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The complete gauge-invariant set of the one-loop QED corrections to the parity-nonconserving �PNC�
amplitude in cesium and francium is evaluated to all orders in �Z using a local form of the Dirac-Fock
potential. The calculations are performed in both length and velocity gauges for the absorbed photon and the
total binding QED correction is found to be −0.27�3�% for Cs and −0.28�5�% for Fr. Moreover, a high-
precision calculation of the electron-correlation and Breit-interaction effects on the 7s-8s PNC amplitude in
francium using a large-scale configuration-interaction Dirac-Fock method is performed. The obtained results
are employed to improve the theoretical predictions for the PNC transition amplitude in Cs and Fr. Using an
average value from two most accurate measurements of the vector transition polarizability, the weak charge of
133Cs is derived to amount to QW=−72.65�29�exp�36�theor. This value deviates by 1.1� from the prediction of
the standard model. The values of the 7s-8s PNC amplitude in 223Fr and 210Fr are obtained to be −15.49�15�
and −14.16�14�, respectively, in units of i�10−11�−QW� /N a.u.
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I. INTRODUCTION

Measurements of the parity-nonconservation �PNC� ef-
fects in atoms provide sensitive tests of the standard model
�SM� and impose constraints on physics beyond it �1,2�. The
6s-7s PNC amplitude in 133Cs �3� remains one of the most
effective tools for such investigations. The measurement of
this amplitude to a 0.3% accuracy �4,5� has stimulated a
reanalysis of the theoretical predictions given in Refs. �6–8�.
First, it was found �9–13� that the role of the Breit interaction
had been underestimated. Then, it was pointed out �14� that
the QED corrections may be comparable with the Breit cor-
rections. The numerical evaluation of the vacuum-
polarization �VP� correction �15� led to a 0.4% increase of
the 6s-7s PNC amplitude in 133Cs, which resulted in a 2.2�
deviation of the weak charge of 133Cs from the SM predic-
tion. This has triggered a great interest to calculations of the
complete one-loop QED corrections to the PNC amplitude.

While the VP contribution can easily be evaluated to a
high accuracy within the Uehling approximation, the calcu-
lation of the self-energy �SE� contribution is a much more
demanding problem �here and below we imply that the SE
term embraces all one-loop vertex diagrams as well�. In the
plane wave approximation, that corresponds to zeroth order
in �Z, it was derived in Refs. �16,17�. This correction, whose
relative value is equal to −� / �2��, is commonly included in
the definition of the nuclear weak charge. The �Z-dependent
part of the SE correction to the PNC matrix element between
s and p states was evaluated in Refs. �18,19�. These calcula-
tions, which are exact to first order in �Z and partially in-
clude higher-order binding effects, yield the binding SE
correction of −0.9�1�% �18,20� and −0.85% �19�. The corre-
sponding total binding QED correction was found to amount

to −0.5% and −0.43%, respectively. Despite this restored
agreement with SM, the status of the QED correction to PNC
in 133Cs could not be considered as resolved until a complete
�Z dependence calculation of the SE correction to the 6s
-7s transition amplitude is accomplished. This is due to the
following reasons. First, in the case of cesium �Z=55� the
parameter �Z�0.4 is not small and, therefore, the higher-
order corrections, which are beyond the A��Z�ln��C/Rnuc�
term �19�, can be significant. Second, because the calcula-
tions �18–20� are performed for the PNC matrix element
only, they do not include other SE diagrams which contribute
to the 6s-7s transition amplitude. For instance, these calcu-
lations do not account for diagrams in which the virtual pho-
ton embraces both the weak interaction and the absorbed
photon. Third, strictly speaking, the PNC matrix element be-
tween the states of different energies is not gauge invariant.
Despite the gauge-dependent part is suppressed by the small
energy difference �19�, estimates of the uncertainty in the
definition of the PNC diagrams may fail due to an unphysical
origin of the gauge-dependent terms.

The first step towards a complete �Z-dependence calcula-
tion of the SE correction was done in Ref. �21�, where the SE
correction to the 2s-2p1/2 PNC matrix element in H-like ions
was evaluated. This matrix element was chosen to deal with
the simplified gauge-invariant amplitude. The results of that
work agree with those of Refs. �18–20�. However, as was
stressed there, no claims can be made about the applicability
of these results to the 6s-7s PNC transition in neutral cesium.

Finally, the whole gauge-invariant set of the one-loop
QED corrections to the 6s-7s PNC transition amplitude in
cesium was evaluated in Ref. �22�. This calculation showed
that the contributions of all SE diagrams are of the same
order of magnitude �in both length and velocity gauges� and
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the final result arises through a delicate cancellation of indi-
vidual terms, none of which can be neglected. The binding
SE correction was obtained to amount to −0.67�3�%,
whereas the total binding QED correction is −0.27�3�%.

Recently, the one-loop radiative corrections to the 6s-7s
PNC amplitude in cesium were reevaluated by a semiempir-
ical method �23�. In addition to the radiative correction to the
weak matrix element, this method accounts for the related
corrections to the energy levels and to the electric dipole
�E1� amplitude. Despite that it is intended to incorporate the
radiative and correlation effects, it is unclear how the results
obtained by this method are related to those derived in the
framework of the rigorous QED approach. The total binding
QED correction obtained in Ref. �23� amounts to −0.32�3�%.

In the present paper we describe in detail the complete
�Z-dependence evaluation of the one-loop QED corrections
to the PNC transition amplitude in alkali-metal atoms and
present the corresponding numerical results for the 6s-7s
PNC amplitude in cesium �22� and for the 7s-8s PNC am-
plitude in francium, which will be a subject of the PNC
experiment, as proposed in Ref. �24�. Moreover, we perform
a high-precision atomic structure calculation of the PNC
transition amplitude in francium using a large-scale
configuration-interaction Dirac-Fock �CI-DF� method and
compare the results with those from Refs. �25,26�. The ob-
tained contributions are combined with other terms in order
to improve the theoretical predictions for the PNC transition
amplitudes in Cs and Fr.

