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We reexamine the problem of switching off unwanted phase evolution and decoherence in a single two-state
quantum system in the light of recent results on random dynamical decoupling methods �L. Viola and E. Knill,
Phys. Rev. Lett. 94, 060502 �2005��. A systematic comparison with standard cyclic decoupling is effected for
a variety of dynamical regimes, including the case of both semiclassical and fully quantum decoherence
models. In particular, exact analytical expressions are derived for randomized control of decoherence from a
bosonic environment. We investigate quantitatively control protocols based on purely deterministic, purely
random, as well as hybrid design, and identify their relative merits and weaknesses at improving system
performance. We find that for time-independent systems, hybrid protocols tend to perform better than pure
random and may improve over standard asymmetric schemes, whereas random protocols can be considerably
more stable against fluctuations in the system parameters. Beside shedding light on the physical requirements
underlying randomized control, our analysis further demonstrates the potential for explicit control settings
where the latter may significantly improve over conventional schemes.
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I. INTRODUCTION

The design and characterization of strategies for control-
ling quantum dynamics is vital to a broad spectrum of appli-
cations within contemporary physics and engineering. These
range from traditional coherent-control settings like high-
resolution nuclear �1,2� and molecular spectroscopy �3� to a
variety of tasks motivated by the rapidly growing field of
quantum information science �4�. In particular, the ability to
counteract decoherence effects that unavoidably arise in the
dynamics of a real-world quantum system coupled to its sur-
rounding environment is a prerequisite for scalable realiza-
tions of quantum-information processing �QIP�, as actively
pursued through a variety of proposed quantum device
technologies �5�.

Active decoupling techniques offer a conceptually simple
yet powerful control-theoretic setting for quantum-dynamical
engineering of both closed-system �unitary� and open-system
�nonunitary� evolutions. Inspired by the idea of coherent av-
eraging of interactions by means of tailored pulse sequences
in nuclear magnetic resonance �NMR� spectroscopy �6�, de-
coupling protocols consist of repetitive sequences of control
operations �typically drawn from a finite repertoire�, whose
net effect is to coherently modify the natural target dynamics
to a desired one. In practice, a critical decoupling task is the
selective removal of unwanted couplings between sub-
systems of a fully or partially controllable composite quan-
tum system. Historically, a prototype example is the elimina-
tion of unwanted phase evolution in interacting spin systems
via trains of � pulses �the so-called Hahn-echo and Carr-
Purcell sequences �7,8��. For open quantum systems, this line
of reasoning motivates the question of whether removing the
coupling between the system of interest and its environment

may be feasible by a control action restricted to the former
only. Such a question was addressed in �9� for the paradig-
matic case of a single qubit coupled to a bosonic reservoir,
establishing the possibility of decoherence suppression in the
limit of rapid spin flipping via the echo sequence mentioned
above.

The study of dynamical decoupling as a general strategy
for quantum coherent and error control has since then at-
tracted a growing interest from the point of view of both
model-independent decoupling design and optimization and
the application to specific physical systems. Representative
contributions include the extension to arbitrary finite-
dimensional systems via dynamical-algebraic �10,11�, geo-
metric �12�, and linear-algebraic �13� formulations; the con-
struction of fault-tolerant Eulerian �14� and concatenated
decoupling protocols �15�, as well as efficient combinatorial
schemes �16–19�; the connection with quantum Zeno physics
�20�; proposed applications to the compensation of specific
decoherence mechanisms �notably, magnetic-state decoher-
ence �21� and 1/ f noise �22–26�� and/or the removal of un-
wanted evolution within trapped-ion �27,28� and solid-state
quantum computing architectures �29�. These theoretical ad-
vances have been paralleled by steady experimental progress.
Beginning with a proof-of-principle demonstration of deco-
herence suppression in a single-photon polarization interfer-
ometer �30�, dynamical decoupling techniques have been
implemented alone and in conjunction with quantum error
correction within liquid-state NMR QIP �31,32� and have
inspired charge-based �33� and flux-based �34� echo experi-
ments in superconducting qubits. Recently, dynamic deco-
herence control of a solid-state nuclear quadrupole qubit has
been reported �35�.

All the formulations of dynamical decoupling mentioned
so far share the feature of involving purely deterministic con-
trol actions. In the simplest setting, these are arbitrarily
strong, effectively instantaneous rotations �so-called bang-
bang controls� chosen from a discrete group G. Decoupling
according to G is then accomplished by sequentially cycling
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the control propagator through all the elements of G. If �t
denotes the separation between consecutive control opera-
tions, this translates into a minimal averaging time scale
Tc= �G��t of length proportional to the size �G� of G.

The exploration of decoupling schemes incorporating sto-
chastic control actions was only recently undertaken. A gen-
eral control-theoretic framework was introduced by Viola
and Knill in �36� �see also �37��, based on the idea of seeking
faster convergence �with respect to an appropriately defined
metric� by randomly sampling rather than systematically
implementing control operations from G. Based on general
lower bounds for pure-state error probabilities, the analysis
of �36� indicated that random schemes could outperform
their cyclic counterpart in situations where a large number of
elementary control operations is required or, even for small
control groups, when the interactions to be removed vary
themselves in time over time scales long compared to �t but
short compared to Tc. Furthermore, it also suggested that
advantageous features of pure cyclic and random methods
could be enhanced by appropriately merging protocols
within a hybrid design. The usefulness of randomization in
the context of actively suppressing coherent errors due to
residual static interactions was meanwhile independently
demonstrated by the so-called Pauli random error correction
�PAREC� method, followed by the more recent embedded
dynamical decoupling method—both due to Kern and co-
workers �38,39�. Both protocols may be conceptually under-
stood as following from randomization over the Pauli group
GP= �1 ,�x ,�y ,�z�, used alone or, respectively, in conjunction
with a second set of deterministic control operations.

Our goal in this work is twofold: first, to develop a quan-
titative understanding of typical randomized control perfor-
mance for both coherent and decoherent phase errors, begin-
ning from the simplest scenario of a single qubit already
investigated in detail in the deterministic case �9�; second, to
clarify the physical picture underlying random control, by
devoting, in particular, special attention to elucidate the con-
trol action and requirements in rotating frames associated
with different dynamical representations. The fact that the
controlled dynamics remains exactly solvable in the bang-
bang �BB� limit makes the single-qubit pure-dephasing set-
ting an ideal test bed for these purposes. From a general
standpoint, since spin-flip decoupling corresponds to averag-
ing over the smallest �nontrivial� group Z2= �0,1�, with
Tc=2�t �10,11�, this system is not yet expected to show the
full advantage of the random approach. Remarkably, how-
ever, control scenarios can still be identified, where random-
ized protocols indeed represent the most suitable choice.

The content of the paper is organized as follows. After
laying out the relevant system and control settings in Sec. II,
we begin the comparison between cyclic and randomized
protocols by studying the task of phase refocusing in a qubit
evolving unitarily in Sec. III. Control of decoherence from
purely dephasing semiclassical and quantum environments is
investigated in the main part of the paper, Secs. IV and V. We
focus on the relevant situations of decoherence due to ran-
dom telegraph noise and to a fully quantum bosonic bath,
respectively. Both exact analytical and numerical results for
the controlled decoherence process are presented in the latter
case. We summarize our results and discuss their significance

from the broader perspective of constructively exploiting
randomness in physical systems in Sec. VI, by also pointing
to some directions for future research. Additional technical
considerations are included in a separate appendix.

II. SINGLE-QUBIT QUANTUM-CONTROL SETTINGS

Our target system S is a single qubit, residing on a state
space HS�C2. The influence of the surrounding environment
may be formally accounted for by two main modifications to
the isolated qubit dynamics. First, S may couple to effec-
tively classical degrees of freedom, whose net effect may be
modeled through a deterministic or random time-dependent
modification of the system parameters. Additionally, S may
couple to a quantum environment E; that is, a second quan-
tum system defined on a state space HE with which S may
become entangled in the course of the evolution. For the
present purposes, E will be schematized as a bosonic reser-
voir consisting of independent harmonic modes. Let 1S,E de-
note the identity operator on HS,E, respectively. Throughout
the paper, we will consider different dynamical scenarios,
corresponding to special cases of the following total drift
Hamiltonian on HS � HE:

H0�t� = HS�t� � 1E + 1S � HE + HSE�t� , �1�

where

HS�t� =
�0�t�

2
�z,

HE = 	
k

�kbk
†bk,

HSE�t� = ��z � 	
k

�gk�t�bk
† + gk

*�t�bk� . �2�

Here, we set �=1, and �i �i=x ,y ,z�, bk
†, and bk denote Pauli

spin matrices and canonical creation and annihilation
bosonic operators of the kth environmental mode with fre-
quency �k, respectively. �0�t� and gk�t� are real and complex
functions that account for an effectively time-dependent fre-
quency of the system and its coupling to the kth reservoir
mode, respectively. We shall write

�0�t� = �0 + ��0�t� ,

gk�t� = gk + �gk�t� , �3�

for an appropriate choice of central values �0, gk and modu-
lation functions ��0, �gk, respectively. The adimensional pa-
rameter � is introduced for notational convenience, allowing
us to include ��=1� or not ��=0� the coupling to E as de-
sired. Physically, because HS�t� and HSE�t� commute at all
times, the above Hamiltonian describes a purely decohering
coupling between S and E, which does not entail energy
exchange. While in general dissipation might also occur, fo-
cusing on pure decoherence is typically justified for suffi-
ciently short time scales �40,41� and, as we shall see, has the
advantage of making exact solutions available as bench-
marks.
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Control is introduced by adjoining a classical controller
acting on S—that is, by adding a time-dependent term to the
above target Hamiltonian,

H0�t� � H0�t� + Hc�t� � 1E. �4�

In our case, Hc�t� will be designed so as to implement ap-
propriate sequences of BB pulses. This may be accomplished
by starting from a rotating radiofrequency field �or, upon
invoking the rotating-wave approximation, by a linearly po-
larized oscillating field�, described by the following
amplitude- and phase-modulated Hamiltonian:

Hc�t� = 	
j

V�j��t��cos��t + 	 j�t���x + sin��t + 	 j�t���y� ,

with

V�j��t� = V�
�t − tj� −
�t − tj − ��� .

