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We present a theoretical and experimental investigation of the emission characteristics and the flux of photon
pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in
quantum communication sources. We show that, by careful design, one can attain well defined modes close to
the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being
more easily aligned than crystal waveguides. We distinguish between singles coupling, �s and �i, conditional
coincidence, �i�s, and pair coupling, �c, and show how each of these parameters can be maximized by varying
the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we
analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and
1550 nm. Numerical calculations lead to coupling efficiencies above 93% at optimal focusing, which is found
by the geometrical relation L /zR to be �1 to 2 for the pump mode and �2 to 3 for the fiber-modes, where L
is the crystal length and zR is the Rayleigh-range of the mode-profile. These results are independent on L. By
showing that the single-mode bandwidth decreases �1/L, we can therefore design the source to produce and
couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic
dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to com-
pensate for broadened photon packets—a vital problem for time-multiplexed qubits. Longer crystals also yield
an increase in fiber photon flux ��L, and so, assuming correct focusing, we can only see advantages using long
crystals.
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I. INTRODUCTION

Spontaneous parametric downconversion �SPDC� ac-
counts for the majority of entangled photon pairs being pro-
duced today. It can be described as a process in which the
electromagnetic field of a single photon—traveling inside a
dielectric material such as a birefringent crystal—interacts
with the atoms by absorption and gives rise to a nonlinear
response in the field of polarization, thereby leaving the pos-
sibility of two or more photons being re-emitted. The laws of
conservation of energy and momentum, together with the
randomness and indistinguishability in the process, also give
rise to entanglement, a nonlocal correlation between the pho-
tons.

In quantum communication numerous experiments have
been performed to date involving non-entangled or entangled
photons being sent over long distances, e.g., sources of her-
alded single photons �1–3�, quantum cryptography �4–6�,
and teleportation �7�. A typical such experiment involves
launching each photon of a �entangled� pair into single-mode
fibers and to deliver each one to a separate party for encod-
ing or decoding. For successful distribution over long dis-
tances it is vital to have a high rate of pairs generated at the
source, as the attenuation of the fiber is a strongly limiting
factor even at the wavelength of 1550 nm for which the fiber
is most transparent. Today, results with crystals of periodi-

cally poled materials have proved this viable even at moder-
ate pump laser powers �8�, and in some cases the problem
has turned into a matter of limiting the pump power to avoid
creating two pairs at the same time, as this will give false
coincidences also when having low single-coupling efficien-
cies. Instead, what has gained importance is to have a high
pair-coupling efficiency that increases the probability of both
photons of a pair being present in the fibers once they have
been created. Furthermore, the use of time-multiplexed
schemes �9,10� have elicited the need of launching photons
having very narrow frequency bandwidth and long coherence
length in order to limit the effects of dispersion in the fibers,
and to enable the use of interferometers. Rather than just
filtering the emission at some desired width, as is commonly
done, we will show that it is more efficient in terms of
photon-rates to design the source so that the bandwidth is
determined by the crystal length and fiber coupling alone.

It is the purpose of this article to calculate the maximum
coupling efficiency achievable for photon pairs generated in
crystals that are phase-matched for colinear emission in gen-
eral, and for periodically poled KTiOPO4 �PPKTP� crystals
using non-degenerate quasi-phase matching �QPM� in par-
ticular. We look for the optimal condition for focusing of the
pump onto the crystal and focusing of the emission onto the
fiber-end �mode-matching� which maximizes either the
single or the pair-coupling efficiency. The focusing is speci-
fied using the parameter �=L /zR, adopted from �11� with a
slight modification, where L is the length of the crystal and
zR is the Rayleigh range. We make no thin-crystal approxi-
mations, but take fully into account the focusing geometry of
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all three interacting fields: pump, signal, and idler, by de-
composing all three fields into a complete set of orthogonal
plane-wave modes. Other optimizable parameters of these
beams include the direction of the beam axis and the location
of the focus. Both are regarded fixed, the former being mo-
tivated by the colinear geometry of perfect quasi-phase
matching, and the latter by the fact that focusing onto the
center of the crystal shows to give highest efficiencies. �Sup-
port for the last claim is given in �12� for second harmonic
generation.� We also regard the center frequency of the
beams, the power of the pump, and the optical properties of
the crystal as fixed parameters of the problem. We take into
account the polychromatic character of the emission but as-
sume a monochromatic pump �continuous-wave pump�, and
we investigate how the coupling efficiency depends on the
length of the crystal and the bandwidth of the wavelength
filter in front of the fiber, but also how the fiber coupling
affects the bandwidth of the coupled photons and the achiev-
able photon-rates. Our goal is to give a simple recipe for
setting up a colinear source of entangled photon pairs that
optimizes the focusing for the highest single and pair cou-
pling efficiencies into single mode fibers, and that also deter-
mines a suitable crystal length for a desired bandwidth.

Shortly after the demonstration of parametric generation
�PG� and second harmonic generation �SHG� in the 1960s,
Boyd and Kleinman �11�, and others, addressed the focusing
in non-colinear geometries of type-I and showed the impor-
tance of optimization for achieving maximal conversion ef-
ficiency in optical parametric oscillators and frequency dou-
blers. By using cavities to enhance the processes one can
control the spatial mode of the pump, signal and idler to
support only the fundamental TEM00 mode, and under this
condition Boyd and Kleinman suggested that the general op-
timal focusing is to set the �-parameters of all fields the same
��p=�s=�i�. Later, Guha et al. �13� showed that having un-
equal parameters can improve the conversion even further
and this is also supported by our results. The case of type-II
SHG have also been studied �14�, as well as sum- and dif-
ference frequency generation �SFG and DFG� �15�, with
similar results. These works were all treating the light as a
classical field, having the signal beam acting as the relatively
strong control-field that is being amplified by the much
stronger pump-beam together with the creation of an idler. It
is not unreasonable to expect that a different situation arises
at the quantum level where both the signal and idler initially
are in uncontrolled vacuum-states.

Spontaneous parametric downconversion commonly takes
place in bulk crystal configurations where the signal and
idler modes are not restricted by cavities. This will provide
an additional degree of freedom. The pump is assumed to be
TEM00, but the emission will in general be spatially multi-
mode. A central problem in this article is to find how much
of the emission is in a transverse and longitudinal fundamen-
tal single-mode at different focusing conditions. For the
transverse part, such a single-mode, being Gaussian shaped,
is very close to the Bessel function of the first kind, J0���,
which describes the shape of the fundamental fiber mode,
and will therefore provide nearly perfect overlap. After de-
termining the mode of the emission we also calculate the M2

factor, commonly used as a measure of beam-quality, and

compare it to experimentally obtained results.
To our knowledge, no analysis has been made to date that

characterizes the colinear emission in quasi-phase-matched
materials in the way presented here, i.e., making no assump-
tions about short crystals or weak focusing. It should be
noted that the analytical calculations become difficult with-
out these assumptions and so our goal have been to formu-
late the final expression in such a way that it can be evalu-
ated numerically with relative ease, with only simple
assumptions being made. Taking into account all the needed
degrees of freedom—azimuthal and polar angular spectrum
and frequency included—these numerical computations will
become quite time-consuming on an ordinary personal com-
puter, but still doable.

Various other attempts have been made in the past to char-
acterize the one- and two-photon spatial optical modes gen-
erated by non-colinear birefringent phase-matching. How-
ever, most of them do not use single-mode fibers to collect
photons; Monken et al. �16� and Pittman et al. �17� show
how focusing of the pump with a lens can increase the coin-
cidence counts using an analysis limited to thin crystals, and
Aichele et al. �18� seek to match the spatio-temporal mode of
a conditionally prepared photon to a classical wave by spec-
trally and spatially filtering the trigger, however, without
considering focusing effects.

More recent work connected to ours is a number of papers
that consider the coupling into single-mode fibers; Kurtsiefer
et al. �19� provide, for thin crystals, a hands-on method of
determining the mode of the emission using the relation be-
tween the emission-angle and the wavelength coming from
the phase-matching conditions. For maximal overlap be-
tween the emission mode and the fiber-matched mode �tar-
get� they presume it is best to choose the waist of the pump-
mode and fiber-matched mode equal. According to �11�, and
our results, this is not optimal in general. Bovino et al. �20�
take on a more sophisticated approach as they carry out the
biphoton-state calculation for a non-colinear source, which
takes into account focusing, dispersion, and walk-off and ar-
rives at a closed expression for the coincidence efficiency.
Other work have been continued along the same lines �21�;
our conclusion from examining the formulas herein being
that high efficiency can always be achieved for any length of
crystal by choosing the pump waist large enough and the
fiber-matched waist small enough. This is in contrary to our
results which show an optimal value of the focusing param-
eter �1���3�. Furthermore, as shown both in this report
and in �11�, for a specific crystal type and wavelength con-
figuration the value of � is found to be a fixed constant for all
crystal lengths which makes the pump-beam waist w0 relate
to the length as w0��L �at optimal focusing�, while the re-
sults of Refs. �20,21� appear to show a linear relationship.
We are not sure whether these apparent differences are best
explained by the different situations of a non-colinear and
colinear source, pulsed vs. continuous-wave pump, or by
otherwise different models or parameters in either case. It
can be noted that our results seem to provide good agreement
with experiments.