The relativistic units ��=c=1� and the Heaviside charge
unit ��=e2 / �4�� ,e�0� are used throughout the paper.

II. QED CORRECTIONS

A. Formulation

A systematic derivation of the QED corrections in a fully
relativistic approach requires the use of perturbation theory
starting with a one-electron approximation in an effective
local potential V�r�

�− i� · � + �m + V�x��	n�x� = 
n	n�x� . �1�

In neutral atoms, it is assumed that V�r� includes the inter-
action with the Coulomb field of the nucleus as well as partly
the electron-electron interaction. The interaction of the elec-
trons with the quantized electromagnetic field and the corre-
lation effects are accounted for by the perturbation theory. In
this way we obtain quantum electrodynamics in the Furry
picture.

To derive formal expressions for the transition amplitude
we employ the method developed in Ref. �27� and described
in detail in Ref. �28�. While this method is valid for arbitrary
many-electron atom and for arbitrary �single, degenerate, and
quasidegenerate� initial and final states, its formulation is
especially simple for a one-electron atom �or an atom with
one electron over the closed shells� and for the case of single
initial and final states.

We consider the transition of the atom from the initial
state a �which is 6s for Cs and 7s for Fr� to the final state b
�which is 7s for Cs and 8s for Fr� accompanied by the ab-

sorption of a photon with momentum k, energy k0= �k�, and
polarization ��= �0,��. The transition amplitude is given by
the formula �27,28�


 = Z3
−1/2 1

2�i
�

�b

dE��
�a

dE gb;�,a�E�,E�

� � 1

2�i
�

�b

dE gbb�E�	−1/2� 1

2�i
�

�a

dE gaa�E�	−1/2

.

�2�

In the case under consideration �one electron over the closed
shells�, the Green functions gb;�,a�E� ,E�, gaa�E�, and gbb�E�
are defined by

gb;�,a�E�,E���E� − E − ��

=
 dx dx�	a
†�x��G��E�,x�;�;E,x��0	a�x� , �3�

gaa�E���E� − E� =
2�

i

 dx dx�	a

†�x��G�E�,x�;E,x��0	a�x� ,

�4�

gbb�E���E� − E� =
2�

i

 dx dx�	b

†�x��G�E�,x�;E,x��0	b�x� .

�5�

Here

G��E�,x�;�;E,x� =
2�

i

1

�2��3

−�

�

dx0dx�0
 d4y

�exp�iE�x�0 − iEx0 − i�y0�

� A��y��0�T	�x��j��y�	̄�x��0� �6�

is the Fourier transform of the Green function describing the
process, 	�x� is the electron-positron field operator in the

Heisenberg representation, 	̄=	†�0, �0 is the Dirac matrix,

A��x� =
�� exp�ik · x�

2k0�2��3

�7�

is the wave function of the absorbed photon, and

G�E�,x�;E,x� =
1

�2��2

−�

�

dx0dx�0 exp�iE�x�0 − iEx0�

��0�T	�x��	̄�x��0� �8�

is the Fourier transform of the Green function describing the
atom. The contours �a and �b surround the poles correspond-
ing to the initial and final levels and keep outside all other
singularities of the Green functions. It is assumed that they
are oriented anticlockwise. Z3 is the renormalization constant
for the photon wave function and the factors
��1/2�i���a

dE gaa�E��−1/2 and ��1/2�i���b
dE gbb�E��−1/2

serve as the normalization factors for the electron wave func-
tions of the states a and b, respectively. The Green functions
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G and G� are constructed by perturbation theory after the
transition to the interaction representation and using Wick’s
theorem. The Feynman rules for G and G� are given in Ref.
�28�.

To the lowest order, the PNC transition amplitude is de-
scribed by diagrams presented in Fig 1. Denoting the contri-
bution to gb;�,a�E� ,E� from these diagrams by gb;�,a

�0� �E� ,E�
and taking into account that gaa

�0�=1/ �E−
a� and gbb
�0�=1/ �E

−
b� and, therefore, the normalization factors in formula �2�
are equal to 1, we obtain


�0� =
1

2�i
�

�b

dE��
�a

dE gb;�,a
�0� �E�,E� . �9�

According to the Feynman rules �28� and definition �3�, we
have

gb;�,a
�0� �E�,E� =

i

2�

1

E� − 
b
�

n

�b�e��A��n��n�HW�a�
E − 
n

1

E − 
a

+
i

2�

1

E� − 
b
�

n

�b�Hw�n��n�e��A��a�
E� − 
n

1

E − 
a
.

�10�

Here

HW = − �GF/
8�QW�N�r��5 �11�

is the nuclear spin-independent weak-interaction Hamil-
tonian �1�, GF is the Fermi constant, �5 and ����0��

= �1,�� are the Dirac matrices, and �N is the nuclear weak-
charge density normalized to unity. Substituting expression
�10� into Eq. �9� and taking into account that, for a non-
Coulomb potential V�r�, there are no states of different parity
but of the same energy, we obtain


�0� = − �
n
� �b�e��A��n��n�HW�a�


a − 
n
+

�b�Hw�n��n�e��A��a�

b − 
n

	 .

�12�

We note here that the case of degenerate levels, that takes
place for the pure Coulomb potential, can be considered em-
ploying the related formulas from Ref. �28�.

The one-loop SE corrections to the PNC transition ampli-
tude are defined by diagrams presented in Fig. 2. To derive
the formal expressions for these corrections, one has to ex-
pand formula �2� to the next-to-leading order:


�1� =
1

2�i���b

dE��
�a

dE gb;�,a
�1� �E�,E�

−
1

2
�

�b

dE��
�a

dE gb;�,a
�0� �E�,E�� 1

2�i
�

�b

dE gbb
�1��E�

+
1

2�i
�

�a

dE gaa
�1��E�	� . �13�

Let us consider the derivation of the contributions from the
diagrams “a” and “c.” According to the Feynman rules �28�,
we have

gb;�,a
�1,a� �E�,E� =

i

2�

1

E� − 
b

� �
n1n2

�b���E���n1��n1�e��A��n2��n2�HW�a�
�E� − 
n1

��E − 
n2
�

�
1

E − 
a
, �14�

gb;�,a
�1,c� �E�,E� =

i

2�

1

E� − 
b

� �
n1n2

�b���E���n1��n1�HW�n2��n2�e��A��a�
�E� − 
n1

��E� − 
n2
�

�
1

E − 
a
. �15�

Here the SE operator is defined as

�c���E��d� �
i

2�



−�

�

d��
n

�cn�I����nd�
E − � − u
n

, �16�

where I����e2����D�����, D����� is the photon propaga-
tor as defined in Ref. �28�, and u=1− i0 ensures the correct

FIG. 1. Feynman diagrams for the lowest-order PNC transition
amplitude. The wavy line terminated with a triangle indicates the
absorbed photon. The dashed line terminated with a cross indicates
the electron-nucleus weak interaction.