Here, 
�·� denotes the Heaviside step function �defined as

�x�=0 for x�0 and 
=1 for x0�, V and � are positive
parameters, and tj denotes the instants at which the pulses are
applied. If the carrier frequency is tuned on resonance with
the central frequency, �=�0, and the phase 	 j�t�=−�0tj for
each j, the above Hamiltonian schematizes a train of identi-
cal control pulses of amplitude V and duration � in the physi-
cal frame. Under the BB requirement of impulsive switching
��→0� with unbounded strength �V→��, it is legitimate to
neglect H0�t� �including possible off-resonant effects� within
each pulse, effectively leading to qubit rotations about the x̂
axis. In particular, a � rotation corresponds to 2V�= ±� �see
also the Appendix�.

In what follows, we shall focus on using trains of BB �
pulses to effectively achieve a net evolution characterized by
the identity operator �the so-called no-op gate�. This requires
averaging unwanted �coherent or decoherent� �z evolution
generated by either HS�t� or HSE�t� or both, by subjecting the
system to repeated spin flips. In group-theoretic terms such
protocols have, as mentioned, a transparent interpretation as
implementing an average over the group Z2, represented on

HS as Ĝ= �ĝ��= �1 ,�x� �10�. The quantum operation effecting
such group averaging is the projector �G on the space of

operators commuting with Ĝ, leading to

�G��z� =
1

�G� 	
g��G

ĝ�
†�zĝ� =

1

2
�1�z1 + �x�z�x� = 0.

Essentially, in cyclic decoupling schemes based on G the
above symmetrization is accomplished through a time aver-
age of the effective Hamiltonian determining the evolution
over a cycle, Tc; in random schemes, it emerges from an
ensemble average over different control histories, taken with
respect to the uniform probability measure over G �36,42�.
Neither deterministic nor stochastic sequences of � pulses
achieve an exact implementation of �G for a fully generic
Hamiltonian as in Eqs. �1� and �2�, except in the ideal limit
of arbitrarily fast control where the separation between
pulses approaches zero. Therefore, it makes sense to com-
pare the performance attainable by different control se-

quences for realistic control rates. In this paper we shall fo-
cus on the following options.

�i� Asymmetric cyclic protocol (A), Fig. 1�a�. This is the
protocol used in �9�, corresponding to repeated spin echoes.
Cyclicity is ensured by subjecting the system to an even
number of equally spaced � pulses, applied at tj = t0+ j�t, j
=1,2 , . . ., in the limit �→0. The elementary cycle consists of
two pulses: the first one, applied after the system evolved
freely for an interval �t, reverses the qubit original state and
the second one, applied a time �t later, restores its original
state.

�ii� Symmetric cyclic protocol (S), Fig. 1�b�. This protocol,
which is directly inspired to the Carr-Purcell sequence of
NMR, is obtained from �A� by rearranging the two � pulses
within each cycle in such a way that the control propagator is
symmetric with respect to the middle point. The first pulse is
applied at t1= t0+�t /2 and the next ones at tj = t1+ �j−1��t,
with j1. Both the A and S protocols have a cycle time
Tc=2�t and lead to the same averaging in the limit �t→0.
For finite �t, however, the symmetry of the S protocol guar-
antees the cancellation of lowest-order corrections O��t�,
resulting in superior averaging �2,25,43�.

�iii� Long symmetric cyclic protocol (LS), Fig. 1�c�. This
is basically an S protocol with a doubled control interval
�t�2�t. Equivalently, note that this scheme corresponds to
alternating a � pulse with the identity after every �t. The
cycle time becomes Tc=4�t. For this amount of time, twice
as many pulses would be used by protocols �A, S�. Still, in
certain cases, the LS protocol performs better than the A
protocol �see Sec. V D�, which motivates its separate consid-
eration here.

�iv� Naive random protocol (R), Fig. 1�d�. Random decou-
pling is no longer cyclic, meaning that the control propagator
does not necessarily effect a closed path �see also �20� for a
discussion of acyclic deterministic schemes�. The simplest
random protocol in our setting corresponds to having, at each

FIG. 1. �Color online� Pictorial representation of relevant con-
trol protocols used for coherence control. Deterministic pulses are
indicated with solid vertical lines, while random pulses correspond
to dashed vertical lines.
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time tj = t0+ j�t, an equal probability of rotating or not the
qubit; that is, at every tj the control action has a 50% chance
of being a � pulse and a 50% chance of being the identity. In
order not to single out the first control slot, it is convenient to
explicitly allow the value j=0 �equivalently, to consider a
fictitious pulse P0=1 in the A, S, and LS protocols�. For pure
phase errors as considered, such a protocol may be inter-
preted as a simplified PAREC scheme �38�. While we will
mostly focus on this naive choice in our discussion here,
several variants of this protocol may be interesting in prin-
ciple, including unbalanced pulse probabilities and/or corre-
lations between control operations.

�v� Hybrid protocol (H), Fig. 1�e�. Interesting control sce-
narios arise by combining deterministic and random design.
The simplest option, which we call “hybrid” protocol here,
consists of alternating, after every �t, a � pulse with a ran-
dom pulse, instead of the identity as in the LS protocol. For
our system, in the embedded decoupling language of �39�,
this may be thought of as nesting the A and R protocols. In
group-theoretic terms, the H protocol may be understood as
randomization over cycles �36�. A complete asymmetric
cycle may be constructed in two ways, say A1 and A2. Cycle
A1 corresponds to traversing G in the order �1 ,�x�—that is,
free evolution for �t; first pulse; free evolution for �t; sec-
ond pulse—the cycle being completed right after the second
pulse. Cycle A2 corresponds to the reverse group path,
��x ,1�. Thus, we have the following: pulse; free evolution for
�t; second pulse; and another free evolution for �t—the sys-
tem should be observed at this moment before any other
pulse. The H protocol consists of uniformly picking at ran-
dom one of the two cycles at every instant t2j, where j
=0,1 , . . . .

III. RANDOMIZED PHASE REFOCUSING IN AN
ISOLATED QUBIT

A single qubit evolving according to unitary dynamics
��=0 in Eq. �2�� provides a pedagogical yet illustrative set-

ting to study dynamical control. Since the goal here is to
refocus the underlying phase evolution, the analysis of this
system provides a transparent picture for the differences as-
sociated with deterministic and random pulses. It also sim-
plifies the comprehension of the results for the more inter-
esting case of a single qubit interacting with a decohering
semiclassical or quantum environment, where the control
purpose becomes twofold: phase refocusing and decoherence
suppression.

A. Time-independent qubit Hamiltonian

We begin by considering the standard case of a time-
independent target dynamics �0�t�
�0 for all t. For all the
control protocols illustrated above, the system evolves freely
between pulses, with the propagator

U0�tj+1,tj� = e−i�0�tj+1−tj��z/2, �5�

whereas, during a pulse, it is only affected by the control
Hamiltonian. The propagator for an instantaneous pulse ap-
plied at time t= tj will be indicated by Pj. Let

��t� = 	
�,m=0,1

��m�t�����m� �6�

denote the qubit density operator in the computational basis
��0�,�1��, with �z�0�= �0� and �z�1�=−�1�. The relevant phase
information is contained in the off-diagonal matrix element
�01�t�. If ��t0� is the initial qubit state, the time evolution
after M control intervals under either deterministic or ran-
domized protocols,

��tM� = U�tM,t0���t0�U†�tM,t0� , �7�

is dictated by a propagator of the form

�8�

where T indicates, as usual, time ordering.
Recall the basic idea of deterministic phase refocusing. For the A protocol, P0=1 and Pj =exp�−i��x /2�, j�1 �see the

Appendix�. Exact averaging is then ensured after a single control cycle, thanks to the property

P1
†e−i�0�t�z/2P1 = e+i�0�t�z/2. �9�

Thus, the total phase that the qubit would accumulate in the
absence of control is fully compensated, provided that N

complete cycles are effected �that is, an even number
M =2N of spin flips is applied�. The overall evolution imple-
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ments a stroboscopic no-op gate, U�tM , t0�=1, �tM − t0�
=M�t=NTc, as desired �44�. Notice that the identity operator
is also recovered with the S and LS protocols after their
corresponding cycle is completed.

1. Control performance in the logical frame

In preparation to the randomized protocols �R,H�, it is
instructive to look at the system dynamics in a different
frame. In particular, a formulation which is inspired by NMR
�2� is the so-called toggling-frame or logical-frame picture,
which corresponds to a time-dependent interaction represen-
tation with respect to the applied control Hamiltonian. Let

Uc�t,t0� = T exp− i�
t0

t

Hc�u�du� �10�

denote the control propagator associated to Hc�t�. Then the
transformed state is defined as

�̃�t� = Uc
†�t,t0���t�Uc�t,t0� , �11�

with a tilde indicating henceforth logical-frame quantities. At
the initial time t0, the two frames coincide and �̃�t0�=��t0�.
The evolution operator in the logical frame is immediately
obtained from Eqs. �7� and �11�,

Ũ�t,t0� = Uc
†�t,t0�U�t,t0� , �12�

with

Ũ�t,t0� = T exp− i�
t0

t

�Uc
†�u�H0Uc�u��du� . �13�

That is, the control field is explicitly removed from the effec-
tive logical Hamiltonian. Because, for BB multipulse con-
trol,

Uc�tM,t0� = PMPM−1 ¯ P1P0, �14�

the expression for the logical frame propagator may simply
be read off Eq. �8�, yielding

Ũ�tM,t0� = T��
j=0

M−1

P j
†U�tj+1,tj�P j� , �15�

in terms of the composite rotations

P j = PjPj−1 ¯ P1P0, j = 0, . . . ,M − 1.