The particular source of photon pairs that spurred the
work of this article is presented by Pelton et al. in Ref. �22�.
The main idea is to create polarization-entangled photon
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pairs at the non-degenerate wavelengths of 810 nm and
1550 nm from a pump-photon at 532 nm, using two orthogo-
nally oriented �23�, long, bulk KTP crystals. These crystals
are periodically poled for quasi-phase matching which pro-
vides colinear emission suitable for coupling into single-
mode fibers, but as told, also require some optimization for
maximum throughput. Preliminary results can be found in
�24�. Related work is found in �6,25,26�.

The agenda of this article is as follows. Section II gives a
mathematical background, starting in subsection II A with a
review of the one and two-photon state of the emission de-
rived in Appendix A. In Sec. II B we calculate the emitted
modes, which are qualitatively measured using the beam
quality parameter M2. This is followed in subsection II C by
a mathematical definition of the single-coupling, coinci-
dence, and pair-coupling efficiencies. Section III presents the
numerical results of the coupling �III A-III B�, bandwidth �III
C�, and the M2 factor �III D�. Section IV covers the experi-
mental setup and the experimental results, where a compari-
son is made to numerical predictions. Conclusions are found
in Sec. V.

II. THEORETICAL DESCRIPTION

The aim of this section is to derive the formulas used for
the numerical calculations of the emission modes, coupling
efficiencies, and emission bandwidths for the emitted quan-
tum state of the SPDC process, and also to give a physical
meaning to these concepts in the role of single photon
sources. We will optimize over the spatial parameters in-
volved to find the highest quality modes and maximal cou-
pling efficiencies attainable. The result is based on a calcu-
lation carried out in Appendix A involving the Hamiltonian
that governs the interaction of spontaneous parametric down-
conversion in quasi-phase-matched materials. The crystal is
pumped by monochromatic and continuous wave laser light
�p� of frequency �p, which is propagating in a Gaussian
TEM00 mode along the z-axis, producing a signal �s� and
idler �i� field in the same direction. Figure 1 defines the labo-
ratory axes used; the z-axis being along the length L of the
crystal, the x-axis along the height, and the y-axis along the
width. The crystal is bi-axial, and the crystal axes X, Y, and
Z are oriented as shown in the figure. We have chosen the

poling period in the crystal to allow for copolarized �ZpZsZi�,
colinear down-conversion, but the calculations are general
enough to allow other polarization settings. The refractive
indices, and thus the phase-matching, depends on the tem-
perature of the crystal and is determined by the Sellmeier
coefficients of PPKTP �27,28�. In general we are interested
in phase-matching at non-degenerate wavelengths, and for
such cases the shorter wavelength will be regarded as the
signal and the longer wavelength as the idler.

Many references, following Klyshko �29�, start with the
coupled mode equations and look at the evolution of opera-
tors to find the two-photon state from SPDC in terms of a
frequency and angular intensity distribution �30�. This is ef-
fectively the same as finding the diagonal elements of the
second order moment density matrix which represent the in-
coherent part of the information of the state. This informa-
tion is sufficient for determining the shape of the emission.
However, it is not sufficient for determining the overlap be-
tween the emission and a single-mode fiber. In this case we
need the “coherent” information available in the full density
matrix. The approach we take in Appendix A and in the next
subsection is to use the Schrödinger picture and look at evo-
lution of the state to find the two-photon amplitude. In the
following subsections we then diagonalize the corresponding
density matrix into a sum of coherent parts �eigenmodes�,
and project each one onto the fiber-mode so that we can
calculate the coupling efficiency as a sum of overlap coeffi-
cients. We also use this decomposition to calculate the elec-
trical field and beam profile of the emission.

A. The emitted two-photon state

The two-photon amplitude describes the joint state of the
signal and idler emission in terms of �internal� angular and
frequency spectrum. Using spherical coordinates �see Fig. 1�
the two-photon amplitude derived in Eq. �A28� becomes

S��,	s,	i,
�� =
4�22f1L

i�
A2���

�
kp

Zw0p

�2�
e−�kp

Zw0p�2�P2+Q2�/4sinc�L

2

kz�	 ,

�1�

where, according to Eq. �A26�


kz� = ks cos 	s + ki cos 	i − kp
Z�1 − �P2 + Q2� + K , �2�

and, according to Eq. �A25�

P2 + Q2 =
ks

2 sin2 	s + ki
2 sin2 	i + 2kski sin 	s sin 	i cos�
��

�kp
Z�2 .

�3�

All three interacting fields have been decomposed into a
complete set of orthogonal plane-wave modes, k�	 ,��. The
magnitudes of the k-vectors, ks and ki, are given by Eq.
�A17�, 	s and 	i are the internal polar angles of the plane
waves of signal and idler respectively, 
� is the difference in
angle between the azimuthal angles �s and �i, and � is the

FIG. 1. The figure shows the periodically poled crystal with the
laboratory coordinate system drawn. Also defined are the crystal’s
axes X, Y, and Z, referring to the polarization of the incoming and
outgoing electromagnetic fields.
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frequency �specified by a single parameter due to exact
energy-matching�. Furthermore, 2 is the nonlinear coeffi-
cient of the crystal, K is the grating constant of the poling, L
is the length of the crystal, and w0p is the pump-beam waist
radius. A��� is the frequency amplitude of the detector filter
having a bandwidth 
� �FWHM� and a center wavelength �c
�all wavelengths in vacuum�. Via the relation �=2�c�n� /�
−n�c

/�c� its form, assuming a Gaussian shaped filter, is
given by

A��;�� = e−2 log�2��� − �c�2/
�2
. �4�

In a plane wave mode-decomposition, Eq. �1� represents
the two-photon field �that is generated in the crystal by the
pump field� in the form of a continuous angular spectrum in
polar and azimuthal degrees of freedom. Together with the
frequency, the full state is a tensor-product of four degrees of
freedom. We will need to discretize the spectrum in order to
represent it on a computer. As the size of the Hilbert space of
the full ket-vector becomes very large for a large number of
points in resolution, we need to limit its size to make the
numerical calculations feasible. In the following, the two-
photon state is therefore explicitly represented only by the
polar angles of the signal, �	s
, and the idler, �	i
, written as
kets, leaving the state implicitly dependent upon the two re-
maining degrees of freedom, 
� and �. The purpose of this
notation is to reflect the actual way that the state is numeri-
cally implemented as a one-dimensional array of 	 �the den-
sity matrix is a two-dimensional array�, with separate arrays
being calculated for each discrete value 
� and �. Choosing
N	 discrete plane-wave modes as a basis of the polar angle,
the two-photon state can then be formulated as

��si

�,�
 = �

m,n=1

N	

S��,	s
�m�,	i

�n�,
���	s
�m�
 � �	i

�n�
 . �5�

There are a few approximations that have been made dur-
ing the calculation of S, apart from the paraxial approxima-
tion inherent in the standard form of the angular spectrum
representation of the Gaussian pump field of Eq. �A19�.
These include �i� the assumption of a constant pump k-vector
magnitude kp=kp

Z in order to remove the implicit dependence
of 	p and �p in Eq. �A16�, which thus leads to Eq. �3�, �ii� the
assumption of an infinite coherence length of the pump �cw�,
providing a �-function over frequency so that we can de-
scribe the signal and idler by a single frequency �, and �iii�
the assumption of having the same refractive indices along
the crystal’s X and Y axis, such that the X-component of the
k-vectors can be set to the same as that of Y. The last as-
sumption also provides a motivation for the output of com-
pletely rotationally symmetric modes, and will greatly sim-
plify the expressions and the numerical calculations as the
azimuthal angle dependence, via �s and �i, is automatically
removed from the two-photon amplitude. The two-photon
density matrix is given by

�si

�,� = ��si


�,�
��si

�,�� , �6�

which now contains four degrees of freedom; 	s and 	i being
the two state parameters, and 
�, � being two other param-
eters which we will trace over later. Note that �si is a descrip-

tion of the emission inside the crystal, not taking into ac-
count the refraction between crystal and air.

B. The emission modes and the beam quality, M2

We are interested in the shape of the signal or idler beam
profiles using free detection so that we can compare with
images taken by a CCD camera. To do this comparison we
need to have the beam described in terms of the electrical
field, which is given as the Fourier transform of the angular
spectrum �the density matrix�. The electrical field, or inten-
sity, then gives the beam profile which, in turn, determines
the M2 factor.