FIG. 2. Feynman diagrams for
the SE corrections to the PNC
transition amplitude. The wavy
line terminated with a triangle in-
dicates the absorbed photon. The
dashed line terminated with a
cross indicates the electron-
nucleus weak interaction.
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position of poles of the electron propagators with respect to
the integration contour. Taking into account that, for a non-
Coulomb potential, the energy 
n2

in Eq. �14� is never equal
to 
a and the energy 
n2

in Eq. �15� is never equal to 
b, we
obtain

�
�b

dE��
�a

dE gb;�,a
�1,a� �E�,E�

= − 2�i� �
n1,n2

n1�b �b���
b��n1��n1�e��A��n2��n2�HW�a�
�
b − 
n1

��
a − 
n2
�

+ �
n

�b����
b��b��b�e��A��n��n�HW�a�

a − 
n

	 , �17�
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�b
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= − 2�i� �
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n

− �
n

�b���
b��b��b�HW�n��n�e��A��a�
�
b − 
n�2 	 , �18�

where ���E�=d��E� /dE. The contributions containing
�b����
b��b� should be considered together with the second
term in Eq. �13�. Taking into account that

1

2�i
�

�b

dE gbb
�1��E� =

1

2�i
�

�b

dE
�b���E��b�
�E − 
b�2 = �b����
b��b� ,

�19�

we obtain

−
1

2���b

dE��
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�0� �E�,E�	� 1
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+
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b − 
n
	�b����
b��b� . �20�

Adding this contribution to the terms �17� and �18�, we ob-
tain


�1,a� = − � �
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Similar calculations yield
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Taking into account the corresponding diagrams with the
mass counterterm results in the replacement ��E�→�R�E�
=��E�−�0�m.

Since the wave length of the absorbed photon is much
larger than the atomic size, one can use the dipole approxi-
mation. It means the replacement exp�ik ·x�→1 in the pho-
ton wave function and, therefore, e��A�→ �e��� ·�� /

2k0�2��3 in formulas �12� and �21�–�32�. Within this ap-
proximation, the corresponding formulas in the length gauge
are obtained by replacing � with r in all vertices correspond-
ing to the photon absorption and by multiplying the ampli-
tude �12� with the factor i�Eb−Ea�, where Ea=
a

+ �a��R�
a��a� and Eb=
b+ �b��R�
b��b�, and the amplitudes
�21�–�32� with the factor i�
b−
a�. This prescription can be
derived from Eqs. �12� and �21�–�32� employing the commu-
tation relation �= i�hD,r�, where hD=−i� ·�+�m+V�r� is
the Dirac Hamiltonian. Alternatively, one can get the pre-
scription, using Eq. �205� of Ref. �28� and the equal-time
commutation relations for the field operators in the Heisen-
berg representation.

The theoretical and experimental results for the PNC am-
plitude in alkali-metal atoms are generally presented in terms
of the EPNC amplitude which is defined as the matrix element
of the z component of the atomic electric-dipole moment
between the initial �a� and final �b� s states with the angular
momentum projections ma=mb= 1

2 . It is related to the 
 am-
plitude by the equation

EPNC = i
�e��A� → e�z�/�Eb − Ea� = 
�e��A� → − dz� ,

�33�

where the s states a and b have the angular momentum pro-
jections ma=mb= 1

2 , Ea and Eb are their total energies, and
dz=ez is the z component of the dipole moment operator �e
�0�. To the zeroth order, one easily finds
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The one-loop SE correction is given by the sum of the fol-
lowing terms:
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2�
n

�b�dz�n��n�HW�a��a��R� �
a��a�
�
a − 
n�

− �
n

�b�dz�n��n�HW�a��a��R�
a��a�
�
a − 
n�2 , �38�

�EPNC
e = �

n1,n2

�b�dz�n1��n1��R�
a��n2��n2�HW�a�
�
a − 
n1

��
a − 
n2
�

, �39�

�EPNC
f = �

n1,n2

�b�HW�n1��n1��R�
b��n2��n2�dz�a�
�
b − 
n1

��
b − 
n2
�

, �40�

�EPNC
g =

i

2�



−�

�

d� �
n,n1,n2

�n1�dz�n2��n�HW�a�
�
a − 
n�

�
�bn2�I����n1n�

�
b − � − u
n1
��
a − � − u
n2

�
, �41�

�EPNC
h =

i

2�



−�

�

d� �
n,n1,n2

�b�HW�n��n1�dz�n2�
�
b − 
n�

�
�nn2�I����n1a�

�
b − � − u
n1
��
a − � − u
n2

�
, �42�
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�EPNC
i =

i

2�



−�

�

d� �
n,n1,n2

�n1�HW�n2��n�dz�a�
�
b − 
n�

�
�bn2�I����n1n�

�
b − � − u
n1
��
b − � − u
n2

�
, �43�

�EPNC
j =

i

2�



−�

�

d� �
n,n1,n2

�b�dz�n��n1�HW�n2�
�
a − 
n�

�
�nn2�I����n1a�

�
a − � − u
n1
��
a − � − u
n2

�
, �44�

�EPNC
k =

i

2�



−�

�

d� �
n1,n2,n3

�bn2�I����n1a�
�
b − � − u
n1

�

�
�n1�dz�n3��n3�HW�n2�

�
a − � − u
n3
��
a − � − u
n2

�
, �45�

�EPNC
l =

i

2�



−�

�

d� �
n1,n2,n3

�bn2�I����n1a�
�
b − � − u
n1

�

�
�n1�HW�n3��n3�dz�n2�

�
b − � − u
n3
��
a − � − u
n2

�
. �46�

According to Eq. �33�, the corresponding expressions
in the velocity gauge are obtained by the replacement
dz→−ie�z / �Eb−Ea�, where the energies Ea and Eb include
the SE corrections. In addition to the replacement dz
→−ie�z / �
b−
a� in Eqs. �34�–�46�, it yields the contribution

�EPNC
add = −

�b��R�
b��b� − �a��R�
a��a�

b − 
a

EPNC, �47�

which results from the expansion

1

Eb − Ea
�

1


b − 
a
�1 −

�b��R�
b��b� − �a��R�
a��a�
�
b − 
a� 	 .

