
Nonclassical dynamics induced by a quantum meter

J. Clausen,1 J. Salo,2,3 V. M. Akulin,1 and S. Stenholm2

1Laboratoire Aimé Cotton, Université Paris-Sud, 91405 Orsay Cedex, France
2Laser Physics and Quantum Optics, Royal Institute of Technology (KTH), 10691 Stockholm, Sweden

3Materials Physics Laboratory, Helsinki University of Technology, 02015 HUT, Finland
�Received 20 September 2005; published 5 December 2005�

Conventionally, the effect of measurements on a quantum system is assumed to introduce decoherence,
which renders the system classical-like. We consider here a microscopic meter, that is, an auxiliary essentially
quantum system whose state is measured repeatedly, and show that it can be employed to induce transitions
from classical states into inherently quantumlike states. The meter state is assumed to be lost in the environ-
ment and we derive a non-Markovian master equation for the dynamic system in the case of nondemolition
coupling to the meter; this equation can be cast in the form of an �Na�th-order differential equation in time,
where Na is the dimension of the meter basis. We apply the approach to a harmonic oscillator coupled to a spin-
1
2 meter and demonstrate how it can be used to engineer effective Hamiltonian evolution, subject to decoher-
ence induced by the projective meter measurements.
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I. INTRODUCTION

Arisal of the classical world from the underlying quantum
domain is often attributed to decoherence, i.e., irrecoverable
entanglement with an infinitely large environment. The
mathematical description can be formulated in many, often
somewhat metaphysical, ways that may include references to
classical concepts, such as measurement devices, or meters.

The concept of measurement in quantum mechanics is
still essential both for the interpretations and for the applica-
tions of the theory. Conventional wave-function quantum
mechanics is limited to unitary evolution while measure-
ments can be used to create nonpure quantum states condi-
tional to the measurement result �1�; the conditional prepa-
ration of the initial quantum state can even be carried out
after the final measurement on the prepared system �2�. Other
applications of measurements also include quantum state
preparation �3�, quantum information processing �4�, and co-
herence protection �5,6�.

The measurement devices are themselves also quantum
systems but often considered much larger than the dynamic
system. Consequently, their interaction with the outer envi-
ronment occurs on an exponentially shorter time scale than
the interaction with the system �7�, and the measurement act
appears instantaneous. The fact that measurement devices
often appear to be classical can be understood in terms of
their pointer states �8�, which correspond to classical states
of a meter. It is the nature of the meter’s coupling to the outer
environment that determines the einselection, the observable
that meter is able to measure if brought in contact with a
dynamic quantum system �9�. We consider, in particular,
nondemolition measurements, which do not transfer energy
between the dynamic system and the measurement device
�10–12�.

In this paper we wish to demonstrate that measurements
can bring in both classical-like and quantumlike evolution of
a dynamic quantum system. We consider a harmonic oscilla-
tor coupled to a microscopic spin-1

2 measurement device that

performs repeated, nondemolition measurements on the os-
cillator and loses the outcome into the environment. Note
that the evolution of the dynamic system is not conditional to
measurement outcomes but is affected unconditionally by the
meter. In the limit of highly frequent measurements the pre-
cise effect is, however, unimportant for the discussion that
follows.

We assume the meter only to detect the energy eigenstate
of the dynamic system and not to transfer energy, and con-
sider therefore nondemolition coupling between the two. The
presence of the meter nonetheless affects the coherences of
the reduced dynamic system, which modifies the dynamic
system evolution. The nondemolition coupling also essen-
tially simplifies the master equation since the matrix ele-
ments of the dynamic system decouple and the master equa-
tion may be written to each of them separately. The master
equation is non-Markovian and can be written as an
�Na�th-order differential equation, where Na is the dimension
of the meter Hilbert space or as a Nakajima-Zwanzig equa-
tion with an explicit memory term.

II. EVOLUTION INDUCED BY
A NONDEMOLISHING METER

The unitary evolution of the combined system �dynamical
system and the meter� is described by

d

dt
�̂ = −

i

�
�Ĥ1 + Ĥint + Ĥ2,�̂� , �1�

where the nondemolition nature of the coupling implies

�Ĥ1 , Ĥint�=0 and the subindices 1 and 2 refer to dynamic
system and the meter �ancilla�, respectively.

The dynamic part is represented using the eigenstates

Ĥ1 �n�1=En �n�1, for which Ĥint �n�1= F̂n �n�1; note that the

quantities �̂�m,n�= 1�m � �̂ �n�1 and F̂n are operators in the an-
cilla Hilbert space. Due to nondemolition coupling, matrix
elements of the state operator decouple in the dynamical sys-
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tem space, and the unitary evolution over �t is given com-
ponentwise by

�̂�m,n��t + �t� = Û�t
m �̂�m,n��t�Û�t

n† , �2�

where Û�t
m =e−�i/q��Em+F̂m+Ĥ2��t.