First, each signal or idler beam are made independent of
the other beam by partially tracing over its partner. In the
following we trace over the signal in the polar angle degree
of freedom, and in doing so we get the reduced density ma-
trix for the idler,

�i

�,� = Trs��si


�,�� = �
n

N	

�	s
�n���si


�,��	s
�n�
 . �7�

The remaining dependence on 
� can also be removed fol-
lowing the standard trace-operation, which is here equivalent
to a sum over density matrices,

�i
� = Tr
���i


�,�� = �
m

N�

�i

�m,�. �8�

Additionally, as we could in principle measure the frequency
of the photons at a resolution given by 
�res=�2 /c
tgate �set
by the timing information of the detectors, �1 ns, to be
�8 pm�, which generally is much smaller than the band-
widths of the filters, we need to incoherently sum over the
frequency � in the same way, giving a final �i describing the
state of the idler,

�i = Tr���i
�� = �

n

N�

�i
�n. �9�

1. Mode decomposition

We cannot, however, directly now apply a Fourier trans-
form to the reduced density matrix �i, as it is generally
mixed. Instead, we shall diagonalize �i to find its eigenvec-
tors and eigenvalues. For such a Hermitian matrix all eigen-
values are real and the eigenvectors will form a complete
orthonormal set. Thence, the set will represent a natural
mode-decomposition of the emission, and consequently, each
vector, or mode, will represent a coherent part of the emis-
sion. The sum of all modes weighted by its corresponding
eigenvalue will determine the state. For each such mode, on
the other hand, we can apply a Fourier transform and thus
find the electrical field modes. The squared sum of all elec-
trical field modes, again weighed by the corresponding ei-
genvalue, will then determine the total electrical field. We
will quantify this to show our future notation; the reduced
density matrix is first diagonalized by T−1�T=D, such that
T= ���1
 , ��2
 , . . . , ��N	


� has the eigenvectors in the columns,
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and D has the eigenvalues �n in its diagonal elements. The
result is a density matrix that can be represented as a sum of
pure states,

� = �
n=1

N	

�n��n
��n� , �10�

where N	 is the Hilbert-space dimension. Following this re-
sult, in Fig. 2 is plotted the one-dimensional angular spectral
form u�	y�, taken as an integration of the absolute square of
the two-dimensional angular spectral amplitude axy�	�. We
have axy�	�=�n�n�n�	�, where �n�	� is the discrete function
representation of ��n
, and 	2=	x

2+	y
2. Hence,

u�	y� = �
	x

�axy��	x
2 + 	y

2��2, �11�

is the one-dimensional angular spectral form.

2. The field intensity

We can now transform the angular spectrum modes ��n
,
into electrical field modes En. As these modes are rotation-
ally symmetric and depend on one parameter only, the elec-
trical field is most suitably expressed through the Hankel
transform. In writing the transform in the following form we
make use of the fact that the vector ��n
, again written as a
discrete function, �n�	 ,��=�n�	�, is independent of �. Thus,

En�x,y,z� = �
	

�n�n�	�e−ikz cos 	J0�k�x2 + y2	� , �12�

where the basis functions J0��� of the Hankel transform are
the Bessel function of zero order and the solution to
�1/2��0

2� exp�i� cos ��d�. However, the one-dimensional
fast Hankel transform �FHT�, which would possibly provide
very fast computations, is not widely implemented, at least

not in an efficient form for use in Matlab or Mathematica and
was not available to us at the time for the numerical calcu-
lations. Therefore, the next simplest transform at hand is the
two-dimensional Fourier transform,

En�x,y,z� = �
	

�
�

�n�n�	,��e−ikz cos 	

� ekx sin 	 cos �eky sin 	 sin �. �13�

With still two dimensions being used, Eq. �13� can also be
rewritten using the polar angle components 	x and 	y,

En�x,y,z� = �
	x

�
	y

�n�n��	x
2 + 	y

2�e−ikz cos��	x
2+	y

2�

� ekx sin 	xeky sin 	y , �14�

where 	=�	x
2+	y

2. In this form, which is the form we will
use, Eq. �14� represents a standard single two-dimensional
FFT. Note that this transform is, in general, not separable
with respect to x and y into two, but simple, one-dimensional
transforms. This is a characteristic of Laguerre-Gaussian
modes and of the modes emitted by the crystal, in compari-
son to Hermite-Gaussian modes which are always separable.

The intensity is now given by incoherently summing all
field-modes,

I�x,y,z� = �
n=1

N	

�En�x,y,z��2. �15�

Finally, the transversely integrated intensity profile of the
emitted beam is given by I�y ,z�=�xI�x ,y ,z�.

3. Gaussian beam fitting

The beam waist radius w�z� can be found from the stan-
dard deviation ��z�, or the second moment, of the intensity
distribution I�y ,z�, as w�z�=2��z�, see Ref. �31�. The stan-
dard deviation is known to provide the correct waist estimate
for arbitrary multimode light as opposed to trying to make a
curve-fit with various mode-shapes. Readily, �2�z�=�y�y
− ȳ�z��2I�y ,z�, where ȳ�z�=�yyI�y ,z� is the expectation value
with respect to the spatial position y in the intensity distri-
bution. As said, we will use the beam quality factor M2 to
quantify the emission. This factor is determined through the
Rayleigh range

zR =
�w0

2

M2�
, �16�

entering the standard Gaussian beam formula

wmodel�z� = w0�1 + � z − z0

zR
�2

. �17�

By varying the parameters w0 and M2 we can make a curve-
fitting of the model profile wmodel�z� to the actual beam pro-
file w�z�, such that the M2-factor is determined. Eq. �16�
states that the diffraction limited fundamental Gaussian
mode TEM00 has a beam quality factor of M2=1. As a com-
parison, this factor increases for general higher order
Laguerre-Gaussian modes LGpm �32�, defined by the radial

FIG. 2. The figure shows an example of the angular spectral
form u�	y� of the emitted idler light att 1550 nm in a PPKTP crystal
�central curve� which gives an M2 factor less than 3 with a filter
bandwidth 
�=10 nm. The pump at 532 nm is focused close to
optimal, �p=1.3. The insets show the four lowest order LGp0 modes
which are similar, but never the same as the natural eigenmodes of
the emission, and illustrates how the M2 factor in general grows
with mode order.

OPTIMAL FOCUSING FOR MAXIMAL COLLECTION OF … PHYSICAL REVIEW A 72, 062301 �2005�

062301-5



index p and the azimuthal mode index m=0, such that M2

=3 for p=1, M2=5 for p=2, and M2=7 for p=3 and so on,
see Fig. 2.

C. Single coupling, coincidence, and pair coupling

To characterize the source and to optimize the coupling of
the emission into optical fibers we shall make use of three
parameters: single coupling, conditional coincidence, and
pair coupling. However, before we define each of the three
coupling parameters we shall briefly comment on the neces-
sity to relate them to the detection window being used, i.e.,
the frequency bandwidth of the detector filter 
�. The emis-
sion will always fluoresce in a wide spectrum, and in that
sense there is no meaning to speak about a coupling effi-
ciency for photons that cannot be seen through the window
in any case. By making a simple normalization to the filter
bandwidth, the coupling probability will consistently mea-
sure only how well photons of specific frequencies are spa-
tially collected into the fibers. For example, for any fixed
filter and no spatial filtering, as is almost the case with a
multimode fiber, and certainly the case in free-space, the
coupling is always perfect. Effectively, this normalization
enters the calculations through the bandwidth in Eq. �4�. Fig-
ure 3 helps to illustrate the different coupling parameters
using a Venn diagram.

1. Single coupling

The single-coupling efficiencies �s and �i are readily de-
fined as the probability to find a photon in the fiber which
has been emitted within a certain filter bandwidth. The
single-coupling efficiency is useful when maximizing the in-
dividual rate of photons present in the fibers. To calculate the
probability we shall take the overlap of the emitted modes
with the mode of the fiber as seen from the crystal, here
called the fiber-matched mode. That is to say, the form of the
mode that can be traced back to the crystal from the fiber tip,
not worrying about crystal refraction or any other optics in
between performing the actual transformation. Also, we do
not consider any additional aperture limitations enforced,
e.g., by irises.

The true mode of the fiber is described by a Bessel func-
tion. However, it can be approximated very well with a fun-

damental Gaussian which in normalized form is described by

�G00
 =
kZw00

�2�
e−ikZz00 cos�	�−�kZw00�2 sin2�	�/4�	
 , �18�

where w00 is the beam waist radius of the fiber-matched
mode, TEM00, as determined by the focusing system, and z00
is the location of the corresponding focus �which shall be at
the center of the crystal z00=0 for optimum coupling�, see
Fig. 4.

The single-coupling efficiency is trivially given by �
=Tr��G00
�G00���, but the numerical optimization converges
slowly and badly using this form. For this reason we shall
exploit the diagonalization and calculate the single coupling
efficiency as the sum of the projection of each emitted mode
��n
 onto the fiber-matched mode �G00
,

� = �
n=1

N	

�n���n�G00
�2, �19�

where ��n
 is given by the density matrix, �s or �i, as defined
by Eq. �10�, resulting in �s or �i respectively.

2. Optimization

The maximum achievable coupling efficiency is deter-
mined by an optimization of Eq. �19� with respect to the
focusing conditions of either the pump mode, or the fiber-
matched signal/idler mode, or both. To quantify the focusing
we shall use the beam focusing parameter �=L /zR, where L
is the length of the crystal and zR is the Rayleigh-range �note
that we have M2=1 for both the pump mode and the fiber-
matched modes�. See Fig. 4. The parameter is suitable as a
dimensionless representation of the focusing geometry. �As
will be shown further ahead, the results indeed show that the
geometry is kept intact at optimal focusing, irrespectively of
the length of the crystal, which corresponds to a fixed �opt�.
In both Eq. �1� and Eq. �18� the parameter � enters through
the beam waist radius of the pump mode w0p and the signal/
idler fiber-matched mode w00, according to w0p=�L�p /��p,
and w00=�L�s,i /��s,i. We can formalize the optimization of
the signal and idler fiber-matched modes as

�opt = max
�s,i

���p,�s,i� , �20a�

FIG. 3. The figure shows a Venn diagram. It illustrates the single
coupling efficiencies �s and �i, pair coupling �c, and conditional
coincidences �s�i and �i�s, which are defined in the text. The total
amount of pairs �p generated within the bandwidth of the detector
filter 
� is normalized to unity, and represents perfect coupling.