�48�

It can be shown that the sum of contributions �43�–�46� is the
same in the length and the velocity gauge. Because of the
gauge invariance of the total SE correction, the same is valid
for the sum of the other terms, Eqs. �35�–�42� and �47�.

Formulas �35�–�47� contain ultraviolet and infrared diver-
gences. To cancel the ultraviolet divergences, we expand
contributions �35�–�40� into zero-, one-, and many-potential
terms and contributions �41�–�44� into zero- and many-
potential terms. The ultraviolet divergencies are present only
in the zero- and one-potential terms. They are removed ana-
lytically by calculating these terms in the momentum space
�for details, we refer to Refs. �29–31��. For the standard zero-
and one-potential terms we employ the equations given in
Ref. �30�, whereas the corresponding expression for the zero-
potential PNC term is presented in the Appendix. The many-
potential terms are evaluated in configuration space employ-
ing the Wick rotation in the complex � plane. The infrared

divergences, which occur in contributions �35�–�38�, �45�,
and �46�, are regularized by introducing a nonzero photon
mass and cancelled analytically.

The expressions for the VP corrections, which do not con-
tain any insertions with the external photon line or the weak
interaction attached to the electron loop, are obtained from
Eqs. �35�–�40� by the replacement of the SE operator with
the VP potential. The other VP corrections will not be con-
sidered here, since their contribution is negligible. To a high
accuracy, the VP potential is determined by the Uehling
term, which corresponds to the first nonzero term in the ex-
pansion of the vacuum loop in powers of the Coulomb po-
tential. The renormalized expression for the Uehling poten-
tial is

UUehl�r� = − �Z
2�

3�



0

�

dr�4�r���r��

1

�

dt�1 +
1

2t2�
t2 − 1

t2

�
�exp�− 2m�r − r��t� − exp�− 2m�r + r��t��

4mrt
, �49�

where ��r� is the nuclear charge density, normalized to unity.
To account for the screening effect on the Uehling potential,
one should replace Z��r� by Z��r�− �Z−1��core�r�, where
�core�r� is the charge density of the core electrons, normal-
ized to unity. The higher-order one-loop VP potential, the
so-called Wichmann-Kroll term, can be evaluated for the
point-charge nucleus using approximate formulas derived in
Ref. �32�.

B. Local Dirac-Fock potential

Since the energy intervals between the levels 6s, 6p1/2, 7s,
and 7p1/2 in Cs and the levels 7s, 7p1/2, 8s, and 8p1/2 in Fr
are very small, to get reliable results for the transition am-
plitudes under consideration, one needs to use a local poten-
tial V�r� that reproduces energies and wave functions of
these states on the Dirac-Fock accuracy level or better. We
construct such a potential by inverting the radial Dirac equa-
tion with the radial wave function obtained by solving the
DF equation with the code of Ref. �33�.

The radial DF equations have the form �33�

− � d

dr
−

�a

r
�Fa + �VC +

Ya�r�
r

�Ga + mGa = 
aGa −
Xa

F

r
,

� d

dr
+

�a

r
�Ga + �VC +

Ya�r�
r

�Fa − mFa = 
aFa −
Xa

G

r
.

�50�

Here Ga /r=ga and Fa /r= fa are the large and small radial
components of the Dirac wave function of the a shell elec-
tron, 
a is the one-electron energy, �a= �−1� j+l+1/2�j+ 1

2
� is the

relativistic quantum number, VC is the Coulomb potential
induced by the nucleus, and Ya�r� /r is the screening poten-
tial. The functions Xa

G and Xa
F consist of two parts. The first

part is the result of the action of the exchange-interaction
operator on the radial wave functions Ga and Fa. The second
part is the contribution from the nondiagonal Lagrangian

SHABAEV et al. PHYSICAL REVIEW A 72, 062105 �2005�

062105-6



multipliers, which provide the orthogonality of the radial
wave functions corresponding to different values of the prin-
cipal quantum number na but the same �a. The functions Xa

G

and Xa
F are calculated self-consistently from the DF equa-

tions employng the radial wave functions obtained at the
previous iteration step.

Let us consider the Dirac equation for the a shell electron
with a local potential Va�r�:

− � d

dr
−

�a

r
�Fa + Va�r�Ga + mGa = 
aGa,

� d

dr
+

�a

r
�Ga + Va�r�Fa − mFa = 
aFa. �51�

In contrast to the nonrelativistic Schrödinger equation, gen-
erally speaking, it is impossible to choose such a local po-
tential Va�r� which would exactly reproduce the one-electron
energy 
a and the radial components Ga and Fa for a given
shell. This is due to the fact that the potential Va�r� enters
both radial equations. However, one can derive an approxi-
mate potential by inverting the radial Dirac equation for the
large component:

Va
0�r� = 
a − m +

1

Ga
� d

dr
−

�a

r
�Fa = VC +

Ya�r�
r

+
1

Gar
Xa

F.

�52�

This leads to a local potential Va
0�r� which has some singu-

larities, because the function Ga has nodes in the core region
for na� la+1.