For cyclic protocols, Uc�tM , t0�=exp�−iM��x /2�=1 �M
even�; that is, the logical and physical frames overlap stro-

boscopically in time. Thus, Ũ�tM , t0�=1 and phase refocusing
in the logical frame is equivalent to phase refocusing in the
physical frame.

Now consider the evolution under the randomized proto-
cols. The first pulse occurs at t0, so after a time interval
tM − t0 has elapsed, M +1 pulses have been applied. Since the
final goal is to compare random with cyclic controls, we
shall take M even henceforth. At time t= tM, population in-
version may have happened in general in the physical frame.
This makes it both convenient and natural to consider the
logical frame, where inversion does not happen, as the pri-

mary frame for control design. The evolution operator in this
frame may be expressed, using Eq. �15�, as

Ũ�tM,t0� = exp− i
�0�t

2
�z 	

j=0

M−1

� j� , �16�

where

� j = �− 1��0+�1+¯+�j, j = 0, . . . ,M − 1, �17�

is a Bernoulli random variable which accounts for the history
of spin flips up to tj in a given realization. For each
m=1, . . . , j, if a spin flip occurs at time tm, then �m=1 and
Pm=−i�x; otherwise, �m=0 and Pm=1. Equivalently, � j will
take the values +1 or −1 with equal probability, depending
on whether the composite pulse P j is the identity or a �
pulse.

Let k be an index labeling different control realizations.
For a fixed k, the qubit coherence in the logical frame is
given by

�̃01
�k��tM� = exp�− i�0�t 	

j=0

M−1

� j
�k���01�t0� . �18�

This expression provides the starting point for analyzing
control performance. For the A protocol, the only possible
realization has � j = �−1� j and leads to the trivial result
�̃01�tM�=�01�t0�. For the R protocol, realizations correspond-
ing to different strings of �’s filling up M places give, in
general, different phases and an ensemble average should be
considered. If the statistical ensemble is large enough, the
average performance may be approximated by the expected
performance; which is obtained by averaging over all pos-
sible control realizations and will be denoted by E�·�. The
calculation of the expectation value is straightforward in the
unbiased setting considered here. Since, for each realization,
� j = +1 or −1 independently of the value of its predecessor
� j−1, the following expression is found:

E„�̃01�tM�… = �01�t0��cos��0�t��M . �19�

Several remarks are in order. Under random pulses, the
phase accumulated during the interval tM − t0=M�t is, on
average, completely removed, regardless of the �t value. An
important distinction with respect to the deterministic con-
trols, however, is that now the different phase factors carried
by each stochastic evolution may interfere among them-
selves, causing the ensemble average to introduce an effec-
tive phase damping. In general, let us write the ensemble
expectation in the form

E„�̃01�tM�…
�01�t0�

= ei�*�tM,t0�e−�*�tM,t0�, �20�

for real functions �*�t� ,�*�t� �45�. Here, �*�tM , t0�=0,
whereas �*�tM , t0�=−M ln�cos��0�t��. Complete dephasing
occurs when �0�t=��� /2, with �� odd, while for
�0�t=��, with ��Z, �*�t�=0. Whenever exact knowledge
of the frequency �0 and precise control over the time interval
�t are available, the R protocol can be made to achieve exact
averaging, like the A protocol, under the additional synchro-
nization condition that
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�t = ��/�0, � � Z .

In situations where such a synchronization is not easily
accessible, one may still look for a general condition under
which the R protocol avoids ensemble dephasing. Taking a
Taylor expansion of Eq. �19� yields

�0
2�tM − t0��t = �0

2�tM − t0�2/M � 1. �21�

In principle, this requirement may be fulfilled by making tM
and/or �t sufficiently small. Interestingly, the condition of
Eq. �21� is directly related to the bound obtained in theorem
1 of �36� for the worst-case pure-state error probability, de-
fined by

�t = max
���

��t������ = 1 − min
���

E„Tr���t0��̃�t��… , �22�

where the latter term is the usual input-output state fidelity
�4�. In the limit where �H0�t��2

2 t�t�1, where
�A�2=max�eig�A��, ∀A=A†, theorem 1 implies

�t = O„�H0�t��2
2 t�t… . �23�

On the other hand, using Eq. �19� we obtain

�tM
����� = 2��00�t0��11�t0� − ��01�t0��2�cos��0�t��M� .

For �0
2�tM − t0��t�1, the above expression gives

�tM
����� � ��01�t0��2�0

2�tM − t0��t , �24�

�tM
= O„�0

2�tM − t0��t… , �25�

which makes the connection with Eq. �21� manifest.
It remains to discuss the performance of the H protocol.

The freedom of not always effecting a spin flip after every
�t, which is one of the appealing features of the R protocol,
is still partially present here. On the other hand, since a spin
flip does occur at every tm with m odd, which leads to � j =
−� j−1 for j odd, any realization of this protocol completely
refocuses the qubit �see Eq. �18��, so �*�tM , t0�=0 and
�*�tM , t0�=0. Accordingly, in the logical frame, the H proto-
col is optimal, combining the absence of phase damping of
cyclic schemes with the flexibility of random pulses.

2. Ensemble averages: General remarks

In practice, we deal with the average performance of a
statistical ensemble of size K. To evaluate the sample size
that guarantees a desired margin of error � �46�, we invoke
the central-limit theorem. Because different realizations are
independent, the latter ensures that the average performance
is distributed normally with a mean value equal to the ex-
pected performance and standard deviation given by � /�K,
where � is the standard deviation for all realizations. Thus, if
we want, with probability �1−��, that the average perfor-
mance differs from the expected performance by no more
than �, the sample size must be at least as large as

Kmin = � z�/2�

�
�2

= O��2

�2 � , �26�

where z�/2 is the value of the standard normal variable which
has a probability � /2 of being exceeded. Taking a Taylor

expansion of Eqs. �18� and �19�, we can show that

� = O„�0
��tM − t0��t… for �0

2�tM − t0��t� 1.

Thus, the number of realizations required to ensure a speci-
fied degree of precision decreases as �t.

It is interesting to observe that the ensemble average may
be interpreted as effecting a quantum operation

E„�̃01�tM�… = 	
k

Ũ�k�

�2M
�̃�t0�

Ũ�k�†

�2M
,

with

Ũ�k��tM,t0� = ��k�1 + ��k��z, 	
k

Ũ�k�†Ũ�k� = 1 ,

and random coefficients ��k� ,��k� which may be derived from
Eq. �16�.

3. Control performances in the physical frame

Finally, it is important to compare the average coherence
element in the logical and physical frames. Dephasing is a
more delicate issue in the Schrödinger picture, because spin
population is not necessarily conserved and �01�tM� may be
related to �01�t0� or to �10�t0�, depending on how many �
pulses occur. If, after an interval tM − t0, an even number of
spin flips have happened, we recover Uc�tM , t0�=1 as in the
cyclic case, but an odd number of flips leads instead to
Uc�tM , t0�= ± i�x. By recalling Eq. �12�, for randomized
schemes we find

E„�01�tM�… =
�01�t0� + �10�t0�

2
e−�*�tM,t0�, �27�

where �*�tM , t0�=0 for the H protocol. Thus, the agreement
between the expected results in the two frames depends on
the initial qubit state. Results are identical if �01�t0� is real,
but differ otherwise. The worst scenario occurs if �01�t0� is
purely imaginary, as the average in the physical frame van-
ishes. This reflects the fact that the net evolution may be
represented by a quantum operation that flips the state of the
qubit with 50% probability and leaves it alone otherwise.
Clearly, knowledge of the control history allows the system
to be deterministically returned in the physical frame for any
realization, if desired. That is, having a classical register that
records the total number of spin flips may be used to select
realizations that guarantee a good performance of random
pulses also in the physical frame for any initial state. For
example, if only realizations with an even number of spin
flips are selected, the results in both frames are equal,
E(�01�tM� �Uc�tM , t0=1��=E(�̃01�tM�), as desired.

To summarize, in the logical frame, refocusing the un-
wanted phase evolution is possible with any of the protocols
we considered. The R protocol, however, introduces an av-
erage ensemble dephasing, which may only be prevented by
precisely tuning �t=�� /�0, with ��Z, or by assuring that
�t�1/ ��0

2�tM − t0��. This implies the appearance of a time-
scale requirement which is not present when dealing with
deterministic controls or with the H protocol. In the physical
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frame, state-independent conclusions regarding the system
behavior may be drawn conditionally to specific subsets of
control realizations. Overall, the H protocol emerges as an
alternative of intermediate performance, which partially
combines advantages from determinism and randomness.

B. Time-dependent qubit Hamiltonian

We now consider the more interesting case where the qu-
bit frequency is time dependent, �0�t�=�0+��0�t�, ��0�t�

�0G�t� being a deterministic �but potentially unknown�
function. This could result, for example, from uncontrolled
drifts in the experimental apparatus.

While all protocols become essentially equivalent in the
limit M→�, searching for the best protocol becomes mean-
ingful in practical situations where pulsing rates are neces-
sarily finite. Under these conditions, the deterministic proto-
cols described so far will no longer be able, in general, to
completely refocus the qubit. This would require a very spe-
cific sequence of spin flips for each particular function
��0�t�, which would be hard to construct under limited
knowledge about the latter. On the other hand, the average
over random realizations does remove the phase accumulated
for any function ��0�t�, making randomized protocols ideal
choices for phase refocusing. As a drawback, however, en-
semble dephasing may be introduced. Thus, the selection of
a given protocol will be ultimately dictated by the resulting
tradeoffs.