FIG. 4. The picture shows the geometry of focusing, with the
Rayleigh-range zR, the crystal length L, the beam waist radius w0,
and the focus offset z0 being defined. The focusing parameter is
defined as �=L /zR.
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�opt = arg max
�s,i

���p,�s,i� , �20b�

with � given by Eq. �19�.

3. Conditional coincidence

The conditional coincidences, �s�i and �i�s are useful for
the characterization of heralded single photon sources, and
are defined as the probability to find a photon in either the
signal or the idler fiber given that the partner photon has
entered its fiber, whether or not its detected. The conditional
coincidence probability is found by first projecting the two-
photon amplitude onto the one fiber, and then calculating the
overlap with the other fiber in the same way as for single
coupling. In this example we will search for �i�s and make a
conditional measurement on the signal, defined by the fol-
lowing operator

Ms = �G00
�s�
�G00

�s�� . �21�

Due to the measurement, the derivation of �i will be slightly
different here, and we need to take a few steps back and
reformulate the two-photon density matrix �si

� as a coherent
sum of amplitudes with respect to 
�, instead of as a inco-
herent trace operation in Eq. �8�. The density matrix is now
written

�si
� = �

m
�

l

��si

�m,�
��si


�l,�� . �22�

Using the measurement operator Ms, the two-photon density
matrix after the projection becomes

�si�s
� =

Ms � 1i�si
�Ms � 1i

Tr�Ms � 1i�si
�Ms � 1i�

. �23�

The reduced density matrix is readily found by tracing over
the partner, �i�s

� =Trs��si�s
� �, which leaves only a trace over

frequency, �i�s=�n�i�s
�n. The conditional coincidence is now

defined in the same way as for single coupling; we can re-
place � by �i�s in Eq. �19�, still using Eq. �10� to find the
eigenvalues �n and eigenmodes ��n
 of �i�s. We have,

�i�s = �
n=1

N	

�n���n�G00
�i�
�2, �24�

where �G00
�i�
 is the fiber-matched mode of the idler. The pa-

rameter �s�i follows accordingly, as well as the formal opti-
mization:

�opt = max
�s,i

���p,�s,i� , �25a�

�opt = arg max
�s,i

���p,�s,i� . �25b�

4. Pair coupling

Finally, the pair-coupling efficiency �c is defined as the
probability to find both photons of a pair in the respective
fiber. This measure tells what fraction of the pairs enters the
fibers compared to the total amount of pairs that are gener-

ated within the frequency bandwidth window. The pair-
coupling can be derived from the single coupling and condi-
tional coincidence using effectively Bayes’s rule, see Fig. 3,

�c = �i�s�s = �s�i�i . �26�

The alternative is to calculate the coupling via �c=Tr�Ms

� Mi�si�, but this requires the calculation of �si, which is
computationally more demanding. When computing �i�s and
�s via Eq. �26�, using Eq. �24� and Eq. �19�, the ket is suffi-
cient, because we can simplify the trace-operation of Eq. �7�,
and also the projection of Eq. �23�, to work in ket-space
before the trace over frequency; �i

�=Trs��si
� �

=�m,n,jSm,jSn,j
* �	i

�m�
�	i
�n��. We could also think of rewriting

Tr�Ms � Mi�si� using two-photon kets in the same way, but as
�si generally becomes a mixture after tracing over frequency
this is not an option. To compute �c before the frequency
trace is also not an option numerically, as the trace over
frequency involves a for-loop and optimization performed
within it will reduce efficiency heavily.

The measure �c should be compared to ���c /��s�i
=��s�i�i�s, which is basically �c normalized to �s and �i, that
have been used by some authors �20,21�. The parameter � is
useful as a type of measure of correlation that tells how well
the focusing system has been set up to couple the modes of
the idler emission to the same as those conditioned by the
signal emission, or vice versa, depending on which of the
two possess the smaller single-coupling efficiency. We intend
to simply plot �c as this compares directly to �s and �i in
terms of achievable photon rates; in principle, �c could be
low while � is high.

III. NUMERICAL PREDICTIONS

All results in this section are for the case of a PPKTP
crystal with the poling period �=2� /K=9.6 �m operating
at perfect quasi-phase matching; the pump at 532 nm creates
emission at 810 nm and 1550 nm in the absolute forward
direction. The temperature T=111 °C, which affects the
k-vector magnitudes, is chosen such that kp=ks+ki+K, see
Ref. �22�.

The numerical calculations are implemented in Matlab us-
ing Eq. �1�–�3�. All refractive indices are determined by the
Sellmeier equations �27,28�, setting the wavelength and tem-
perature dependence of the k-vector magnitudes. The resolu-
tion N	 of the discrete angular spectral amplitude represen-
tation in the polar degree are a few hundred points and varies
between 1–100 �radians, with the higher resolution for
short crystals and strong focusing �wide-spread emission�
and the lower resolution for long crystals and weak focusing
�narrow emission�. The needed azimuthal angle resolution
N� is found to be �N	 /5, and the frequency resolution N�
varies between a few points for short crystals to a few hun-
dred points for long crystals where the spectrally induced
contribution to spatial multimode is larger. To spare the com-
puter from unnecessary workload we observe that the two-
photon density-matrix in Eq. �6� �scaling as N	

2 number of
points in size� is always pure and can be fully represented by
its amplitude vector alone �scaling as N	�, for all of the cal-
culations.
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A. Single coupling

As said earlier, according to our definition the single-
coupling efficiency depends on the emission bandwidth filter
that is being used. This is because of the fact that many of
the different frequencies created in the SPDC process will
not couple into a single-mode fiber. Looking at a single fre-
quency of the emission, the angular spectrum of the emission
will be described by a single sinc-function for each of the
plane waves of the pump, see Eq. �1�. As will be argued in
the next subsection, most of these sinc-functions will overlap
nearly perfectly at optimal pump-focusing such that the
emission is strongly spatially coherent and define almost a
single-mode that will couple well into a single-mode fiber. If
the pump-focusing is too weak it will create transverse mul-
timode emission, as the many sinc-functions are then distrib-
uted along the transverse position of the pump beam and do
not coincide. If the pump is instead focused too strongly the
effect is the same, except that the multimode now originates
from longitudinal position, also providing bad coupling. This
is the general picture using the window of a single emission
frequency.

If we look at a wide spectrum of the emission, each of the
different frequencies can be seen as composed by a set of
sinc-functions, each set in a different direction, and with ev-
ery sinc in a set coming from one plane wave in the decom-
position of the pump. For long crystals, when the width of
the sinc-functions narrows down, the different sets of sinc-
functions will no longer overlap. Within each set the sinc-
functions are spatially well overlapping, thus defining a co-
herent single-mode, but as the sets do not overlap the
emission will become spectrally multimode similar to above,
also resulting in spatial multimode. This again provides poor
coupling efficiencies. However, coupling into fibers auto-
matically does some spatial filtering as it selects only the
coherent part of the emission defining a single-mode, i.e.,
sinc-functions largely overlapping, and thereby it also does
some frequency filtering. Altogether, this motivates why we
have looked at only a single frequency of the emission for
the results of the numerical calculations of the single cou-
pling efficiencies shown in Figs. 5–7. We will refer to this
case by saying that we have a “narrow enough” filter band-
width, 
�narrow, which maintains a single-mode at optimal
focusing of the pump and the signal and idler fibers, i.e. the
bandwidth is narrow enough that the different sinc-sets, cor-
responding to different frequencies, within the bandwidth
overlap �are coherent�. Frequency filtering effects, as those
just described, are left to the next section.

Figure 5 shows the single-coupling efficiency of the idler
�i plotted against the crystal length L and the focusing of the
pump-beam, via its waist w0p. For each sample in the plot,
the idler fiber focusing has been optimized using Eq. �20� to
find the maximum coupling �i

opt. As seen, there is always the
same maximal coupling to be found for any length of the
crystal by changing the pump-beam waist radius accordingly.
The straight lines show that the focusing parameters of both
the pump �p and the idler fiber focusing �i

opt are constant,
which means that the geometry of the beam profile and the
crystal edges should stay fixed for different lengths of the
crystal for optimal focusing. The said graph would look

nearly the same for the signal emission, and, taking a differ-
ent view of the results, Fig. 6 clearly shows the importance
of choosing the right combination of focusing for the pump
and for the fibers. Interestingly, we observe that as long as
the fiber focusing is matched to the pump focusing, for any
given length of the crystal, then the coupling efficiency will
reach �45% irrespectively of the pump focusing. This fact
may very well explain the relatively high efficiency never-
theless achived in many fiber-based SPDC-setups for which
the experimentalist perhaps have not worried about changing
the pump’s focusing, but rather solely the fiber coupling.