Let us consider another method of constructing the poten-
tial Va�r�. Multiplying the first and second radial Dirac equa-
tions with Ga and Fa, respectively, and summing them, we
obtain

− Ga� d

dr
−

�a

r
�Fa + Fa� d

dr
+

�a

r
�Ga + Va�r��a + mGa

2 − mFa
2

= 
a�a, �53�

where �a=Ga
2+Fa

2. Inverting this equation with respect to
Va�r�, we have

Va
�1��r� = 
a +

Ga

�a
� d

dr
−

�a

r
�Fa −

Fa

�a
� d

dr
+

�a

r
�Ga

+ m
Fa

2

�a
− m

Ga
2

�a

= VC +
Ya�r�

r
+

1

�ar
�GaXa

F + FaXa
G� . �54�

Despite that the potential Va
�1��r� has no singularities in the

core region, it can oscillate and singularities can occur in the
nonrelativistic limit.

To smooth the potential Va
�1��r� in the core region, we use

the following procedure. Instead of the density �a, we con-
sider an average density �̄a defined by

�̄na�a
= �

n�na

wn�a
�n�a

, �
n�na

wn�a
= 1, �55�

where wn�a
are positive weights. Thus, the density �na�a

gets
some admixture of the densities of the core shells corre-
sponding to the same value of �a but different values of the
principal quantum number n�na. Since the maximal values
of the core shell densities are located nearby the nodes of the
function Ga, the density �̄na�a

can be made to be smooth and
nodeless by a proper choice of the weights wn�a

. Outside the
core region the densities �na�a

and �̄na�a
almost coincide with

each other. This is due to a fast decrease of the core wave
functions outside the core. Assuming the nonlocal part of the
DF potential can be replaced by a local potential which is the
same for all shells with the same �a, one can derive

Va
�2��r� = VC +

Ya�r�
r

+
1

�̄na�a
r
�

n�na

wn�a
�Gn�a

Xn�a

F + Fna�a
Xn�a

G � .

�56�

The potential Va
�2��r� derived for the shell a can also be used

for all shells with the same and different values of �a. This
potential with weights wn�a

� �m−
na�a
� / �m−
n�a

� was used
in our calculations.

In Table I, we compare the energies of the cesium atom
obtained with the local potential V�r�, that was derived using
mainly the DF wave function of the 6s state, with the DF
energies and with the experimental ones. The corresponding
comparision for the francium atom, where the local potential
was derived using mainly the DF wave function of the 7s
state, is presented in Table II.

TABLE I. The binding energies of low-lying states in Cs, in a.u.
The experimental energies are taken from Ref. �34�

State Local potential DF Expt.

6s1/2 −0.13079 −0.12824 −0.14310

6p1/2 −0.08696 −0.08582 −0.09217

6p3/2 −0.08479 −0.08397 −0.08965

7s1/2 −0.05621 −0.05537 −0.05865

7p1/2 −0.04251 −0.04209 −0.04393

7p3/2 −0.04175 −0.04143 −0.04310

TABLE II. The binding energies of low-lying states in Fr, in
a.u.

State Local potential DF Expt. �35–41�

7s1/2 −0.13640 −0.13271 −0.14967

7p1/2 −0.08857 −0.08629 −0.09391

7p3/2 −0.08199 −0.08071 −0.08623

8s1/2 −0.05740 −0.05626 −0.05976

8p1/2 −0.04297 −0.04222 −0.04436

8p3/2 −0.04071 −0.04023 −0.04188
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C. Numerical evaluation of the QED corrections

Numerical evaluation of expressions �34�–�47� was per-
formed by employing the dual-kinetic-balance finite basis set
method �42� with basis functions construced from B splines.
The calculation of the zeroth-order contribution �34�, with
V�r� constructed as indicated above, yields EPNC=−1.002 for
133Cs and EPNC=−10.19 for 223Fr, in units of i�10−11

�−QW� /N a.u. These values should be compared with the
corresponding DF values, −0.741 for 133Cs and −13.72 for
223Fr, and with the values that include the correlation effects,
−0.904 for 133Cs and −15.72 for 223Fr �see the next section�.
The individual SE corrections are presented in Table III.
Since there is a significant cancellation between terms con-
taining the infrared singularities, the terms corresponding to
n=a in �R� �
a� and n=b in �R� �
b� are subtracted from con-
tributions �35�–�38� and added to contributions �45� and �46�.
The total SE correction �EPNC

tot , presented in Table III, con-
tains also the free term, −� / �2��EPNC, mentioned above.
Since this term is usually included into the weak charge QW,
one has to consider the binding SE correction defined as
�EPNC

bind =�EPNC
tot +� / �2��EPNC. According to our calculations,

the binding SE correction amounts to −0.67% for cesium and
−1.29% for francium. To estimate the uncertainty of these
values due to correlation effects, we have also performed the
calculations with V�r� constructed employing the DF wave
function of the 7s state for cesium and the 8s state for fran-
cium. While this leads to a 2% decrease of the transition
amplitude, the relative shift of the SE correction is, however,
five times smaller. Since the correlation effects contribute to
the transition amplitude on the 20% level, we assume a 4%
uncertainty for the total SE correction. Therefore, our value
for the binding SE correction is −0.67�3�% for cesium and
−1.29�5�% for francium. In the case of cesium, our value
differs from the previous evaluations of the SE effect, which
are −0.9�1�% �20� and −0.85% �19�.

We have also calculated the VP correction. The individual
contributions for the Uehling part, calculated including the
screening correction as described after Eq. �49�, are pre-
sented in Table IV. The total Uehling correction is almost
independent of the screening effect and amounts to 0.410%
for cesium and 1.037% for francium. These results agree
well with the previous calculations of this correction. The
individual contributions for the Wichmann-Kroll �WK� cor-
rection, obtained employing approximate formulas for the
WK potential from Ref. �32�, are given in Table V. The total
WK correction is equal to −0.004% �cf. �13�� for cesium and
−0.028% for francium. This leads to the 0.406% result for
the total VP correction for cesium and to the 1.01% result for
francium. Therefore, the total binding QED correction
amounts to −0.27�3�% for cesium and −0.28�5�% for fran-
cium.

