � ¯ � ��x � 1� � ¯ � �1 � 1� .

Our decoherence operator can also be written in this form:

P =
1

n

j=1

n

�
0
i

� 
0
i + 
1

i
� 
1

i �

=
1

n

j=1

n

��1 � 1� � ¯ � �
0 � 
0� � ¯

� �1 � 1� + �1 � 1� � ¯

� �
1 � 
1� � ¯ � �1 � 1�� .

The identity operator has a consistent decomposition: 1 � 1
= �1/n� j=1

n �1 � 1� � ¯ � �1 � 1�. We can now put these
pieces together to form the superoperator:

St = exp�it�1 � H� − it�H � 1� − pt1 � 1 + ptP�

= exp�
j=1

n

�1 � 1� � ¯ � A � ¯ �1 � 1��
= �

j=1

n

�1 � 1� � ¯ � eA
� ¯ �1 � 1� = �eA��n,

where

A =
t

n
��1 � in�x� − �in�x � 1� − p�1 � 1� + p�
1 � 
1�

+ p�
0 � 
0�� =
t

n�
0 ik − ik 0

ik − p 0 − ik

− ik 0 − p ik

0 − ik ik 0
� .

Notice that for p=0, �eA��n= �e−it�x � eit�x��n, which is ex-
actly the superoperator formulation of the dynamics of the
nondecohering walk.

III. SMALL-SYSTEM BEHAVIOR AND ANALYSIS
OF THE WALK

So far we have shown that the walk with decoherence is
still equivalent to n noninteracting single-qubit systems. We
now analyze the behavior of a single-qubit system under the
superoperator eA. The structure of this single-particle walk
will allow us to then immediately draw conclusions about the
entire system.

The eigenvalues of A are 0, −pt /n, �−pt−�t� /2n, and
�−pt+�t� /2n. Here �=�p2−16k2 is a complex constant that
will later turn out to be important in determining the behav-
ior of the system as a function of the rate of decoherence p
and the energy k. The matrix exponential of A in this spectral
basis can then be computed by inspection. To see how our
superoperator acts on a density matrix 	0, we may change 	0
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to the spectral basis, apply the diagonal superoperator to
yield 	t, and finally change 	t back to the computational
basis. At that point we can apply the usual projectors 
0 and

1 to determine the probabilities of measuring 0 or 1 in
terms of time.

Let �0= �0� and 	0= ��0�
�0�. In the diagonal basis,

	0 = �
1/2

0
1
4�− 1 + p

��
1
4�− 1 − p

��
�

and thus at time t we have

	t = eA	0 = �
1/2

0
1
4e�−pt−�t�/2n�− 1 + p

��
1
4e�−pt+�t�/2n�− 1 − p

��
� .

If we then change back to the computational basis and
project by 
0 and 
1, we may compute the probabilities of
measuring 0 and 1 at a particular time t:

P�0� =
1

4
�2 + e�−pt−�t�/2n�1 − p/�� + e�−pt+�t�/2n�1 + p/��� ,

P�1� =
1

4
�2 − e�−pt−�t�/2n�1 − p/�� − e�−pt+�t�/2n�1 + p/���

which can be simplified somewhat to

P�0� =
1

2
+

1

2
e−pt/2n�cos� t

2n
� +

p


sin� t

2n
�	 ,

P�1� =
1

2
−

1

2
e−pt/2n�cos� t

2n
� +

p


sin� t

2n
�	 .

Here we have let =−i�=�16k2− p2 for simplicity. A quick
check shows that when p=0, P�0�=cos2�kt /n� and P�1�
=sin2�kt /n�, which are exactly the dynamics of the nondeco-
hering walk. The probabilities for this nondecohering case
are shown in Fig. 1.

The three regimes mentioned before are immediately ap-
parent. For p�4k,  is real. When p=4k, we have =0,
which appears to be a serious problem at first glance. Finally,
for p�4k,  is imaginary. We now address each of these
three situations in detail.

A. Case p�4k: Linear mixing and hitting times

When p�4k, we recover the perhaps most interesting
feature of the nondecohering walk: the instantaneous mixing
time is linear in n. To exactly determine the mixing times for
our decohering walk, we solve P�0�= P�1�=1/2; this
amounts to determining when

� =
1

2
e−pt/2n�cos� t

2n
� +

p


sin� t

2n
�	

equals zero. Clearly the exponential decay term results in
mixing as t→�; our principle concern, however, is with the
periodic mixing times analogous to those of the original
walk. We thus ignore the exponential term when solving the
equality �=0, which yields

p2

2 =
1 + cos�t/n�
1 − cos�t/n�

.

This equation actually has more solutions than the one we
started with, because of the use of half angle formulas for
simplification. The solutions that we want are

tmix =
n


�2�c − arccos� p2

8k2 − 1�	 ,

where c ranges over the positive integers. Evidently, the mix-
ing times still occur in linear time; an example is shown in
Fig. 2. Note also that if we let p=0, we have tmix=n��2c
−1� / �4k�, which are exactly the nice periodic mixing times
of the nondecohering walk. In the decohering case, however,
these mixing times drift towards infinity, and cease to exist
altogether beyond the threshold of p=4k. This proves Theo-
rem 1.