Figure 7 shows both the signal and idler coupling in a
graph that is parametrized by the pump focusing. In each
case the optimal fiber focusing is found, and plotted along

FIG. 5. �Color online� The single coupling of the idler �i
opt,

plotted for a narrow enough filter bandwidth, 
�narrow, which shows
that about 95% of the emission can be coupled into a single-mode
fiber at optimal focusing. The solid line shows the pump-focusing
parameter �p, and the dashed-dotted lines show the focusing of the
idler’s fiber-matched mode �i

opt. For each data sample the idler fo-
cusing has been optimized for maximum coupling using Eq. �20�.

FIG. 6. �Color online� The single coupling of the signal �s,
plotted for a narrow enough filter bandwidth, 
�narrow, which
reaches a maximal 98% at optimal focusing, �p=1.7 and �s=2.3.
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the horizontal axis. In this asymmetrical configuration it
leads to a maximal �s

opt=98% when optimizing the focusing
for the 810 nm emission ��p=1.7 and �s

opt=2.3�, and �i
opt

=93% for the 1550 nm emission ��p=0.9 and �i
opt=2.4�. The

optimal focusing of the pump depends on the amount of
non-degeneracy for each of the wavelengths, e.g., for the
degenerate case �1064 nm� the optimal focusing is �p=1.4
and �s,i

opt=2.3. It should be noted that, in general, the found
optimal focusing parameters do not correspond to a match of
the beam-waist sizes �19�, but rather to an equal geometry.
However, a matching of the waists are within the same order
of magnitude comparable to using optimal focusing param-
eters.

B. Coincidence and pair coupling

For any focusing of the pump-beam, the fundamental
modes of the signal and idler emission will be highly corre-
lated, meaning that, e.g., a signal photon that enters its fiber
will have its idler partner entering the other fiber, provided
correct fiber focusing. At optimal focusing of the pump-
beam, this correlation is always high if the partner beam is
focused optimally, independent of the focusing of the beam
that we condition upon. In other words, at optimal focusing
of the pump-beam the conditional coincidence �i�s, i.e., the
probability of having the idler photon in the fiber given that
the signal photon is in the fiber, will be mainly set only by its
single coupling probability �i, which is always at a high
value at optimal focusing due to the emission being mostly
single-mode, see Fig. 8. In contrast, because of the multi-
mode character of the emission at other pump-beam focusing
settings than optimal, a high conditional coincidence can, in
that case, only be attained near optimal focusing for both the
signal and idler fibers. Each sample in the plot has been
generated using Eq. �25� with a narrow filter, 
�narrow, at the
signal side, as defined earlier, and without a filter at the idler
side, when finding the maximum �i�s

opt that corresponds to
optimal focusing of the idler, �i

opt. As can be deduced from

the graph, the conditional coincidence is always very high,
reaching 100% for most weaker focusing conditions. When
instead using an idler frequency filter that is matched to the
signal filter, then �i�s will be bounded above by 71%, assum-
ing Gaussian shaped filters on both sides. This limitation
follows from the fact that while the signal photon of a given
pair may very well be transmitted through its filter, the idler
may not. Using Eq. �4�, the maximum number can be easily
derived from the normalized overlap integral
�As����2�Ai����2d� /�As����2d�=1/�2, for which we note that
the result is independent of the bandwidth.

Additional qualitative results on the optimal joint focus-
ing can be found by turning to the pair coupling efficiency
�c. As opposed to �i�s, this measure relates to the total
amount of pairs that is generated, and not only to those con-
ditioned upon. As shown in Fig. 9, for optimal pump-beam
focusing, there is a maximal value of about 97% for �c at
�s=2.0 and �i=2.3. Note that, since the optimal pump-beam
focusing varies for each of the beams for a non-degenerate
wavelength case ��p=1.7 for signal and �p=0.9 for idler�, we
had to find a compromise using �p=1.3. This graph is again
plotted using a narrow filter at the signal and no filter at the
idler. Equation �26� tells us that for matched filters, �c will
also be limited to 71%, as long as �s=1 which is achievable
with narrow filters. In general, both the conditional coinci-
dence and the pair coupling decrease for wide bandwidths;
�i�s in such case being bounded above by 100% and �c
bounded above by the value of �s.

In terms of sources of heralded single photons, these re-
sults imply that almost perfect correlation can be achieved by
careful focusing and by having no limiting interference filter
on the triggered photon side; leaving such sources limited
entirely by the transmission imperfections of lenses and fil-
ters, and by detector efficiencies.

FIG. 7. �Color online� The single couplings, �i
opt and �s

opt,
reaches a maximum at �p=0.9 for the idler, and at �p=1.7 for the
signal, which corresponds to �i

opt=2.4 and �s
opt=2.3. The line repre-

senting the signal in this graph is essentially a plot of the ridge of
the surface in Fig. 6.

FIG. 8. �Color online� The conditional coincidence �i�s, plotted
versus the focusing of the pump �p and the focusing of the signal’s
fiber-matched mode �s. For each sample in the graph the focusing of
the idler ��i

opt=solid lines� is optimized to find the maximum �i�s
opt

�up to 100%�, using Eq. �25� with a narrow signal filter, 
�narrow,
and no idler filter.
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C. Photon-rate and bandwidth

In this subsection we will look at the achievable photon
fluxes in free-space and in single-mode fibers and its depen-
dence on the crystal length. As we will argue, and we have
shown numerically, this dependence will in turn depend on
the chosen frequency filter. Our arguments will follow a se-
ries of steps, where the later steps include the effects of
spatial and spectral filtering. The final results are found in
Fig. 10 and Fig. 11.

As a first step, imagine the pump beam to be a single
plane wave that is perfectly phase-matched for a single fre-

quency of the signal and the idler along the z-axis, called
here the forward direction. In this case, by looking at the
two-photon amplitude Eq. �1�, we see that the height of the
sinc-function, which describes the angular spectrum, is �L,
corresponding to an L2 dependence for the intensity �One
should imagine two-dimensional, ‘‘Mexican-hat-like’’, sinc-
functions�. The width of the sinc will shrink �1/L, such that
the flux will increase �L. This argument is still valid consid-
ering the spatial transverse multimode emission created by
such a plane wave pump, discussed earlier.

As a second step, consider a focused pump being com-
posed of many differently directed plane waves. In this case,
still looking at the same single frequency emitted, each such
plane wave will phase-match a little less strongly than the
one in the absolute forward direction. We will have a collec-
tion of sinc-functions being added together, each originating
from a different plane pump wave, and numerical calcula-
tions show that the combined total width, or envelope, of
these sinc-functions will decrease for longer crystals, thus
adding to the previous result a factor 1 /�L, with the flux now
becoming ��L.

The third step includes the observation that the energy of
the pump beam is concentrated to the plane wave in the
forward direction for longer crystals at optimal focusing.
Equation �1� shows that the intensity will be �w0p

2 , because,
at optimal focusing we have zR=L /�p, where zR is given by
Eq. �16�, and thus w0p

2 �L. The total flux is now �L�L.
As a last step we include filtering. In the previous steps

we looked at a single frequency of the emission, which
means that the bandwidth was narrow enough for the emis-
sion to be a single-mode �at optimal focusing�. For narrow
enough bandwidths we therefore get a flux

FIG. 9. �Color online� The pair coupling �c=�i�s�s at a pump
focusing of �p=1.3, which is trade-off between what is optimal for
the signal ��p=1.7� and the idler ��p=0.9� individually. At optimal
focusing, �s=2.0 and �i=2.3, the maximum �c is about 97%, using
a narrow signal filter, 
�narrow, and no idler filter.

FIG. 10. The fiber coupled bandwidth is �1/L for a wide
enough spectral filter 
�wide, see text, which can be said to be the
case for the solid line of 
�=25 nm for all crystal lengths defined
by the plot. In the limit of no filter at all, the graph corresponds to
the single-mode bandwidth 
�SM, see Eq. �28�. The graph shows
the result for the signal emission �810 nm� at optimal focusing con-
ditions, �p=1.7 and �s=2.4, and the legend shows what filter band-
width 
� was used for each line.

FIG. 11. The fiber photon flux is ��L for a wide enough filter

�wide, and �L�L for a narrow enough filter 
�narrow. The filter is
defined as narrow or wide in relation to the natural single-mode
bandwidth 
�SM. For the solid line of 
�=25 nm the case has been
reached where 
�=
�wide�
�SM. The graph shows the result for
the signal emission �810 nm� at optimal focusing conditions, �p

=1.7 and �s=2.4, and the legend shows what filter bandwidth 
�
was used for each line.
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P � L�L
�narrow, �27�

which is valid both in free-space and in fiber. As an effect of
the phase-matching conditions there will be a tight connec-
tion between the spectral and spatial modes, as we described
in Sec. III A for frequency filtering. In terms of fiber-
coupling this means that when the fiber spatially filters the
emission it will also effectively do frequency filtering. The
bandwidth of the signal emission �810 nm� coupled into
single-mode fibers �using no separate frequency filter� is
given by


�SM = B/L , �28�

where the value B=1.23�10−11 �m2� is found for PPKTP
when both the pump and fiber are focused optimally, see Fig.
10. We will refer to this bandwidth as the single-mode band-
width. It will also determine how narrow the bandwidth of a
filter �
�narrow�
�SM� need to be for any given length of
the crystal to be considered narrow. The photon flux in the
fiber will be

P � L�L
�SM = �L , �29�

for any filter 
��
�SM. In Fig. 11 we have plotted the flux
for different filters, 
�narrow�
�SM�
�wide. For filter
bandwidths that are “wide enough,” 
�wide, the free-space
emission will be multimode even at optimal pump focusing,
and the free-space photon flux becomes

P � �Lg�
�wide� , �30�

where g is some unknown and non-trivial function deter-
mined by the properties of the crystal material via the Sell-
meier equations.