III. ELECTRON CORRELATION EFFECT ON THE PNC
TRANSITION AMPLITUDE

To calculate the correlation effects on the PNC amplitude
we start with the relativistic Hamiltonian in the no-pair ap-
proximation:

TABLE III. The SE corrections to the 6s-7s PNC amplitude in
Cs and to the 7s-8s PNC amplitude in Fr, in %. The results are
presented in both the length �L� and the velocity �V� gauge.

Contribution

Cs Fr

L gauge V gauge L gauge V gauge

�EPNC
a −0.09 −0.11 0.18 0.15

�EPNC
b 1.31 1.11 1.84 1.35

�EPNC
c 0.34 0.40 −0.36 −0.23

�EPNC
d −0.38 −0.32 −0.64 −0.51

�EPNC
e −1.29 −1.53 −1.21 −1.46

�EPNC
f 3.89 3.25 3.61 2.94

�EPNC
g 1.33 1.57 1.32 1.58

�EPNC
h −4.04 −3.40 −4.03 −3.36

�EPNC
i −4.61 −3.97 −4.97 −4.30

�EPNC
j 1.49 1.73 1.58 1.83

�EPNC
k −0.79 −1.03 −0.78 −1.04

�EPNC
l 2.05 1.41 2.05 1.38

�EPNC
add 0.00 0.10 0.00 0.26

�EPNC
tot −0.79 −0.79 −1.40 −1.40

TABLE IV. The Uehling corrections to the 6s-7s PNC ampli-
tude in Cs and to the 7s-8s PNC amplitude in Fr, in %. The results
are presented in both the length �L� and the velocity �V� gauge.

Contribution

Cs Fr

L gauge V gauge L gauge V gauge

�EPNC
a −0.026 −0.024 −0.107 −0.100

�EPNC
b −0.050 −0.024 −0.208 −0.098

�EPNC
c 0.354 0.347 0.930 0.902

�EPNC
d −0.054 −0.061 −0.077 −0.107

�EPNC
e −0.070 −0.069 −0.188 −0.188

�EPNC
f 0.255 0.256 0.687 0.687

�EPNC
add 0 −0.014 0 −0.060

�EPNC
tot 0.410 0.410 1.037 1.037

TABLE V. The Wichmann-Kroll corrections to the 6s-7s PNC
amplitude in Cs and to the 7s-8s PNC amplitude in Fr, in %. The
results are presented in both the length �L� and the velocity �V�
gauge.

Contribution

Cs Fr

L gauge V gauge L gauge V gauge

�EPNC
a 0.0006 0.0006 0.0053 0.0049

�EPNC
b 0.0012 0.0006 0.0102 0.0048

�EPNC
c −0.0042 −0.0041 −0.0284 −0.0270

�EPNC
d 0.0001 0.0003 −0.0009 0.0006

�EPNC
e 0.0007 0.0007 0.0055 0.0055

�EPNC
f −0.0026 −0.0026 −0.0199 −0.0199

�EPNC
add 0 0.0003 0 0.0030

�EPNC
tot −0.0042 −0.0042 −0.0283 −0.0283
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Hnp = �+H�+, H = �
j

hD�j� + VC
int + VB

int, �57�

where hD is the one-electron Dirac Hamiltonian, the index
j=1, . . . ,N enumerates the electrons, and VC

int and VB
int are the

Coulomb and the Breit electron-electron interaction operator,
respectively. The frequency-independent Breit interaction in
the Coulomb gauge is given by

VB
int = VG

int + VR
int, VG

int = − ��
i�j

�i · � j

rij
,

VR
int = −

�

2 �
i�j

��i · �i��� j · � j�rij . �58�

Here VG
int is the so-called magnetic or Gaunt term and VR

int is
the retardation term. The operator �+ is the projector on the
positive-energy states, which is the product of the one-
electron projectors �+�i�,

�+ = �+�1� ¯ �+�N� , �59�

where

�+�i� = �
n

�un�i���un�i�� . �60�

Here un�i� are the positive-energy eigenstates of an effective
one-particle Hamiltonian hu,

huun = 
nun, �61�

which can be taken to be the Dirac Hamiltonian hD, the Dirac
Hamiltonian in an external field, or the DF Hamiltonian in an
external field �43–45�.

To calculate the EPNC amplitude, we add the weak inter-
action to the full Hamiltonian:

H��� = H + ��
j

HW�j� , �62�

where HW is defined by Eq. �11�.
With the PNC interaction added to the one-electron DF

Hamiltonian, one obtains the coupled equations, which are
usually referred to as the PNC-HF equations �46�. The lin-
earization of these equations with respect to the parameter �
would make them inhomogeneous. Since in our calculations
we do not perform such a linearization, the equations remain
homogeneous. In this case the PNC amplitude can be calcu-
lated using the equation

EPNC =
�

��
��� f����Dz��i������=0, �63�

where D=�ieri is the dipole moment operator and �i and � f

are the many-electron wave functions of the initial and final
states, respectively. They obey the equations

H����i��� = Ei����i���, H���� f��� = Ef���� f��� .

�64�

The many-electron wave functions �i and � f are repre-
sented by a large number of the configuration state functions
�CSFs�:

�JM��� = �
�

C������
JM��� . �65�

The CSFs ��
JM are linear combinations of the Slater deter-

minants, which are constructed from the one-electron wave
functions un���. Expansion �65� contains the CFSs of differ-
ent parity, since the weak interaction is included in the
Hamiltonian H���.

The one-electron functions un��� are obtained as eigen-
functions of the Dirac-Fock operator in the external field:

hu���un��� = 
n���un���, hu��� = hDF��� + �HW.

�66�

It should be noted that the Dirac-Fock operator hDF��� de-
pends on the parameter �, since the one-particle density ma-
trix is constructed from occupied orbitals un���. We can also
consider the set of one-electron wave functions un

0��� defined
by equations

hu
0���un

0��� = 
n
0���un

0���, hu
0��� = hDF�0� + �HW,

�67�

where hDF�0� is the standard Dirac-Fock operator without the
external field.