FIG. 1. The p=0 case—no decoherence: a plot of P�0� and P�1�
vs time, for k=1, n=5, p=0.

FIG. 2. The p�4k case: a plot of P�0� and P�1� vs time, for
k=1, n=5, p=0.5.
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We now wish to determine when our small system is as
close as possible to �1�. Since our large-system walk begins
at �0��n, this will correspond to approximate hitting times to
the opposite corner �1��n. These times correspond to local
maxima of P�1�; the solutions are

thit = 2n��2c + 1


� ,

where c ranges over the non-negative integers. At these
points in time, the value of P�1� is

1

2
+

1

2
e−�2c+1�p�/,

which immediately yields Theorem 2.

B. Breakpoint case p=4k

We first observe that tmix→� as p→4k. Hence we do not
expect to see any mixing in this case. To analyze the prob-
abilities exactly, we take the limit of � as p→4k. The solu-
tion is

lim
p→4k

� =
1

2
e−2kt/n�1 +

2kt

n
	 . �3.1�

Indeed, since k, t, and n are all positive, � is zero only in the
limit as t→�. The linear mixing and hitting behavior from
the previous section has entirely disappeared. As in the criti-
cal damping of simple harmonic motion, a small decrease in
the rate p can result in drastically different behavior, in this
case a return to linear mixing and hitting. We leave the lim-
iting mixing analysis of this case for the next section, where
we develop some relevant tools.

C. Case p�4k and the limit to the classical walk

The goal of this section is to show two interesting conse-
quences of the presence of substantial decoherence in the
quantum walk on the hypercube. First, we will show that for
a fixed p�4k, the walk behaves much like the classical walk
on the hypercube, mixing in time ��n ln n� �see Figure 3�.
Second, we show that as p→�, the walk suffers from the
quantum Zeno effect. Informally stated, the rate of decoher-

ence is so large that the walk is continuously being reset to
the initial wave function �0��n by measurement.

1. Recovering classical behavior

Consider a single qubit. Let P be the distribution obtained
by full measurement at time t, and U the uniform distribu-
tion:

P�0� =
1

2
+ �, P�1� =

1

2
− �, and U�0� = U�1� =

1

2
,

where

� =
1

4
�e�−p−��t/2n�1 − p/�� + e��−p�t/2n�1 + p/��� .

For x= �x1 ,… ,xn��Z2
n,

Pn�x� = �
i=1

n

P�xi� and Un�x� = 2−n

are the analogous product distributions in the n-dimensional
case. To analyze the limiting mixing behavior of the walk,
we will consider the total variation distance �Pn−Un�
=x�Pn�x�−Un�x�� between these distributions. In order to
give bounds for total variation, we will use Hellinger dis-
tance �15�, defined as follows:

H�A,B�2 = 
x

��A�x� − �B�x��2 = 1 − 
x

�A�x�B�x� .

We will make use of the following two properties of Hell-
inger distance:

1 − H�An,Bn�2 = �1 − H�A,B�2�n,

and

�A − B� � 2H�A,B� � 2�A − B�1/2. �3.2�

The first property makes it easy to work with product distri-
butions. The second gives a nice relationship between Hell-
inger distance and total variation distance. In our case,

H�Pn,Un�2 = 1 − �1 − H�P,U�2�n

= 1 − �1

2
�1 + 2� +

1

2
�1 − 2��n

= 1 − �1 −
�2

2
+ O��3��n

.

And hence, by Eq. �3.2�,

�Pn − Un�2 � 4 − 4�1 −
�2

2
+ O��3��n

.

Consider the walk with decoherence rate p�4k. We have
�=�p2−16k2� p, where � and p are positive and real. It
follows that for a fixed p�4k, �→0, and �Pn−Un�→0 as
t→�. Hence the walk does indeed mix eventually, and the
measurement distribution in fact converges to the uniform
distribution. Let t=dn ln n where d�0 is a constant, and
rewrite � as follows:

FIG. 3. The p�4k case: a plot of P�0� and P�1� vs time, for
k=1, n=5, p=9.
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� =
1

4
e−�p−��d ln n/2��1 − p/�� + e−�d ln n/2�1 + p/��� .

Suppose we choose d such that d� �p−��−1. Then �
=o�n−1/2�, which implies that �Pn−Un�=o�1�. On the other
hand, if d� �p−��−1, then �=��n−1/2� and there exists a con-
stant � such that �Pn−Un����0. This shows that the walk
mixes in time ��n ln n� when p�4k. Notice that when p
=4k, �p−��−1= �4k�−1, so that the same technique easily ex-
tends to that case via Eq. �3.1�. This completes the proof of
Theorem 3.

2. Quantum Zeno effect for large p

Recall from the previous section that the time required to
mix when p�4k is

t �
n ln n

p − �

which clearly increases with p. Further, for large p, p /�
tends to 1, and hence � tends to 1/2. Notice that �=1/2
corresponds to remaining at the initial state forever. We con-
clude that the mixing of the walk is retarded by the quantum
Zeno effect, where measurement occurs so often that the
system tends to remain in the initial state.
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