These results clearly show that it is advantageous to have
long crystals as the photon-rate will always monotonically
increase even when coupling the emission into single-mode
fibers. As an effect, we can keep the pump power low, pro-
moting the use of a compact and cheap laser. This requires
that we change the focusing of both the pump �p and the
fibers �s,i to the optimal for some length L. Additionally,
longer crystals give narrower bandwidth, which is very ad-
vantageous in many applications of entangled photons. For
example, in time-multiplexed schemes it is crucial that the
photon packets keep their widths in the fibers and do not
broaden due to chromatic dispersion, and the broadening can
be limited by having a narrow bandwidth. Another way of
reducing the effect of broadening is by introducing negative
dispersion using an appropriatly designed fiber Bragg grat-
ing. In general these have to be custom manufactured for
broad bandwidths, but for telecom bandwidths, 30–80 GHz,
�in the C-band, between 1525–1562 nm� these are standard
off-the-shelf items, and corresponds to wavelength band-
widths of about 0.25–0.65 nm at 1550 nm. We can see from
Eq. �28� that 70–180 mm long crystals are needed, taking
into account the conversion factor between signal and idler
bandwidths �
�i= ��0i /�0p−1�2
�s�3.66�
�s�. Narrow
bandwidth can of course be obtained by the use of spectral
filters, however, our results show that it is better in terms of
photon-rates to use long crystals to achieve small bandwidths
rather than to strongly filter the emission of a short crystal.

�This is in contrast to what is claimed by Lee et al. in Ref.
�33�, for birefringent phase-matching and intersecting
cones.� Furthermore, with narrow bandwidth follows also
long coherence length of the photons which is highly desir-
able when working with interferometry as is commonly done
when using time-multiplexing analyzers to code and decode
qubits.

D. M2 and coupling

In this subsection we will present the numerical predic-
tions of the emission mode in terms of the beam quality
factor M2 for different focusing conditions. We will also
elaborate on the connection between the beam quality factor
and the coupling efficiency.

Figure 12 shows the beam quality factor Mi
2 plotted

against the focusing of the pump for a narrow enough fre-
quency bandwidth of the idler emission �
�narrow�
�SM�.
There is a clear optimal focusing, where the emission reaches
close to single-mode, Mi

2=1.4, at a focusing of �p=0.9.
These results are valid for any length of the crystal, compare
to Fig. 5. A low value of M2 means that the light is close to
a single-mode, and thus possible to couple well into a single-
mode fiber. For bandwidths larger than the single-mode
bandwidth 
�wide�
�SM, the light will become spatially
multimode and the coupling efficiency will decrease accord-
ingly.

Figure 13 shows the relation between the coupling effi-
ciency �i and the Mi

2, as the focusing �p of the pump is
varied. The correspondence is clear, and we can see that
different M2-values can provide the same coupling effi-
ciency. This is so because the coupling efficiency is only
determined by how much of the emission is in the fundamen-
tal mode. What determines the M2 is the distribution of the
light between the higher order modes, and this can differ
from one case to another, even with the same amount con-
tributing to the fundamental mode. In general, as we have
said, too weak focusing will provide spatial transverse mul-

FIG. 12. The beam quality factor M2 of the idler plotted against
the pump beam focusing �p. The smallest value, M2=1.4, is found
for �p=0.9
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timode, and too strong focusing will provide spatial longitu-
dinal multimode. It can be deduced from Fig. 13 that longi-
tudinal multimode, originating from too strong focusing,
creates emission with relatively higher contribution to the
fundamental mode for the same M2 value.

IV. EXPERIMENTAL RESULTS

To verify some of the numerical results we compared with
experiments. We have measured the beam quality factor, the
bandwidth in the fiber, and the coupling efficiencies for dif-
ferent focusing conditions of the pump. The experimental
setup is shown in Fig. 14. As a pump we use a frequency
doubled YAG laser emitting approximately 60 mW in the
TEM00 mode at 532 nm. Its Mp

2 value was measured to 1.06.
After a band-pass filter �BP532�, which removes any remain-
ing infrared light, we “clean up” the polarization using a
polarizing beam splitter �PBS�. The polarization is controlled
by a half wave plate �HWP� and a quarter wave plate �QWP�
in front of the crystal. The pump-beam is focused onto the
crystal using a achromatic doublet lens �fp=50 mm� which
introduces a minimal amount of aberrations not to destroy

the low M2 value. The QWP is set to undo any polarization
elliptisation effects caused by the lens, and fluorescence
caused by the same lens is removed by a Schott filter �KG5�.

The next component is the crystal. This is a periodically
poled, bulk 4.5 mm long KTP crystal, with a poling period of
�=9.6 �m, which will colinearly create a signal at 810 nm
and an idler at 1550 nm when heated in an oven to a tem-
perature T�100°. When the setup is used to create polariza-
tion entanglement, two crystals are present, one oriented for
V and one for H, and the polarization of the pump is set to
45°. By coupling the emission from both crystals into single-
mode fibers we cannot even in principle determine which
crystal the photons came from, except by their polarization
degree of freedom, and therefore the signal and idler will
interfere in the diagonal basis and get entangled in polariza-
tion. This principle was first demonstrated by Kwiat et al. in
Ref. �23�. Our first results was presented in Ref. �22�, and the
latest results, overcoming some problems of crystal disper-
sion and using optimal focusing, will be found in Ref. �34�.

After the crystal, we block the pump light by a 532 nm
band-stop filter, and the signal and idler emission is focused
by achromatic doublet lenses. The rather small F-number
�F= f /D, where f is the focal length and D is the beam di-
ameter� of the emitted light �F�40 for fp=50 mm and F
�9 for fp=12 mm� requires good quality lenses not to in-
crease the M2-factor. The lenses we use are all aberration
free down to F�6–11, and are also quite insensitive to an
offset in the alignment of the optical axis.

To determine the coupling efficiencies and bandwidths,
the complete setup of Fig. 14 was used. To separate the
810 nm and 1550 nm emission we used a dichroic mirror
made for a 45° angle of incidence. The first lens �fsi

=30 mm� is common to both signal and idler and its task is
to refocus the beams somewhere near the dichroic mirror.
The next two lenses �fs=60 mm and f i=40 mm� collimate
each beam, and they are focused into the fiber-tips �with the
mode field diameters being MFD810=5.5 �m and MFD1550
=10.4 �m� using aspherical lenses with f =11 mm. In front
of the fiber couplers we have first Schott filters �RG715� to
block any remaining pump light, and then interference filters
of 2 nm and 10 nm at the 810 nm and 1550 nm side respec-
tively �BP�. The detectors used were a Si-based APD �Perki-
nElmer SPCM-AQR-14� for 810 nm and a homemade
InxGa1−xAs-APD �Epitaxx� module for 1550 nm.

When determining the beam quality factor, M2, we used
only a single crystal oriented to create vertical �V� polarized
light, and the complete setup of Fig. 14 was also not used.
Instead, we focused the idler emission directly using a lens
of focal length f i=75 mm placed at a distance of 75 mm
from the V-crystal to collimate the beam. At the additional
distance of 470 mm we placed another lens with focal length
f i=150 mm that refocused the beam again, so that we could
take measurements of the beam profile around its waist.

A. M2 measurements, results

To obtain the results of Fig. 15 we first took images of the
refocused idler beam in the x-y plane using an InGaAs-
detector camera from Indigo Systems, model Alpha NIR.

FIG. 13. �Color online� The single coupling �i versus the M2 of
the idler, using the same data as in Fig. 12 and Fig. 7. The graph is
parametrized by the pump beam focusing and illustrate how a low
M2 is connected with a large �i.

FIG. 14. The experimental setup used to create polarization en-
tangled photon pairs, and to verify numerical results. PBS: polariz-
ing beam splitter; HWP: half wave plate; QWP: quarter wave plate;
SWP: short-pass filter; BP: band-pass filter; SMF: single-mode fi-
ber; �: detection efficiency.
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Several images were acquired for different positions along
the z-axis around the waist, and we then integrated the re-
sulting 2-dimensional surface over one axis to create an in-
tensity profile for the remaining axis. Because of the detector
noise we could not use the standard deviation method to find
the beam radius, defined by the 1/e2 level. Instead we
matched a Gaussian shaped function to the intensity profile
to find the width. This is accurate enough for mode-shapes
that are close to Gaussian, which is the case for low M2

values. To limit the impact of the noise we applied a function
that assigned greater weight to the center-values of the inten-
sity profile. The widths of the beam for each z-axis position
were then set together to find the beam profile of the emis-
sion, and its M2 factor was determined by fitting to the stan-
dard Gaussian-beam function, Eq. �17�. We now repeated the
procedure for different focal lengths, fp, of the pump lens:
12 mm, 30 mm, 50 mm, 75 mm, 100 mm, and 150 mm,
each being placed at a distance that set the focus in the center
of the crystal. The result, which is shown in Fig. 15, agrees
fairly well with the numerical predictions. The shortest focal
length lens, 12 mm, gave a somewhat higher M2, which can
be explained by the fact that this was the only singlet lens
used, probably adding some aberrations, while the others
where achromatic doublets. The lowest value, Mi

2=2.8, was
found with the 50 mm lens giving a 14 �m pump waist ra-
dius w0p inside the crystal, corresponding to �p=2 for the
4.5 mm long V-crystal �for later reference we observe that
�p=1.3 for L=3 mm agrees a little bit better with numerical
results�. Note that the M2 values are slightly higher here
compared to Fig. 12. This can be explained by the non-
perfect phase-matching in the experimental case, resulting
from either too low crystal temperature, uncertainty in the
true value of the poling period �possibly deviating somewhat
from its specification�, or both.