The propagator in the logical frame now reads

Ũ�tM,t0� = exp�− i
�0

2
�z 	

j=0

M−1

� j�
tj

tj+1

�1 + G�u��du� ,

�28�

which reduces to Eq. �16� when G�t�=0.
Some assumptions on both the amplitude and frequency

behavior of G�t� are needed in order to draw some general
qualitative conclusions. First, if �G�t���1, the analysis de-
veloped in the previous section will still approximately hold.
In the spirit of regarding �0 as a central frequency, we will
also discard the limit �G�t���1 and restrict our analysis to
cases where maxt�G�t���1. If G�t� is dominated by fre-
quency components which are very fast compared to �0
=�0

−1, the effect of G�t� may effectively self-average out
over a time interval of the order or longer than �0

−1. In the
opposite limit, where the time dependence of G�t� is signifi-
cantly slower than �0, deterministic controls are expected to
be most efficient in refocusing the qubit, improving steadily
as �t decreases. In intermediate situations, however, the de-
terministic performance may become unexpectedly poor for
certain, in principle, unknown values of �t. These features
may be illustrated with a simple periodic dependence. Sup-
pose, for example, that G�t�=sin�p�0t� and p�R. For a
fixed time interval tf − t0�� / �p�0�, a significant reduction of
the accumulated phase is already possible with few deter-
ministic pulses. However, care must be taken to avoid unin-
tended “resonances” between the natural and the induced
sign change. For the A protocol, this effect is worst at �t

=� / �p�0�, in which case the control pulses exactly occur at
the moment the function changes sign itself, hence preclud-
ing any cancellation of G�t�.

With the R protocol, ensemble dephasing becomes the
downside to face. The ensemble average now becomes

e−�*�tM,t0� = �
j=0

M−1

cos�0��t + �
tj

tj+1

G�u�du�� . �29�

In the absence of time dependence, phase damping is mini-
mized as long as Eq. �21� holds. Under the above assump-
tions on G�t�, the condition remains essentially unchanged,
in agreement with the fact that the accuracy of random av-
eraging only depends on �H0�t��2 �36�.

Refocusing is also totally achieved with the H protocol.
However, unlike in the case of the R protocol, the ensemble
average no longer depends on the time-independent part of
the Hamiltonian, but only on the function G�t�, making the
identification of precise requirements on �t harder in the
absence of detailed information on the latter. We have

e−�*�tM,t0� = �
j=0,2,4,. . .

M−2

cos�0���
tj

tj+1

− �
tj+1

tj+2 �G�u�du�� .

�30�

Figure 2 illustrates the points discussed so far. The sinu-
soidal example is considered, and we contrast the two as-
pects to be examined: the top panels show the phase magni-
tude ��*�tM , t0��, which is optimally eliminated with random
pulses, while the bottom ones give the dephasing rate
e−�*�tM,t0�, which is inexistent for deterministic controls. The
interval between pulses is fixed, �t=1/ �10�0�, and the pro-

FIG. 2. �Color online� Accumulated phase �upper panels� and
dephasing rate �lower panels� in the absence of control �solid
�green� line�, and under the A ��blue� stars�, R ��black� circles�, and
H ��purple� plus� protocols in the logical frame, for G�t�
=sin�p�0t� and �t=1/ �10�0�. Left panels: p=20�2. Right panels:
p=10�. Average taken over 103 realizations. In this and all simu-
lations that will follow, we set t0=0.
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tocols are compared for two arbitrary, but relatively close
values of the oscillation frequency rate: p=20�2 and
p=10�. The deterministic control is very sensitive to slight
changes of the drift and at certain instants may behave worse
than if pulses were completely avoided. Similarly, the H pro-
tocol, even though more effective than the R protocol in this
example, also suffers from uncertainties related to G�t�. On
the contrary, deviations in the performance of the R protocol
are practically unnoticeable, making it more robust against
variations in the system parameters.

As a further illustrative example, we consider in Fig. 3 the
following time dependence for the qubit:

�0�t� = �0�1 + G�t��D�t� . �31�

The left panels have, as before, D�t�=1, while for the right
panels,

D�t� = �− 1��10�0t/3�. �32�

A fixed time tf =2/�0 is now divided into an increasing num-
ber M of intervals �t. Here, selecting the most appropriate
protocol depends on our priorities concerning refocusing and
preservation of coherence. We may, however, as the right
upper panel indicates, encounter adversarial situations where
the time dependence of the qubit frequency is such that not
acting on the system is comparatively better than using the A
protocol. Clearly, depending on the underlying time depen-
dence and the pulse separation, such poor performances are
also expected to occur with other deterministic protocols. In
addition, notice that, consistent with its hybrid nature, the H
protocol may perform worse for values of �t where the de-
terministic control becomes inefficient �compare right upper
and lower panels�. In similar situations, from the point of

view of its enhanced stability, the R protocol turns out to be
the method of choice.

To summarize, an isolated qubit with time-dependent pa-
rameters provides the simplest setting where advantages of
randomization begin to be apparent, in terms of enhanced
stability against parameter variations. On average, phase is
fully compensated, and ensemble dephasing may be kept
very small for sufficiently fast control. Similar features will
appear for a qubit interacting with a time-varying classical or
quantum environment, as we shall see in Secs. IV C and V E.

IV. RANDOMIZED CONTROL OF DECOHERENCE FROM
A SEMICLASSICAL ENVIRONMENT

Qubit coherence is limited by the unavoidable influence
of noise sources. Within a semiclassical treatment, which
provides an accurate description of decoherence dynamics
whenever back-action effects from the system into the envi-
ronment can be neglected, noise is modeled in terms of a
classical stochastic process, effectively resulting in randomly
time-dependent systems. Typically, external noise sources,
which in a fully quantum description are well modeled by a
continuum of harmonic modes �see Sec. V�, are represented
by a Gaussian process. Here, we focus on localized noise
sources, which may be intrinsic to the physical device real-
izing the qubit—notably, localized traps or background
charges, leading to a quantum discrete environment. In this
case, non-Gaussian features become important and are more
accurately represented in terms of noise resulting from a
single or a collection of classical bistable fluctuators—
leading to so-called random telegraph noise �RTN� or 1/ f
noise, respectively. Beside being widely encountered in a
variety of different physical phenomena �47–49�, such noise
mechanisms play a dominant role in superconducting
Josephson-junction-based implementations of quantum com-
puters �50–53�.

Recently, it has been shown that RTN and 1/ f noise may
be significantly reduced by applying cyclic sequences of BB
pulses �22–26�. We now extend the analysis to randomized
control. As it turns out, random decoupling is indeed viable
and sometimes more stable than purely deterministic proto-
cols. While a detailed analysis of randomized control of
genuine 1/ f noise would be interesting on its own, we begin
here with the case of a single fluctuator. This provides an
accurate approximation for mesoscopic devices where noise
is dominated by a few fluctuators spatially close to the sys-
tem �23,53–55�. Let the time-dependent Hamiltonian de-
scribing the noisy qubit be given by Eqs. �1� and �2�, where
�=0 and

��0�t� = RNT�t� �33�

characterizes the stochastic process, randomly switching be-
tween two values ±v /2, v0. We shall in fact consider a
semirandom telegraph noise; that is, we assume that the fluc-
tuator initial state is always +v /2. The switching rate from
±v /2 to �v /2 is denoted by ��, with �++�−=�. We shall
also assume for simplicity that �+=�−, corresponding to a
symmetrical process. The number of switching events n�t ,0�
in a given time interval t is Poisson distributed as

FIG. 3. �Color online� Accumulated phase �upper panels� and
dephasing rate �lower panels� in the absence of control �solid
�green� line� and under the A ��blue� stars�, R ��black� circles�, and
H ��purple� plus� protocols in the logical frame. The time interval
considered is tf =2/�0, and ��0�t�−1=M /2 and G�t�=sin�p�0t�,
where p=10. The drift in the right panels includes D�t�
= �−1��10�0t/3�. Average taken over all possible realizations.
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P�n�t,0� = k� =
1

k!
��t

2
�k

e−�t/2.

Semiclassically, dephasing results from the ensemble av-
erage over different noise realizations. This leads to the de-
cay of the average of the coherence element,

��01�t��
�01�t0�

= e−i�0�t−t0�Z�t,t0� ,

Z�t,t0� = ei��t,t0�e−��t,t0�. �34�

Here, the average over RTN realizations is represented by �·�
and should be distinguished from the average over control
realizations, which, as before, is denoted by E. The dephas-
ing factor ��t , t0� and the phase ��t , t0� have distinctive prop-
erties depending on the ratio g=v /�, where g�1 �g1�
corresponds to a fast �slow� fluctuator. Given the initial con-
dition for the fluctuator Ep0

, where Ep0
= ±1 stands for the

fluctuator initially in state ±v /2, Z�t , t0� may be calculated as
�51�

Z�t,t0� = Ce−��/2��1−���t−t0� + �1 − C�e−��/2��1+���t−t0�, �35�

where

� = �1 − g2 + 2igEp, C = �1 + � − igEp0
�/�2�� , �36�

and Ep= ��−−�+� /� is the equilibrium population difference.
Note that for a symmetrical telegraph process, the only dif-
ference between the results for a fluctuator initially in state
+v /2 or −v /2 is a sign in the above phase �. The decoher-
ence rate for a slow fluctuator is much more significant than
for a fast fluctuator. This has been discussed in detail else-
where �51� and has been reproduced for later comparison
with the controlled case in Fig. 4, where several values of g
are considered. A fast fluctuator behaves equivalently to an
appropriate environment of harmonic oscillators, and noise
effects are smaller for smaller values of g, whereas for a slow
fluctuator the decoherence function saturates and becomes
���t− t0�.

A. Deterministic and randomized controls in the interaction
picture

Here we compare the reduction of RTN under the action
of the A, H, and R protocols. In order to isolate the effects of
the noise, it is convenient to first carry out the analysis in the
interaction picture which removes the free dynamics �0�z /2.
The density operator becomes

�I�t� = UI�t,t0���t0�UI†�t,t0� , �37�

where UI�t , t0�=exp�i�0t�z /2� and the superscript I will re-
fer to the interaction picture henceforth. The free propagator
between pulses is now

UI�tj+1,tj� = T exp− i�
tj

tj+1

H0
I �u�du� , �38�

with H0
I �t�=��0�t��z /2, while at tj, we have �see the Appen-

dix�

Pj
I = exp�i

�0tj

2
�z�exp�− i� j

�

2
�x�exp�− i

�0tj

2
�z� .