The PNC amplitude can be calculated in the Hartree-Fock
approximation by using only one CSF in expansion �65�.
Using Eq. �63� and the wave functions un

0���, one obtains the
so-called Dirac-Fock value of the PNC amplitude. If the set
of un��� is used, the method, in principle, is equivalent to the
PNC-HF method, which was used by different authors
�47–49�.

In the large-scale configuration-interaction �CI� method
the set of the CSFs for given quantum numbers JM is gen-
erated including all single, double, and the most significant
part of triple excitations in the positive spectrum of the one-
electron states un���. In what follows, this method of evalu-
ation of the PNC amplitude will be referred to as the PNC-CI
method.

To obtain the set of the one-electron functions un��� and
un

0���, we solve Eqs. �66� and �67� using the finite basis
approximation,

un��� = �
a

ca
n����a �68�

with the basis functions �a given in the central field approxi-
mation:

�a�r� =
ila

r
� Pa�r� ��ama

�n�

iQa�r� �−�ama
�n� � . �69�

The representation �69� differs from the standard one by the
factor il. This factor is introduced to make the one-electron
matrix elements of the PNC Hamiltonian be real:

�a��5�N�b� = − �− 1��lb−la+1�/2��a,−�b
�ma,mb

�

0

�

dr �N�PaQb − QaPb� , �70�

where la+ lb+1 is even. With this one-electron basis, the
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large-scale PNC-CI matrix is also real and Hermitian.
For the occupied atomic shells, the large Pa and small Qa

components of the radial wave functions are obtained by
solving the standard radial DF equations. For the vacant
shells the Dirac-Fock-Sturm equations are used. For details
of the Dirac-Fock-Sturm method we refer to Refs. �45,50�.
The basis set containing the radial functions up to 17s, 16p,
12d, 7f , 5g, and 2h states was used in the calculations.

In the calculations of the one-electron PNC matrix ele-
ments �70� we used the Fermi nuclear distribution

�N�r� =
�0

1 + e4 ln 3�r−c�/t , �71�

where t=2.3 fm. The parameters c and �0 were determined
to reproduce the value of the nuclear mean-square radius
RN= �r2�1/2 and the normalization condition for �N�r�.

In Table VI we present the results of our calculations of
the PNC amplitude for Rb, Cs, and Fr. The results obtained
by the DF method are given in the third column. Our DF
value for the 6s-7s PNC transition in Cs, −0.741, is in a good
agreement with the values −0.742 �10� and −0.739 �11�,
which were obtained by the direct summation over the inter-
mediate states. For the 7s-8s PNC transition in Fr our DF
value, −13.72, is also in a good agreement with the −13.56
result obtained in Ref. �26�. Our PNC-HF values, −0.138 for
Rb and −0.926 for Cs, can be compared with the values
−0.139 and −0.927, respectively, obtained by a similar
method in Ref. �49�. In the fifth column of the table, we
present our PNC-CI values, which include the core-
polarization correlation effects. The uncertainty of these val-
ues is estimated to be on the 1% level. For comparison, the
most accurate results by other authors are listed in the sixth
column of the table. In the second column we give the values
of the nuclear-mean-square radius RN, which were used in
our calculations. They were obtained by the formula RN
=0.836A1/3+0.570 �51�. In the case of Fr, the corresponding
results with RN taken from Ref. �52� are also presented.

To calculate the contribution of the frequency-
independent Breit interaction �BI� to the PNC amplitude, we
included the magnetic VG

int and retardation VR
int terms in all

stages of the calculations. As the first step, the BI was in-
cluded in the radial Dirac-Fock equations. We will refer this
approach to as the Dirac-Fock-Breit �DFB� method. On the
second stage, the BI was added to the Dirac-Fock-Sturm
equations and to the Dirac-Fock Hamiltonian hu��� in the
external field �66�. This method of calculation of the PNC
amplitude will be called the PNC-HFB method. Finally, we
added the BI to the many-electron Hamiltonian H��� in the
external field and performed the large scale CI calculation.
This approach will be called the PNC-CIB method. To esti-
mate the role of the retardation part of the Breit intaraction,
we repeated all the calculations including only the magnetic
�Gaunt� part VG

int of the BI and then took the difference with
the PNC amplitude, which includes the total BI.

In Table VII we present the magnetic Breit �EPNC
M and

retardation Breit �EPNC
R contibutions to the 6s-7s PNC am-

plitude in 133Cs and to the 7s-8s PNC amplitude in 223Fr,
obtained by different methods. The comparison of the total
Breit correction to the PNC amplitude with the most accurate
results by other authors are presented in Table VIII. Finally,
in the case of francium, our PNC-CIB value amounts to
−15.58�16� �RN=5.640 fm� and −15.55�16� �RN=5.658 fm�

TABLE VI. The EPNC amplitude, in units of i�10−11�−QW� /N a.u., calculated by different methods
without the Breit correction.

RN �fm� DF PNC-HF PNC-CI Others

85Rb 5s→6s 4.246 −0.110 −0.138 −0.134 −0.135a

133Cs 6s→7s 4.837 −0.741 −0.926 −0.904 −0.906b

−0.908c

223Fr 7s→8s 5.640 −13.72 −16.63 −15.72 −15.56d

−15.8e

5.658 �52� −13.69 −16.60 −15.69
210Fr 7s→8s 5.539 −12.51 −15.17 −14.34

5.545 �52� −12.51 −15.16 −14.34

aPNC−HF+MBPT �49�.
bMBPT �7�.
cCorrelation potential plus MBPT �13�.
dMBPT �26�.
eCorrelation Potential+MBPT �25�. The original value, −15.9 �25�, is rescaled to RN=5.640 according to the
corresponding analysis presented in Ref. �26�.

TABLE VII. The Breit magnetic ��EPNC
M �, the Breit retardation

��EPNC
R �, and the total Breit ��EPNC

B � correction to the PNC ampli-
tude, in units of i�10−11�−QW� /N a.u.