B. Coupling efficiencies, results

The experimental data for the coupling efficiencies were
obtained with the source producing polarization-

entanglement using two crystals. For this reason we expect
the values to be a bit lower than predicted as we needed to
focus the fiber-matched modes for both the H and the V
crystal at the same time. We also have this problem with the
pump beam, and we aimed at placing the focus at the inter-
secting faces of the two crystals for both the pump and the
fiber. As already mentioned, the temperature of the crystal
used in the experiment was set lower than required for abso-
lute perfect phase matching at 810 nm and 1550 nm. This
was because we observed higher photon fluxes at this setting.
Contradictory as it may seem, the explanation is that the
peak of the emission spectrum is not symmetrically centered
around the above wavelengths, but rather towards 810−�
and 1550+�, including a long tail representing the emission
at larger angles. As our filters are centered for 810 nm and
1550 nm, the peaks of the emission can be moved to line up
with these by changing the temperature, and thus the phase-
matching, which will give somewhat higher fluxes although
the coupling efficiencies will decrease according to our defi-
nitions. In addition to having a slightly wrong poling period
these effects degrades the efficiencies, which we could verify
numerically and which is supported by comparing Fig. 15
and Fig. 12. The obtained results for the single coupling
efficiencies were �s=32% and �i=79%, for the conditional
coincidence �i�s=34%, and for the pair coupling �c=11%,
when focusing according to �p=2.1, �s=3.2, and �i=2.5 �as
decided by available lenses, and assuming L=4.5 mm�. For
these numbers we have compensated for the 35% transmis-
sion of the 1550 nm filter, and the 85% transmission of the
810 nm filter. The singles photon rate in the signal fiber was
2.3 Mcps �106 counts/ sec� and in the idler fiber 2.4 Mcps.
The total generated rate of photons before fiber coupling was
estimated at 8.6 Mcps and the coincidence rate in the fibers
was 274 kcps, �see Ref. �34��.

C. Bandwidth, results

We have used a spectrograph �SpectraPro 500i, ARC� to
measure the bandwidth of the signal emission using the
single-mode fiber without a filter. The bandwidth was 4 nm
for the V-crystal and 6 nm for the H-crystal. Fig. 10 suggests
that the effective length of the crystal being poled must be
3 mm and 2 mm respectively. Also, from Fig. 11, for the
2 nm filter, we can deduce that the 2 mm crystal should give
roughly 55% of the photon rate of that of the 3 mm one.
Experimental agreement is good, as we saw the H-crystal
giving half the rate of the V-crystal �with no compensation
done by balancing the fiber coupling or rotating the pump
polarization�. Referring again to Fig. 15 using the effective
crystal length, the best pump beam focusing parameter is
modified to �p=1.3 for L=3 mm �V-crystal� which agrees
roughly with the value of optimal focusing, �p=0.9.

V. CONCLUDING DISCUSSION

In summary, precise focusing of the pump-beam and the
fiber-matched modes can significantly increase the coupling
and coincidence efficiencies of quasi-phase matched SPDC-
sources, which is important for applications needing highly

FIG. 15. �Color online� The experimentally observed beam
quality factor, Mi

2, for the idler beam at different sizes of the pump
beam waist radius w0p. The lowest value of the Mi

2 is 2.8 at a
14 �m pump waist.
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correlated pairs of single photons to propagate in fibers. We
have shown how the beam quality factor of the emission
changes with the focusing of the pump. At optimal focusing
the emission is mostly created in a spatial single-mode,
which couples well into single-mode fibers, and by maintain-
ing a fixed geometry of the beam profile in relation to differ-
ent lengths of the crystal this stays true for all lengths. We
have also shown how the photon flux depends on the crystal
length for different frequency filters, the conclusion being
that longer crystals produce more photons per unit time at a
smaller bandwidth.

In all of the calculations we have assumed a monochro-
matic �CW� pump laser. Looking for a possible extension to
pulsed operation we observe that the interaction time, T, in
Eq. �A18� for a CW laser is set by the coherence time of the
pump alone, and as T is infinite it transforms into a delta-
function of frequency in Eq. �A20�. Using pulsed light, the
integral 0

T exp�−i
�t� should be replaced by −�
� h�t�exp�

−i
�t�, where h�t� is the convolution, h�t�=hC�t��hL�t�, be-
tween the form of the temporal wave-packet of the pump,
hC�t�, and the form of the crystal along the z-axis, hL�t�. We
observe that when hC�t� is narrow, like for pulsed operation,
the transform of h�t� will instead become a sinc-function,
specifying an inexact energy-matching condition. Prelimi-
nary numerical calculations then show increased M2-values
and decreased coupling efficiencies. However, due to the
characteristics of the convolution, it seems we can retain the
good results of CW even for pulsed operation by using very
long crystals, as this will bring back the delta-function at the
limit of infinitely long crystals. For this discussion we have
not yet worried about any dispersion effects that might come
with long crystals and short pump pulses.
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APPENDIX A: THE TWO-PHOTON FREQUENCY AND
ANGULAR SPECTRAL AMPLITUDE

The evolution of the number state vector is given by

��
 = exp�− i
1

�
�

t0

t0+T

dtĤ�t�	��00


� �1 +
1

i�
�

t0

t0+T

dtĤ�t����00
 , �A1�

where ��00
 is the state at time t0, T is the time of interaction,

and Ĥ�t� is the Hamiltonian

Ĥ�t� = �
V

�2�Êp
�+�Ês

�−�Êi
�−�d3r + H.c. �A2�

There are three interacting fields in the crystal’s volume V
ignoring all higher-order terms �n 3� of the nonlinearity
�n�. All three fields have the same polarization �ZZZ�:

Ep
�+� = �

sp

Ap�sp�ei�kpsp·r−�pt+!p�, �A3a�

Ês
�−� =� d!s� d�sA��s��

ss

e−i�ksss·r−�st+!s�âs
†��s,ss� ,

�A3b�

Êi
�−� =� d!i� d�iA��i��

si

e−i�kisi·r−�it+!i�âi
†��i,si� .

�A3c�

The field of the pump is classical and monochromatic so that

we can replace Êp
�+� by Ep

�+�. The plus-sign denotes conjuga-
tion, i.e., annihilation �"� or creation �#� of the state. In all
the calculations we use the notation k=ks, where s is the unit
length vector of k. The angular amplitude spectrum Ap�sp�
takes into account the focusing of the pump. For signal and
idler, we sum over both frequency and angular modes, where
â�� ,s� is the field operator, and A��� is the frequency am-
plitude of a Gaussian shaped detector filter having the band-
width 
� �FWHM� and center wavelength �c �all wave-
lengths in vacuum�. Via the relation �=2�cn� /� its form is
given by

A��;�� = e−2 log�2��� − �c�2/
�2
. �A4�

Each signal and idler photon is created with a random phase,
!s and !i respectively, which we also need to sum over. The
only nonzero solution is completely correlated phases as will
be shown later. The phase of the pump !p is constant but
arbitrary.

For periodically poled materials, the nonlinearity �2� has
sharp boundaries, and later on in the calculations it will fa-
cilitate to make an expansion of �2� into its Fourier-series
components

�2� = 2f�r� = 2�
m=0

�

fme−imK·r, �A5�

and then do a sinusoidal approximation using the first term,

�2� = 2f1e−iK·r, �A6�

where K=2� /�ez, and � is the grating period. Appendix B
treats the case of a M +1 term series expansion.
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From Eq. �A1� the number state becomes

��
 = ��00
 +� � d�sd�i�
ss

�
si

S��s,�i,ss,si�âs
†âi

†��00


= ��00
 + G2��11
 , �A7�

where G2 is the unnormalized amplitude for the two-photon
number state,

G2 = ��11��
 =� � d�sd�i�
ss

�
si

S��s,�i,ss,si� , �A8�

such that for t0=0,

1

i�
�

0

T

dt Ĥ�t� = G2âs
†âi

† − H.c. �A9�

Our goal now is to arrive at an expression for the ampli-
tude S which will also enter in the state of frequency and
angular spectrum of the form

���,s
 =� � d�sd�i�
ss

�
si

S��s,�i,ss,si���s
��i
�ss
�si
 .