�39�

A second canonical transformation into the logical frame
is also considered, so that �as before� realizations with an
even or an odd number of total spin flips are treated on an
equal footing. We will refer to the combination of the two
transformations as the logical-IP frame. Similarly to Eq. �12�,
the interaction and the logical-IP frame propagators are re-
lated as

ŨI�t,t0� = Uc
†I�t,t0�UI�t,t0� . �40�

This leads to the following propagators at tM:

Uc
I�tM,t0� = T�� j=0

M
Pj

I� ,

ŨI�tM,t0� = T�� j=0

M−1 P j
†IUI�tj+1,tj�P j

I� ,

where

P j
I = Pj

IPj−1
I

¯ P2
I P1

I P0
I , j = 0, . . . ,M − 1.

Our goal is to compute the ratio

F�tM,t0� =
E„��̃01

I �tM��…
�01�t0�

�
�E„�̃01

I �tM�…�
�01�t0�

= E�ei��k��tM,t0�e−��k��tM,t0�� , �41�

where k labels, as before, different control realizations. Note
that interchanging the order of the averages does not modify
the results if all pulse realizations are considered and the
number of RTN realizations is large enough. With 105 switch
realizations no significant variations were found by inter-
changing the averages.

The decoherence rate �F�tM , t0�� for the three selected pro-
tocols is shown in Fig. 5, where a time tf =10/� was fixed
and divided into an increasing number M of intervals �t. The
left panels are obtained for three slow fluctuators, g=5,3 ,2,
and the right panels for g=1.1,0.8,0.1. These are the six

FIG. 4. �Color online�. Decoherence rate �Z�t��=e−��t� from a
symmetrical bistable fluctuator. Several values of g=v /� are con-
sidered, resulting from changing the coupling strength v at fixed
switching rate �=1 a.u.

DYNAMICAL CONTROL OF QUBIT COHERENCE:… PHYSICAL REVIEW A 72, 062303 �2005�

062303-9



different noise regimes considered in Ref. �24�, where the A
protocol was studied. The authors concluded that once �t
�1/�, ��tM , t0� scales with g2, while for �t 1/�, BB
pulses are still capable of partially reducing noise due to a
fast fluctuator, but are mostly inefficient against slow fluc-
tuators. Here, we verified that among all possible realizations
of pulses separated by the same interval �t, the realization
corresponding to the A protocol yields the largest value of
�F�tM , t0��, whereas the absence of pulses gives, as expected,
the smallest value. This justifies why, in terms of average
performance for finite �t, we have, in decreasing order, A, H,
and R protocols, while for M→�, different protocols are
expected to become equivalent.

In terms of refocusing the unwanted phase evolution,
the above-randomized protocols are optimal, since
Arg��E(�̃01

I �tM�)� /�01�t0��=0, while the phase magnitude
��tM , t0� for the A protocol is eventually compensated as M
increases. This is shown in Fig. 6. Notice also that the abso-
lute phase is very small for fast fluctuators.

Instead of fixing a time tf, an alternative picture of the
performance of different protocols may also be obtained by
fixing the number of intervals M, as in Fig. 7 �left panels�. As
expected, a larger M leads to coherence preservation for
longer times. Still another option is to fix the interval be-
tween pulses �t, as in Fig. 7 �right panel�. As before, the A
protocol shows the best performance, followed by the H and
R protocols.

B. Randomized control in the physical frame

If the interaction picture is not taken into account, com-
plete refocusing is again guaranteed, on average, when either

the R or H protocol is used. However, for the R protocol, the
qubit frequency plays a delicate role in the resulting dephas-
ing process. We now have

E„��̃01�tM��… = �01�t0�

!E�exp�− i�0�t 	
j=0

M−1

� j
�k�

+ i��k��tM,t0��e−��k��tM,t0�� , �42�

which may be further simplified as follows. Among the 2M

FIG. 5. �Color online� Decoherence rate from a symmetrical
bistable fluctuator with g=5,3 ,2 ,1.1,0.8,0.1. �Green� solid lines
represent the analytical results from �51� in the absence of control.
�Blue� stars: A protocol. �Black� circles: R protocol �Purple� plus: H
protocol. Averages are taken over 105 RTN realizations and all pos-
sible 2M pulse realizations. The time interval considered is
tf =10/�, thus ���t�−1=M /10.

FIG. 6. �Color online� Phase offset from a symmetrical bistable
fluctuator with g=5,3 ,2 ,1.1,0.8,0.1. �Green� solid line: analytical
results in the absence of control pulses. �Blue� stars: A protocol;
both R and H protocols have phase equal to zero. The time interval
considered is tf =10/�, so ���t�−1=M /10. Averages computed as in
Fig. 5.

FIG. 7. �Color online� Decoherence rate from a symmetrical
bistable fluctuator with g=1.1. Left panels: M =10 �top�, M =30
�bottom�. Right panel: �t=1/�. �Green� solid line: analytical results
in the absence of control. �Blue� stars: A protocol. �Black� circles: R
protocol. �Purple� plus: H protocol. Averages are taken over 104

RTN realizations and 103 pulse realizations.
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pulse realizations existing in the logical frame, there are
pairs, say, corresponding to labels k and k�, where �0

�k�=1

and �0
�k��=0, while � j

�k�=� j
�k�� with 1� j�M −1, which leads

to 	 j=1
M−1� j

�k�=−	 j=1
M−1� j

�k��. Besides, since we are considering a
semirandom telegraph noise, a pulse at t0 is equivalent to
switching the fluctuator from the initial state +v /2 to −v /2,
whose net effect is simply a change in the sign of the phase
��tM , t0�. Therefore, we may write

E„��̃01�tM��… =
�01�t0�
2M−1 	

k=1

2M−1

�cos�"M−1
�k� �0�t

− ��k��tM,t0��e−��k��tM,t0�� , �43�

where

"M−1
�k� = 1 + 	

j=1

M−1

� j
�k,1�, M � 2, �44�

and � j
�k,1�= �−1��1

�k�
+�2

�k�
+¯+�j

�k�
.

In the physical frame, we find, correspondingly,

E„��01�tM��… =
�01�t0� + �10�t0�

2M 	
k=1

2M−1

�cos�"M
�k��0�t

− ��k��tM,t0��e−��k��tM,t0�� . �45�

Contrary to the result obtained in the absence of noise, Eq.
�19�, the additional realization-dependent phase shift
��k��tM , t0� now remains. While, on average, this phase is
removed in the limit where �t→0, for finite control rates
��k��tM , t0� may destructively interfere with the phase gained
from the free evolution, potentially increasing the coherence
loss. Identifying specific values of �t where such harmful
interferences may happen for the given RTN process is not
possible, which makes the results for the R protocol with
finite �t unpredictable in this case.

While the above feature is a clear disadvantage, it is
avoided by the H protocol. For each realization, the phase
accumulated with the free evolution is completely canceled,
so the result in the logical-IP frame is equal to that in the
logical frame: E(��̃01�tM��)=E(��̃01

I �tM��). If access to a clas-
sical register that records the total number of spin flips is also
available, this equivalence between frames may be further
extended to the physical frame. Additionally, as already
found in Sec. III B, randomized protocols tend to offer supe-
rior stability.

C. Deterministic bursts of switches

Let us illustrate the above statement through an example
where the noisy dynamics of the system is slightly perturbed.
Suppose that, moving back to the interaction picture, the
noise process is now

HI = D�t�
RNT�t�

2
�z, �46�

where

D�t� = �− 1��4�t/25� �4�t/5�. �47�

Physically, D�t� describes a sequence of six instantaneous
switches, equally separated by the interval 5 / �4��, restarting
again at every instant 25k / �4��, k being an odd number. This
process may be viewed as bursts of switches of duration
25/ �4�� followed by an interval 25/ �4�� of dormancy. The
resulting behavior for g=1.1 in the logical-IP frame is de-
picted in Fig. 8.

With deterministic control, the rate of noise suppression
quickly improves as the separation between pulses shrinks
�left upper panel�, until a certain value �t= tf /8=5/ �4��,
where it suddenly shows a significant recoil, becoming al-
most as bad as simply not acting on the system at all.
Equivalently, by fixing �t=5/ �4��, the performance of the A
protocol becomes very poor for t�10/� �right upper panel�.
In practice, detailed knowledge of the system dynamics
might be unavailable, making it impossible to predict which
values of �t might be adverse. Randomized schemes, on the
other hand, are by their own nature more stable against such
interferences. As seen from the figure, the R protocol shows
a slower, but also more consistent improvement as �t de-
creases and might therefore be safer in such conditions. No-
tice also that, in terms of coherence preservation and stabil-
ity, the H protocol shows �as intuitively expected� an
intermediate performance between the A and R protocols.

To summarize, in the logical-IP frame, the effects of the
RTN can be reduced not only under deterministic pulses, but
also with a randomized control, though a comparatively
shorter pulse separation is needed in the latter case. In the
logical and physical frames, the R protocol, besides showing
the poorest performance among the three considered

FIG. 8. �Color online� Decoherence rate �upper panels� and
phase offset �lower panels� in the logical-IP frame for a single fluc-
tuator with g=1.1 subjected to a disturbance as given in Eq. �47�.
Left panels: fixed tf =10/�, so ���t�−1=M /10. Right panels: fixed
�t=5/ �4��. �Green� solid line: results in the absence of control
pulses. �Blue� stars: A protocol. �Black� circles: R protocol. �Purple�
plus: H protocol. The average phase for both R and H protocols is
zero. Left panels: averages are taken over 105 RTN realizations and
all possible 2M pulse realizations. Right panels: averages are taken
over 104 RTN realizations and 103 pulse realizations.
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schemes, may also lead to dangerous interferences between
the qubit frequency and the phase gained from the free evo-
lution. Such a problem, however, does not exist for the H
protocol. The benefits of randomization are most clear when
limited knowledge about the system dynamics is available
and deterministic control sequences may be inefficient in
avoiding unwanted “resonances.” Combining protocols,
where we gain stability from randomness, but also avoid the
free phase evolution, is desirable especially when working in
the physical frame. In this sense, the H protocol emerges as a
promising compromise.