DFB PNC-HFB PNC-CIB

133Cs �EPNC
M 0.0028 0.0023 0.0049

�EPNC
R −0.0006 −0.0005 −0.0004

�EPNC
B 0.0022 0.0018 0.0045

223Fr �EPNC
M 0.080 0.082 0.165

�EPNC
R −0.016 −0.017 −0.022

�EPNC
B 0.064 0.065 0.143
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for 223Fr, and −14.21�14� for 210Fr. They are in a fair agree-
ment with the most accurate previous results �26�,
−15.41�17� �RN=5.640 fm� for 223Fr and −14.02�15� for
210Fr.

IV. TOTAL PNC AMPLITUDES

To get the total 6s-7s PNC transition amplitude in 133Cs,
we combine the most accurate value that includes the corre-
lation and Breit effects �13�, −0.902�5�, with the −0.27�3�%
binding QED correction, the −0.19�6�% neutron skin correc-
tion �12�, the −0.08% correction due to the renormalization
of QW from the atomic momentum transfer q�30 MeV
down to q=0 �19�, and the 0.04% contribution from the
electron-electron weak interaction �19,54�. The analysis of
accuracy of the atomic structure PNC calculations
�6,8,10,13� is based on calculations of the hyperfine splitting,
decay rates, and energy levels. As it was argued in Ref. �19�,
QED corrections to these quantities can be neglected on the
0.5% accuracy level. Using the experimental value for
EPNC/� �4� and an average value from two most accurate
measurements of the vector transition polarizabilty, �
=26.99�5�aB

3 �5,13,55,56�, we obtain for the weak charge of
133Cs:

QW = − 72.65�29�exp�36�th. �72�

This value deviates from the SM prediction of −73.19�13�
�57� by 1.1�.

In case of francium, combining our PNC-CIB values,
−15.55�16� for 223Fr and −14.21�14� for 210Fr, with the
−0.28�5�% QED correction and the −0.08% correction due
to the renormalization of QW from the atomic momentum
transfer q�30 MeV down to q=0 �19�, we obtain
−15.49�16� for 223Fr and −14.16�14� for 210Fr.

In summary, we have calculated the QED correction to
the PNC transition amplitude in Cs and Fr. In addition, we
have performed an independent high-precision calculation of
the correlation and Breit interaction effects on the PNC am-
plitude in Fr. We have derived the weak charge of 133Cs,
which deviates by 1.1� from the SM prediction. Further im-
provement of atomic tests of the standard model can be
achieved, from the theoretical side, by more accurate calcu-
lations of the electron-correlation effects and, from the ex-
perimental side, by more precise measurements of the PNC
amplitude in cesium or other atomic systems, particularly, in
francium �24,58�.
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APPENDIX A: ZERO-POTENTIAL PNC VERTEX
CONTRIBUTION

The zero-potential PNC vertex contribution is defined as

�b��W�a� � 
 dp

�2��3 
 dp�

�2��3 	̄b�p���W
0 �p�,p�

�VW��p� − p��	a�p� , �A1�

where p= �
 ,p� and p�= �
� ,p�� are four vectors,

�W
0 �p�,p� = − 4�i�
 d4k

�2��4��

p”� − k” + m

�p� − k�2 − m2�0�5

�
p” − k” + m

�p − k�2 − m2�� 1

k2 , �A2�

VW�q� �  
 dr �N�r�exp�iq · r� =  
4�

q



0

�

dr r�N�r�sin�qr� ,

�A3�

q= �q�, r= �r�, and  =−�GF /
8�QW. In Eq. �A1�, it is implicit
that 
=
a and 
�=
b. One can easily express �W

0 �p� , p� in
terms of the standard vertex function �0�p� , p�:

�W
0 �p�,p� = �0�p�,p��5 −

�

�
�2
�m�C0 + C11� + 2
mC12

− m2�0C0��5, �A4�

where the coefficients C0, C11, and C12 are defined as in Ref.
�30�. After the isolation of the ultraviolet divergences in
�0�p� , p�, the finite part is given by

�W,R
0 �p�,p� =

�

4�
��A + 4m2C0��0 + p”��B1
� + B2
�

+ p”�C1
� + C2
� + Dp”��0p” + H1
� + H2


− 8
�m�C0 + C11� − 8
mC12��5, �A5�

where all the coefficients are defined as in Ref. �30�. Inte-
grating over the angles in Eq. �A1�, one can obtain

�b��W,R�a� = −
�

2�2��6 ilb−la��b,−�a
�mb,ma


0

�

dp

0

�

dp�p2p�2

�

−1

1

d!�VW�q�Q1�p�,p,!�Plb
�!�

+ VW�q�Q2�p�,p,!�Pla
�!�� , �A6�

TABLE VIII. Comparison of the total Breit correction to the
PNC amplitude, in units of i�10−11�−QW� /N a.u., with the most
accurate results by other authors.

133Cs 223Fr

This work 0.0045 This work 0.14

Kozlov et al. �10� 0.004 Safronova and Johnson �26� 0.15

Dzuba et al. �13� 0.0055 Derevianko �53� 0.18

Derevianko �12� 0.0054
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where Pl�!� is a Legendre polynomial, �= �−1� j+l+1/2�j
+1/2�,

Q1 = �A + 4m2C0 + 
��B1
� + B2
� + 
�C1
� + C2
� + D
�


+ H1
� + H2
 − 8
�m�C0 + C11� − 8
mC12�g̃b�p�� f̃ a�p�

+ �p��B1
� + B2
� + Dp�
� f̃ b�p�� f̃ a�p� + �p�C1
� + C2
�

+ Dp
��g̃b�p��g̃a�p� + Dp�pf̃b�p��g̃a�p� , �A7�

Q2 = �A + 4m2C0 + 
��B1
� + B2
� + 
�C1
� + C2
� + D
�


− H1
� − H2
 + 8
�m�C0 + C11� + 8
mC12� f̃ b�p��g̃a�p�

+ �p��B1
� + B2
� + Dp�
�g̃b�p��g̃a�p� + �p�C1
�

+ C2
� + Dp
�� f̃ b�p�� f̃ a�p� + Dp�pg̃b�p�� f̃ a�p� , �A8�

g̃�p� and f̃�p� are the radial components of the Dirac wave
function in the momentum representation, defined as in Ref.
�30�.
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