�A10�

We start by inserting Eq. �A6� into Eq. �A2� and then Eq.
�A2� into Eq. �A9� which gives

G2 =
1

i�
�

0

T

dt�
V

d3r 2f1e−iK·rEp
�+�Es

�−�Ei
�−�. �A11�

By making a substitution of the fields in Eq. �A3� into Eq.
�A11�, and via identification using Eq. �A8� we find that

S��s,�i,ss,si� = 2f1A��s�A��i��
sp

Ap�sp�

� �
−L/2

L/2

dz�
−�

�

dy�
−�

�

dx e−i
k·�xex+yey+zez�

�
1

i�
�

0

2��
0

2�

d!sd!i�
0

T

dt

�e−i���s+�i−�p�t+!s+!i−!p�, �A12�

where the volume integral has been expressed in a Cartesian
coordinate system �r=xex+yey +zez, see Fig. 1�,

�
V

d3r = �
−L/2

L/2

dz�
−�

�

dy�
−�

�

dx . �A13�

We have also introduced the phase mismatching vector


k = ksss + kisi − kpsp + K �A14a�

=
kxex + 
kyey + 
kzez. �A14b�

In a Cartesian coordinate system the normalized vectors s are
represented by

ss = psex + qsey + msez,

si = piex + qiey + miez,
�A15�

sp = ppex + qpey + mpez,

K = Kez,

where p, q, and m are the normalized components of s in
each of the three dimensions �30�.

Because of the rotational symmetry of the emitted modes,
it is suitable to use a spherical coordinate system �	 ,��, for
which p=sin 	 cos �, q=sin 	 sin �, and m=cos 	. The
phase-mismatch vector components then become


kx = ks sin 	s cos �s + ki sin 	i cos �i − kp sin 	p cos �p,


ky = ks sin 	s sin �s + ki sin 	i sin �i − kp sin 	p sin �p,


kz = ks cos 	s + ki cos 	i − kp cos 	p + K . �A16�

Note that the magnitude of the signal and idler k-vectors
implicitly depends on the polar angle 	 according to

ks�	s� = 1/�� cos 	s

ks
Z �2

+ � sin 	s

ks
Y �2

, �A17a�

ki�	i� = 1/�� cos 	i

ki
Z �2

+ � sin 	i

ki
Y �2

, �A17b�

where ks
Z, ks

Y, ki
Z, and ki

Y are the constant magnitude of the
k-vectors along the crystals Z- and Y-axis, respectively �kp
need to be constant and equal to kp

Z as we will soon show�.
Generally, there is negligible difference in refractive indices
between the crystal’s X and Y axes which cancels the depen-
dence on the azimuthal angle � in the equations above. We
therefore use the Y axis as the major axis being orthogonal to
Z.

Using spherical coordinates exclusively leads to

S��s,�i,	s,	i,�s,�i�

= 2f1A��s�A��i��
0

�/2

sin 	pd	p�
0

2�

d�pAp�	p,�p�

� �
−L/2

L/2

dz�
−�

�

dy�
−�

�

dx e−i�
kxx+
kyy+
kzz�

�
1

i�
�

0

2��
0

2�

d!sd!i�
0

T

dt e−i���s+�i−�p�t+!s+!i−!p�.

�A18�

The angular spectral amplitude Ap of the pump beam in Eq.
�A18� is Gaussian shaped for a laser emitting in a TEM00
single mode, and in spherical coordinates it becomes �30�

Ap�	p,�p� =
kpw0p

�2�
e−�kpw0p�2 sin2 	p/4, �A19�

where the beam waist radius w0p of the focused pump beam
has entered the calculations. The function is normalized to
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represent the same constant power available in the beam at
different focusing conditions.

Now we will solve the integrals over space, time, and
phase in Eq. �A18�. In doing so we note that there are three
spatial integrals of which two are the Fourier transforms of
unity �dx and dy� and one is the transform of a box-function
�dz�. The transforms turn into two �-functions and a sinc-
function respectively. The time-integral also turns into a
�-function of the three frequencies �s, �i, and �p. This is
because we have a monochromatic pump-beam with infinite
coherence length, which effectively leads to an infinite
interaction-time, T→�, even for short crystals. The two in-
tegrals over the random phases !s and !i will make the
amplitude S vanish completely if the phases are not fully
correlated with each other. Therefore, the only non-zero so-
lution is when the two phases add up to a constant. S can be
complex-valued, thus yielding the relation !s+!i=!p+C. If
we let C=0 for simplicity, we are led to

S��s,�i,	s,	i,�s,�i�

= 2f1A��s�A��i��
0

�/2

sin 	pd	p�
0

2�

d�pAp�	p,�p�

� ��
kx���
ky�Lsinc�L

2

kz	4�2

i�
���s + �i − �p� .

�A20�

We now have two integrals over 	p and �p with
�-functions over 
kx and 
ky which in turn depends on 	p
and �p according to Eq. �A16�. The integrals can be canceled
in a few steps by setting the equalities 
kx=0 and 
ky =0,
and to that end we need to assume that kp is constant for
small angles 	p, i.e., kp=kp

Z which we believe is a fair ap-
proximation for pump-light that is not extremely focused. By
extreme we mean beyond the validity of the paraxial ap-
proximation. The latter equality applied to Eq. �A16� gives

�p� = arcsin� ks sin 	s sin �s + ki sin 	i sin �i

kp
Z sin 	p�

� . �A21�

Equation �A21� together with the relation arcsin�x�
=arccos��1−x2� now gives the following expression for

kx=0 of Eq. �A16� �with �p primed�,

ks sin 	s cos �s + ki sin 	i cos �i

− kp
Z sin 	p��1 − � ks sin 	s sin �s + ki sin 	i sin �i

kp
Z sin 	p�

�2

= 0. �A22�

If we now take the square of Eq. �A22� and solve for 	p� we
get

	p� = arcsin �P2 + Q2 = arccos �1 − �P2 + Q2� , �A23�

where

P =
ks sin 	s sin �s + ki sin 	i sin �i

kp
Z , �A24a�

Q =
ks sin 	s cos �s + ki sin 	i cos �i

kp
Z . �A24b�

Furthermore,

P2 + Q2 =
ks

2 sin2 	s + ki
2 sin2 	i + 2kski sin 	s sin 	i cos�
��

�kp
Z�2 ,

�A25�

where we are allowed to introduce 
�=�s−�i. This is a
result of the assumption of rotational symmetry and will lead
to the final state being invariant to a common variation in the
azimuthal angles for signal, �s, and idler, �i. As shown here,
only the angle-difference is of importance. Using Eq. �A23�
in the expression for 
kz of Eq. �A16� we have


kz� = ks cos 	s + ki cos 	i − kp
Z�1 − �P2 + Q2� + K .

�A26�

At this stage the two integrals in Eq. �A20� have been
canceled and the amplitude can be simplified as

S��s,�i,	s,	i,
�� = 2f1A��s�A��i�Ap�	p�,�p��

� Lsinc�L

2

kz�	4�2

i�
���s + �i − �p� .

�A27�

One further simplification includes the observation that
the frequency �-function can be reduced to unity by intro-
ducing a common frequency � instead of �s and �i as de-
fined by �s=�0s+� ,�i=�0i−�, so that for two matched fil-
ters the form of the filter amplitude becomes squared. Using
also Eq. �A23� together with Eq. �A19� the expression for the
amplitude of the state of frequency and angular spectrum
finally becomes

S��,	s,	i,
�� =
4�22f1L

i�
A2���

kp
Zw0p

�2�
e−�kp

Zw0p�2�P2+Q2�/4

� sinc�L

2
�ks cos 	s + ki cos 	i

− kp
Z�1 − �P2 + Q2� + K�	 , �A28�

where P2+Q2 is defined by Eq. �A25� and the ks’s and ki’s by
Eq. �A17�.

We now have a final expression for the two-photon am-
plitude

G2 =� d�� � sin 	sd	s sin 	id	i� d
�S��,	s,	i,
�� ,

�A29�

which gives the two-photon state-vector in terms of fre-
quency and angular spectrum in the form of Eq. �A10�

���,	,
�
 = G2��
�	s
�	i
�
�
 . �A30�
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APPENDIX B: SERIES EXPANSION OF �„2…

The poling structure of periodically poled crystal has the
approximate form of a square-function along the z-axis. In
such a case, the M +1 term series expansion of �2� become

�2� = 2f�r� =
42

�
�
m=0

M
�− 1�m

2m + 1
e−i�2m+1�K·r, �B1�

where K=2� /�ez, and � is the grating period. In the fol-
lowing expression we have isolated the z-dependent part of
Eq. �A18�:

2f1�
−L/2

L/2

dz e−i
kzz. �B2�

Now, putting the series expansion of �2� into the calculations
of Appendix A, the former expression should be replaced by

42

�
�

−L/2

L/2

dz�
m=0

M
�− 1�m

2m + 1
e−i
kz

�m�z, �B3�

where


kz
�m� = 
kz� + 2mK . �B4�

By reversing the order of the sum and the integral in Eq.
�B3� we can identify a Fourier transform of box-function
with an extra phase. The result of the transform is a sinc,
providing thus

42

�
�
m=0

M
�− 1�m

2m + 1
sinc�L

2
�
kz� + 2mK�	 , �B5�

which is the final expression to replace the sinc-function in
the state amplitude, Eq. �A28�, having now M +1 terms to
approximate the square-shaped poling structure. For M =0
the expression reduces to the sinusoidal approximation with
f1=4/�.
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