V. RANDOMIZED CONTROL OF DECOHERENCE FROM
A QUANTUM BOSONIC ENVIRONMENT

We now analyze the case of a genuine quantum reservoir,
where decoherence arises from the entanglement between the
qubit and environment. The relevant Hamiltonian is given by
Eqs. �1� and �2� with �0�t�=�0 and �=1. In the semiclassi-
cal limit, the effects of the interaction with the bosonic de-
grees of freedom may be interpreted in terms of an external
noise source whose fluctuations correspond to a Gaussian
random process.

A detailed analysis of deterministic decoherence suppres-
sion for this model was carried out in �9� �see also �56� for an
early treatment of the driven spin-boson model in a nonreso-
nant monochromatic field and �57� for related discussions of
dynamically modified relaxation rates�. Here, we discuss
how randomized decoupling performs.

A. Free solution for time-independent interaction Hamiltonian

As in Sec. IV, we first focus on understanding the con-
trolled dynamics in a frame that explicitly removes both the
control field and the free evolution due to HS � 1+1 � HE. Let
us recall some known results related to the uncontrolled dy-
namics. We have �9,40�

UI�t,t0� = exp�z

2
� 	

k

�bk
†ei�kt0#k�t − t0� − H.c.�� ,

�48�

where

#k��t� =
2gk

�k
�1 − ei�k�t� . �49�

Under the standard assumptions that the qubit and environ-
ment are initially uncorrelated,

�tot�t0� = ��t0� � �E�t0� ,

and that the environment is in thermal equilibrium at tem-
perature T �the Boltzmann constant is set=1�,

�E�t0� = �
k

�E,k�T� = �
k

�1 − e�k/T�e−�kbk
†bk/T,

the trace over the environment degrees of freedom may be
performed analytically, leading to the following expression
for the qubit coherence:

�01
I �t� = �01�t0��

k

Trk��E,k�T�D�ei�kt0#k�t − t0���

= �01�t0�exp�− ��t,t0�� . �50�

Here, D�#k�=exp�bk
†#k−bk#k

*� is the harmonic displacement
operator of the kth bath mode and the decoherence function
��t , t0� is explicitly given by

��t,t0� = 	
k

�#k�t − t0��2

2
coth��k

2T
� . �51�

In the continuum limit, substituting 	k���−�k��gk�2 by the
spectral density I���, one finds

��t,t0� = 4�
0

�

d�I���coth� �
2T

�1 − cos���t − t0��
�2 .

�52�

For frequencies less than an ultraviolet cutoff �c, I��� may
be assumed to have a power-law behavior,

I��� =
�

4
�se−�/�c. �53�

The parameter �0 quantifies the overall system-bath inter-
action strength, and s classifies different environment behav-
iors: s=1 corresponds to the Ohmic case, s1 to the super-
Ohmic, and 0�s�1 to the sub-Ohmic case.

B. Randomly controlled decoherence dynamics: Analytical
solution and error bound

Remarkably, the dynamics remains exactly solvable in the
presence of randomized BB kicks. We focus first on the R
protocol viewed in the logical-IP frame. Between pulses the
evolution is characterized by Eq. �48�, while at tj Eq. �39�
applies. Using Eq. �40�, the propagator in the logical-IP
frame, apart from an irrelevant overall phase factor, may be
finally written as

ŨI�tM,t0� = exp�z

2
� 	

k

�bk
†ei�kt0$k

R�M,�t� − H.c.�� ,

�54�

where

$k
R�M,�t� = 	

j=0

M−1

� je
i�kj�t#k��t� . �55�

Under the uncorrelated initial conditions specified above and
thermal equilibrium conditions, the qubit reduced density
matrix is exactly computed as

�̃01
I �tM� = �01�t0��

k

Trk��E,k�T�D�ei�kt0$k
R�M,�t���

= �01�t0�e−�R�tM,t0�. �56�

Because � j in Eq. �55� can be ±1 at random, each element in
the sum corresponds to a vector in the complex plane with a
different orientation at every step �t. Thus, the displacement

L. F. SANTOS AND L. VIOLA PHYSICAL REVIEW A 72, 062303 �2005�

062303-12



operator above may be suggestively interpreted as a random
walk in the complex plane.

The decoherence function �R�tM , t0� is now given by

�R�tM,t0� = 	
k

�$k
R�M,�t��2

2
coth��k

2T
� , �57�

which, in the continuum limit, becomes

�R�tM,t0� = 4�
0

�

d�I���coth� �
2T

�1 − cos���t�
�2

!�M + 2 	
j=1

M−1

cos�j��t� 	
�=0

M−j−1

����+j� .

�58�

The decoherence behavior under the A protocol is ob-
tained by letting � j = �−1� j. We then recover the result of
deterministically controlled decoherence �9�, which may be
further simplified as �22,43�

�D�tM,t0� = 4�
0

�

d�I���coth� �
2T

�
!

1 − cos���tM − t0��
�2 tan2���t

2
� . �59�

Before proceeding with a numerical comparison between
Eqs. �58� and �59�, some insight may be gained from an
analytical lower bound for the average E(exp�−�R�tM , t0��).
According to Jensen’s inequality, E(f�x�)� f(E�x�) for any
convex function f . Using this and the fact that

E�����+j� = E„�− 1���+1+��+2+¯+��+j
… = 0,

we have the lower bound

E„exp�− �R�tM,t0��…� exp�− E„�R�tM,t0�…� ,

E„�R�tM,t0�… = 4M�
0

�

d�I���coth� �
2T

�1 − cos���t�
�2 .

�60�

In Fig. 9 we compare the coherence decay corresponding
to the absence of control �52�, to the A protocol �59� and to
the lower bound �60�. Two limiting cases of high and low
temperature, T��c and T��c, are considered. The high-
temperature limit corresponds to an effectively classical bath,
where the properties of the environment are dominated by
thermal fluctuations. In the absence of control, decoherence
is very fast on the time scale determined by the bath corre-
lation time �c=�c

−1; hence, coherence preservation requires
very short intervals between pulses. The A protocol shows
the best performance. The actual randomized performance
may, however, be significantly better than the lower bound in
this temperature regime, though they never surpass the deter-
ministic case �see next subsection�.

In the case of low temperature, or a fully quantum bath,
decoherence is much slower and a richer interplay between
thermal and vacuum fluctuations occurs. Larger values of �t
may then be analyzed before total coherence loss takes place.

The interesting phenomenon of decoherence acceleration
�9,58�, which may happen when �c�t1, may now be ob-
served. For short �t, the A protocol is again more efficient,
though not significantly better than the lower bound. For
large �t, pulses induce destructive interference and the A
protocol performs even worse than the lower bound. In such
situation the best option is simply not to act on the system.

When �c�t%1, some general insight may be gained by
comparing appropriate limits of the lower bound and the
deterministic decoherence function. First, by Taylor expand-
ing up to second order in �t we have

E„�R�tM,t0�… � 2�tM − t0��t�
0

�

d�I���coth� �
2T

� , �61�

whereas

�D�tM,t0� � �t2�
0

�

d�I���coth� �
2T

��1 − cos���tM − t0��� .

�62�

Therefore, in the limit of very short �t, the lower bound
approaches the ideal situation of total suppression of deco-
herence linearly in �t, while for the A protocol this occurs
quadratically.

This analysis may be further extended by studying the
two limits of Eq. �61� with respect to temperature. Consid-
ering the spectral density of Eq. �53�, we have

T��c: E„�R�tM,t0�… = O„�T�c
s�tM − t0��t… ,

T��c: E„�R�tM,t0�… = O„��c
s+1�tM − t0��t… .

Thus, a sufficient condition under which random control
avoids decoherence is

T��c: �T�c
s�tM − t0��t� 1,

FIG. 9. �Color online� Decoherence rate from a bosonic Ohmic
bath. Here and in the following figures, time is measured in units of
T−1, �=0.25, and �c=100. Left panel: T=102�c and �c�t=0.1.
Right panels: T=10−2�c. Top: �c�t=0.1. Bottom: �c�t=2.5.
�Green� solid line: no control. �Blue� stars: A protocol. �Red� dashed
line: lower bound, Eq. �60�.
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T��c: ��c
s+1�tM − t0��t� 1.

This should be compared with the general bound given in
theorem 2 of �36�. We will see in Sec. V D that, in the physi-
cal frame, the qubit frequency �0 also plays an important
role.

A similar analysis for the A protocol may be effected us-
ing Eq. �62�. For �c�tM − t0��1, the decoherence function
decays quadratically in time, giving

T��c: �D�tM,t0� = O„�T�c
s+2�tM − t0�2�t2

… ,

T��c: �D�tM,t0� = O„��c
s+3�tM − t0�2�t2

… ,

while for �c�tM − t0��1 the decoherence function becomes
independent of tM − t0, and we get

T��c: �D�tM,t0� = O��T�c
s�t2� ,

T��c: �D�tM,t0� = O���c
s+1�t2� .

These should be compared with the error bound of theorem 3
in �36�. Based on these considerations, random pulses may
hardly be expected to outperform deterministic controls in
the limits discussed above. Still, it remains interesting to
quantitatively see what the actual performance is for inter-
mediate �t and/or hybrid schemes—for instance, with re-
spect to acceleration. Moreover, further changes may be ex-
pected when some time dependence exists in the system
parameters—for instance, in the coupling strength to the en-
vironment �see Sec. V E�.

C. Randomly controlled decoherence dynamics: Numerical
results

Based on the exact result of Eq. �58�, we now present a
comparison of the average decoherence suppression achiev-
able by the protocols described in Sec. II. A fixed time tf
divided into an increasing number M of intervals �t is con-
sidered.

Figure 10 compares the average E(exp�−�R�tM , t0��) in the
limit of high temperature, T=102�c, for a system evolving
under the A and R protocols. For the fixed times chosen,
�ctf =0.5 �upper panel� and �ctf =1 �lower panel�, the coher-
ence element has already practically disappeared and cannot
be seen in the figure, while the A protocol is able to recover
it even for very few cycles. The values of exp�−�R�tM , t0��
for different realizations are widely spread between the worst
case corresponding to all �=0 and the efficient realizations
involving several spin flips. As a consequence, the average
converges to 1 slowly and has a large standard deviation
�59�. Notice, however, that it is significantly better than the
lower bound.

The results in the low-temperature limit, T=10−2�c, are
shown in Fig. 11. Here, thanks to the fact that decoherence is
overall slower, longer evolution times may be chosen:
�ctf =1 �upper panel� and �ctf =10 �lower panel�. For the
latter choice, in particular, when M%10, decoherence en-
hancement occurs and, interestingly, the results for the A
protocol are worse than those for the R protocol. However, it

takes a much smaller �t for the R pulses to finally cross the
line that separates enhancement from decoherence reduction.
Notice also that the values of exp�−�R�tM , t0�� for different
realizations are not so spread and the standard deviations are
narrower than in the high-temperature limit. In addition, the
average over realizations is very close to the lower bound, to

FIG. 10. �Color online� Decoherence rate for a high-temperature
Ohmic bath, T=102�c. Upper panel: �ctf =0.5. Lower panel:
�ctf =1. �Blue� stars: A protocol. �Black� circles: average over 103

realizations and respective standard deviations for the R protocol
�59�. �Black� squares: expectation value �taken over all 2M realiza-
tions� for the R protocol. �Red� dashed line: lower bound.

FIG. 11. �Color online� Decoherence rate for a low-temperature
Ohmic bath, T=10−2�c. Upper panel: �ctf =1. Lower panel:
�ctf =10. �Green� solid line: no control. �Blue� stars: A protocol.
�Black� circles: average over 103 realizations and respective stan-
dard deviations for the R protocol. �Black� squares: expectation
value for the R protocol.
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the point that they cannot be distinguished in the figure.
We now extend our comparison to the three remaining

protocols of Fig. 1; see Fig. 12. We choose a high-
temperature bath with �ctf =1 �upper panel� �low tempera-
ture, in this case, leads to similar results� and a low-
temperature bath with �ctf =10 �lower panel�. The S protocol
shows the best performance, which is evident in the upper
panel, but hardly perceptible in the lower one. Due to the
different rearrangement of the time interval between pulses
for this protocol, it does not correspond to any of the 2M

realizations of random pulses as considered here and repre-
sents a special scheme separated from the others. The perfor-
mance of the LS protocol, which has half the number of �
pulses used in the A protocol, turns out to be better in all
cases of a high-temperature bath, but worse for a fully quan-
tum bath with large �ctf. This explains why the H protocol,
which combines symmetrization and randomness, also per-
forms better than the A protocol in the high-temperature
limit.

To summarize, in terms of performance, we have, in de-
creasing order, S, LS, H, A, and R protocols for high tem-
perature and S, A, H, LS, and R protocols for low tempera-
ture once the number of pulses is sufficient to start slowing
down decoherence. Different protocols become again, as ex-
pected, essentially equivalent in the limit �t→0. For finite
pulse separations, in the considered case of a time-
independent Hamiltonian, it is always possible to identify a
deterministic protocol showing the best performance. How-
ever, if a balance is sought between good performance and
protocols minimizing the required number of pulses, then the
H protocol again emerges as an interesting compromise.
Note, in particular, that the latter outperforms the standard A
protocol in some parameter regimes.

D. Randomized decoupling in the physical frame

We now investigate under which conditions decoherence
suppression is attainable in the physical frame, when the sys-
tem is subjected to randomized control. Because, in this
frame, the qubit natural frequency plays an important role,
random decoupling also depends on how small �t can be
made with respect to �0=�0

−1.
The reduced density matrix is obtained following the

same steps described so far, but in order to retain the effects
of the system Hamiltonian, the transformation into the inter-
action picture is now done with respect to the environment
Hamiltonian only—hence the superscript IE. Upon tracing
over the environment degrees of freedom, we are left with
the reduced density operator in the Schrödinger picture.

The unitary operator between pulses is

UIE�tj+1,tj� = exp�− i
�0

2
�z�t�

!exp�z

2
� 	

k

�#k��t�bk
†ei�ktj − H.c.�� ,

�63�

while at tj it is given by

Pj
IE = exp�− i� j

�

2
�x� . �64�

By additionally moving to the logical frame we get

ŨIE�tM,t0� = exp�− i
�0

2
�z�t 	

j=0

M−1

� j�
!exp�z

2
� 	

k

�bk
†ei�kt0$k

R�M,�t� − H.c.�� .

�65�

Tracing over the environment and taking the expectation
over control realizations leads to the coherence element in
the logical frame:

E„�̃01�tM�… =
�01�t0�
2M−1 	

k=1

2M−1

cos�"M−1
�k� �0�t�e−�R

�k��tM,t0�,

�66�

where "M−1
�k� is given by Eq. �44�. Thus, in addition to the

decoherence described as before by Eq. �58�, we now have
ensemble dephasing due to the fact that each realization car-
ries a different phase factor proportional to �0.

The results for the ratios

F1�tM� =
E„�̃01�tM�…
�01�t0�

and F2�tM� =
E„�̃01

I �tM�…
�01�t0�

�67�

in the logical and logical-IP frames for the system, respec-
tively, are summarized in Fig. 13, where �t is fixed and the
system is observed at different times. Both a high-
temperature and a low-temperature scenario are considered.
The phase for each realization in the logical frame is mostly
irrelevant when �0�1/�t. The outcomes of the average

FIG. 12. �Color online� Decoherence rate. Upper panel: high-
temperature Ohmic bath, T=102�c, and �ctf =1. Lower panel: low-
temperature Ohmic bath, T=10−2�c, and fixed time �ctf =10.
�Green� solid line: no control. �Blue� stars: A protocol. �Purple�
plus: H protocol. �Orange� diamonds: LS scheme. �Black� dot-
dashed line: S protocol. Average for the H protocol is taken over
103 realizations.
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over all realizations in both frames are then comparable, in-
dependently of the bath temperature. The situation changes
dramatically when the spin-flip energy becomes large, the
worst scenario corresponding to �0=k� / �2�t�, with k odd.
Here, because "M−1

�k� is an even number, each realization
makes a positive or a negative contribution to the average,
which may therefore be very much reduced. Such destructive
quantum interference is strongly dependent on the bath
temperature.

Among all random pulse realizations, the most effective at
suppressing decoherence are those belonging to the smaller
ensemble of the H protocol. None of them carries a phase, so
they always make large positive contributions to the total
ensemble average. In a high-temperature bath, the realiza-
tions that can make negative contributions have often tiny
values of e−�R�tM,t0�, which explains why even in the extreme
case of �0=k� / �2�t� the R protocol can still lead to some
decoherence reduction. In a low-temperature bath, on the
other hand, decoherence is slower, and for the time consid-
ered here, the values of e−�R�tM,t0� for all realizations are very
close, which justifies their cancellation when �0=k� / �2�t�.

In the physical frame, the average for the density matrix
depends on the initial state of the system as

E„�01�tM�… =
�01�t0� + �10�t0�

2M 	
k=1

2M−1

cos�"M
�k��0�t�e−�R

�k��tM,t0�.

As already discussed in Sec. III, the problem associated with
population inversion may be avoided if a classical register is

used to record the actual number of spin flips.
To summarize, two conditions need to be satisfied for the

R protocol to become efficient in reducing decoherence:
�c�t�1 and also �0�t�1. Notice, however, that when
randomness and determinism are combined in a more elabo-
rated protocol, such as the H protocol, no destructive inter-
ference due to �0 occurs. In addition, the hybrid scheme is
still capable of outperforming the A protocol in appropriate
regimes.

E. Time-dependent coupling Hamiltonian

As a final example, imagine that the coupling parameters
gk�t� between the system and the environment are time de-
pendent and let us for simplicity work again in the logical-IP
frame. The total Hamiltonian is given by Eqs. �1� and �2�
with �0�t�=�0 and �=1. Two illustrative situations are con-
sidered: gk�t� changes sign after certain time intervals or it
periodically oscillates in time.

1. Instantaneous sign changes

Suppose that gk�t�=gkD�t�, where

D�t� = �− 1��10�ct/3� �68�

describes instantaneous sign changes of the coupling param-
eter after every interval 3 / �10�c�. For a high-temperature
bath and a fixed time tf =1/�c, Fig. 14 shows that the results
for the A protocol exhibit a drastic drop when �t= tf /4 and
�t= tf /10. This is due to the fact that some of sign changes
happen very close to or coincide with some of the � pulses
of the deterministic sequence, canceling their effect. In con-
trast, the occurrence of spin flips in randomized schemes is
irregular, so that the latter are more protected against such
“resonances” and steadily recover coherence as �t decreases,
even though at a slower pace. Note that when dealing with
the S or LS protocols, the same sort of recoil should be
expected for different time dependences and different values
of �t.

FIG. 13. �Color online� Ratios F1�t� and F2�t� in the logical and
logical-IP frames, respectively. A fixed time interval �t=1/ �10�c�
is taken. Upper panel: high-temperature Ohmic bath, T=102�c.
Lower panel: low-temperature Ohmic bath, T=10−2�c. �Green�
solid line: no control. �Blue� stars: A protocol. �Purple� plus: H
protocol. �Black� squares: R protocol in the logical-IP frame. �Red�
up triangles: R protocol in the logical frame with small frequency
�0�t=10−3. �Red� down triangles: R protocol in the logical frame
with large frequency �0�t=� /2. Average performed over all
realizations.

FIG. 14. �Color online� Decoherence rate for a high temperature
Ohmic reservoir, T=102�c, with alternating couplings. �Blue� stars:
A protocol. �Black� circles: R protocol. �Purple� plus: H protocol.
The interval considered is tf =1/�c. Averages taken over all pos-
sible realizations.
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2. Periodic modulation

Assume that the coupling parameter is given by
gk�t�=gkG�t�, where G�t�=cos�p��ct�sin�q��ct� and �p−q�
is small. This function has two superposed periodic behav-
iors, one with a long period and the other fast oscillating.
The fast oscillations are shown in the left upper panel of Fig.
15.

We consider a high-temperature bath, T=102�c. The right
upper panel shows the qubit decoherence in the absence of
pulses. The oscillations in the decay rate are related to the
oscillations in the interaction strength between the system
and bath. In the lower panel, we fix a time tf =1/�c and
compare the decoherence rate for the cases of absence of
control, A, H, and R protocols. When �t= tf /6 the result for
the A protocol suddenly becomes even worse than not acting
on the system. Random pulses, on the contrary, do not show
any significant recoil. The reason for the inefficiency of the
A protocol when M =6 becomes evident from the left upper
panel of Fig. 15. Vertical dashed lines indicate where the
pulses occur. They mostly coincide with the instants where
G�t� also changes sign. For the LS protocol, similar unfavor-
able circumstances happen for different values of �t and
similar behaviors should be expected for other deterministic
protocols and functions gk�t�.

To summarize, the above examples again reinforce the
idea of enhanced stability of randomized controls and sug-
gest that randomization might represent a safer alternative in
reducing decoherence when limited knowledge about the
system-bath interaction is available.

VI. CONCLUSION

A. Summary

A quantitative comparison between deterministic and ran-
domized control for the most elementary target system, con-
sisting of a single �isolated or open� qubit, was developed in
different frames. The main conclusions emerging from this
study may be summarized as follows.

First, it is always possible to identify conditions under
which purely random or hybrid schemes succeed at achiev-
ing the desired level of dynamical control. Frame consider-
ations play an important role in specifying such conditions,
satisfactory performance in a given frame being ultimately
determined by a hierarchy of time scales associated with all
the dynamical components in the relevant Hamiltonian.
While all protocols become essentially equivalent in the limit
of arbitrarily fast control, the behavior for finite pulse sepa-
ration is rich and rather sensitive to the details of the under-
lying dynamics. As a drawback of pure random design, an
ensemble average tends to introduce, in general, additional
phase damping, which may be, however, circumvented by
combining determinism and randomness within a hybrid
design.

Second, for time-independent control settings in this
simple system, it was always possible to identify a determin-
istic protocol with best performance. While deterministic
schemes ensuring accurate averaging of a known interaction
always exist in principle �1�, such a conclusion remains to be
verified under more general circumstances, in particular ac-
cess to a restricted set of control operations. The hybrid pro-
tocol proved superior to the pure random schemes, as well as
to standard asymmetric schemes in certain situations.

Third, for time-varying systems, randomized protocols
typically allow for enhanced stability against parameter
variations, which may severely hamper the performance of
deterministic schemes. Pure random design tends to perform
better than hybrid in this respect, both choices, however, im-
proving over purely cyclic controls under appropriate condi-
tions.

Overall, hybrid design emerges as a preferred strategy for
merging advantageous features from different protocols,
thereby allowing one to better compromise between conflict-
ing needs.

B. Outlook

From a conceptual standpoint, it is intriguing to realize
that complete suppression of decoherence remains possible,
in principle, by purposefully introducing a probabilistic com-
ponent in the underlying control and perhaps surprising to
identify cases where this leads to improved efficiency over
pure deterministic methods.

In a broader context, however, it is worth mentioning that
the philosophy of recognizing a beneficial role of random-
ness in physical processes has a long history. Within NMR,
the stochastic averaging of intermolecular interactions in
gases and isotropic liquids due to random translational and
reorientational motions may be thought of as a naturally oc-
curring random self-decoupling process �1�. In spectroscopic
applications of so-called stochastic NMR and stochastic

FIG. 15. �Color online� Upper left panel: function
G�t�=cos�p��ct�sin�q��ct�, for p=2.95 and q=3.25. Upper right
panel: decoherence rate in the absence of control. Lower panel:
decoherence rate for a fixed time interval �ctf =1. A high-
temperature Ohmic bath, T=102�c, is considered. �Green� solid
line: no control. �Blue� stars: A protocol. �Black� circles: R proto-
col. �Purple� plus: H protocol. Averages taken over 103 realizations.
Standard deviations for the R protocol are shown.
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magnetic-resonance imaging �60�, spin excitation via trains
of weak rf pulses randomly modulated in amplitude, phase,
and/or frequency is used to enhance decoupling efficiencies
over a broader frequency bandwidth than attainable other-
wise. Even more generally, the phenomenon of stochastic
resonance �61,62� is paradigmatic in terms of pointing to a
constructive role of noise in the transmission of physical
signals. Within QIP, strategies aimed at taking advantage of
noise and/or stochasticity have been considered in contexts
ranging from quantum games �63� to quantum walks �64�
and dissipation-assisted quantum computation �65�, as well
as specific coherent-control �66� and quantum simulation
�67� scenarios. Yet another suggestive example is offered by
the work of Prosen and Žnidarič, who have shown how static
perturbations characterizing faulty gates may enhance the
stability of quantum algorithms �68�. More recently, as men-
tioned, both pure random �38� and hybrid �39� active com-
pensation schemes for static coherent errors have been pro-
posed. While it is important to stress that none of the above
applications stem from a general control-theoretic framework
as developed in �36�, it is still rewarding to fit such different
examples within a unifying perspective.

Our present analysis should be regarded as a first step
toward a better understanding and exploitation of the possi-
bilities afforded by randomization for coherent and decoher-
ent error control. As such, it should be expanded in several
directions, including more realistic control systems and set-
tings and fault-tolerance considerations. While we plan to
report on that elsewhere, it is our hope that our work will
stimulate fresh perspectives on further probing the interplay
between the field of coherent quantum control and the world
of randomness.
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APPENDIX: CONTROL HAMILTONIAN

The control Hamiltonian is designed according to the in-
tended modification of the target dynamics in a desired
frame. Throughout this work, our goal has been to freeze the
system evolution by removing any phase accumulated due to
the unitary evolution, as well as avoiding nonunitary en-
semble dephasing and decoherence. As clarified below, this
requires the use of identical � pulses in the physical frame.
This condition may be relaxed at the expense of no longer
refocusing the unitary evolution.

Let the control of the system be achieved via the applica-
tion of an external alternating field �e.g., a radio-frequency
magnetic field�,

Hc�t� = 	
j

Hc
�j��t� = 	

j

V�j��t�cos��t + 	 j�t���x, �A1�

where the carrier is tuned on resonance with the qubit central
frequency, �=�0. As described in the text, V�j��t�=V�
�t

− tj�−
�t− tj −��� and each pulse happens at tj, having dura-
tion � and amplitude V. Upon invoking the rotating-wave
approximation �RWA�, hence neglecting the counterrotating
terms �−exp�−i��0t+	 j�t��� and �+ exp�i��0t+	 j�t��� in Eq.
�A1�, the control Hamiltonian given in the main text is
found. The function 	 j�t� characterizes the phase properties
of the pulses we deal with. We compare two relevant possi-
bilities.

�i� 	 j�t�=−�0tj for each j: This means that the pulses are
identical in the physical frame, as used in this work.

�ii� 	 j�t�=0 for all j: This means that the pulses are iden-
tical in the physical frame only if separated in time by a
multiple of 2�.

The propagator corresponding to the above choices may
be in general obtained by seeking a transformation which
removes the time dependence of Hc

�j��t� within each pulse. A
transformation to an absolute frame rotating with the carrier
frequency, which on resonance is identical with the interac-
tion picture, leads to

Hc
I�j��t� = exp�i�0t�z/2�Hc

�j��t�exp�− i�0t�z/2�

= V�j��t�exp�− i
	 j�t�

2
�z��x exp�i

	 j�t�
2
�z� .

Thus, the choice 	 j�t�=0 corresponds to pulses which are
translationally invariant in time in this frame. In case �i�, the
above transformation does not remove time dependence,
which would instead be accomplished by moving to a rela-
tive rotating frame via a rotation Uz�t− tj�=exp�i�0�t
− tj��z /2�. From the above expression, the interaction-picture
propagators for an instantaneous � pulse applied at tj are
found, respectively, as

�i� Pj
I = exp�i

�0tj

2
�z�exp�− i

�

2
�x�exp�− i

�0tj

2
�z� ,

�ii� Pj
I = exp�− i

�

2
�x� .

We can then return to the Schrödinger picture using the
relation

Pj = exp�− i�0tj�z/2�Pj
I exp�i�0tj�z/2� ,
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leading to the propagators

�i� Pj = exp�− i
�

2
�x� ,

�ii� Pj = exp�− i
�0tj

2
�z�exp�− i

�

2
�x�exp�i

�0tj

2
�z� .

�A2�

Thus, pulses with 	 j�t�=−�0tj are confirmed to be transla-
tionally invariant in time in the physical frame, as directly
clear from the dependence �0�t− tj� in Eq. �A1�.

The difference between the two choices to the control
purposes becomes evident by considering the A protocol on
the isolated qubit. From Eqs. �A2�, the propagators

U�t2 , t0�= P2U0�t2 , t1�P1U0�t1 , t0� in the physical frame are,
respectively,

�i� U�t2,t0� = 1 ,

�ii� U�t2,t0� = − exp�− i�0�t2 − t1��z� , �A3�

which leads to the conclusion that refocusing in the physical
frame may only be achieved with identical pulses—that is, if
	 j�t�=�0tj. Clearly, for the choice 	 j�t�=0, the accumulated
phase may only be disregarded in the frame rotating with the
frequency �0. Both choices are equally useful if decoherence
suppression becomes the primary objective in the open
system case.
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