We choose a measurement scheme where the microscopic
meter measures the system state repeatedly with the period
�t and the outcome is lost in the environment of the meter;
the measurement projection is therefore given by

M��̂	 = 

k

��k�2��k��̂��k�2��k� . �3�

We assume a stroboscopic picture where the quantum state is
only observed after each measurement; consequently the off-
diagonal elements �in the meter basis� are assumed to stay
zero, �̂kl

�m,n�=0 for k� l.
The nonunitary evolution over one measurement cycle is

now determined by the discrete master equation

�kk
�m,n��t + �t� = 


l

U�t,kl
�m,n��ll

�m,n��t� , �4�

where the evolution is defined by the matrix

U�t,kl
�m,n� = U�t,kl

m U�t,kl
n* . �5�

For the purpose of deriving a �quasi-�continuous master
equation, we define the evolution generator

L�t,kl
�m,n� =

1

�t
ln�U�t,kl

�m,n�� �6�

that yields the master equation

d

dt
�̂kk

�m,n� = 

l

L�t,kl
�m,n��̂ll

�m,n�; �7�

this equation interpolates the discrete evolution of Eq. �4�
and also allows one to obtain the continuous measurement
limit for �t→0. The master equation only applies for the
diagonal elements in the meter space since the projective
measurements instantaneously reset the off-diagonal ele-
ments to zero, which process cannot be generated by any
differential evolution.

III. TWO-STATE METER

We examine now the special case of a two-state meter
although the approach is generalizable to arbitrary finite di-
mensions. In order to describe the time evolution of the dy-
namic system alone, we need to find an evolution equation
for �=Tr2��̂�=�00�t�+�11�t� �we now omit the superscript
�m ,n�; all matrix elements are separately evaluated for each
pair �m ,n��. While � describes the matrix element of the
system state, an auxiliary variable �=�00�t�−�11�t� is in-
cluded to cover the meter state and the entanglement be-
tween the system and the meter. In this basis, the equation of
motion reads

d

dt
��

�
� = B��

�
� , �8�

where

B = �B00 B01

B10 B11
�

= 
L00 + L10 + L01 + L11

2

L00 + L10 − L01 − L11

2

L00 − L10 + L01 − L11

2

L00 − L10 − L01 + L11

2
�

�9�

is the time-evolution generator �i.e., Liouvillian� in the basis
chosen above.

We present here two different methods for finding an
equation of motion for � alone. Elimination of � from Eq.
�8� yields a second-order differential equation in time that
can be written in the form

Det�B − I
d

dt
�� = 0, �10�

where I denotes the identity matrix. Note that the order of
the differential equation is directly determined by the dimen-
sion of the meter. For a two-level meter the equation for �
reads

d2

dt2� = �B00 + B11�
d

dt
� + �B01B10 − B11B00�� . �11�

The initial condition still depends on the initial ancilla
state since

� d

dt
��t��

t=0
= B00��0� + B01��0�; �12�

hence the time evolution has a memory.
An equivalent formulation can be given in the form of a

Nakajima-Zwanzig equation with memory, given by

d

dt
��t� = B00��t� + �

0

t

K�t − s���s�ds + B01e
B11t��0� ,

�13�

where the memory kernel is given by

K�t − s� = B01e
B11�t−s�B10; �14�

see, e.g., Ref. �20�. The influence of the initial spin state is
carried out by the last term but it decays exponentially, since
the real part of B11 is expected to be negative.

This equation can also be used for obtaining the master
equation in the Markovian limit. In that case, the exponential
decays faster than the state � evolves; ��s� may therefore be
replaced with ��t� and taken out of the integral. Assuming
still Re�B11��0 the integral may be performed explicitly and
the master equation is

d

dt
��t� = �B00 − B01

1

B11
B10���t� . �15�
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HARMONIC OSCILLATOR MEASURED
BY A SPIN-1 � 2 METER

We consider a special case in which the meter-induced
evolution can transform the classical-like coherent state into
quantumlike superposition �Schrödinger “cat”� state �13� via
generation of an artificial Kerr interaction. The possibility of
using Kerr effect to create nonclassical states has been con-
sidered theoretically in optical fibers and electrical circuits
�14–16�. Since the Kerr coefficient is typically many orders
of magnitude smaller than unity, an accumulation over large
optical path lengths is required and decoherence has so far
prevented the experimental observation of a Schrödinger cat-
like state in an optical fiber. It has however been successfully
prepared and its decoherence observed for a mesoscopic cav-
ity field �17–19�.

We now apply the above general scheme to a harmonic
oscillator coupled to a spin-1

2 meter by means of a time-
independent interaction. In the absence of measurements, we
assume the Hamiltonian

Ĥ = ���n̂ + 1
2� + ��	̂z + 
m�x̂2	̂q, �16�

where n̂= â†â and x̂=�� / �2m���â+ â†� are the number and
the position operator for the oscillator, whereas 	̂z and
	̂q=qx	̂x+qy	̂y +qz	̂z are the respective Pauli �spin� matri-
ces. z is the quantization axis of the meter and q is called the
interaction axis. This model applies, for example, to a spin-1

2
particle confined to move in a one-dimensional harmonic
potential, subject to a spatially varying magnetic field or a
two-level atomic system interacting with a single mode of a
cavity field. It is of interest here as example of an interaction
between a discrete- and a continuous-variable system.

This Hamiltonian can be transformed into an effective
nondemolition Hamiltonian provided that the system is far
from resonance. For the case in which the interaction axis is
orthogonal to quantization axis, second-order perturbation
yields the effective Hamiltonian

Ĥeff = ��an̂ + b	̂z + cn̂�n̂ + 1�	̂z� , �17�

where a, b, and c are real constants, see Ref. �21�. The uni-
tary evolution between measurements is represented with

U�t,kl
m = e−iam�t��kl cos �m − ikl sin �m� , �18�

where �m= �b+cm�m+1���t and kl= 2��k � 	̂z ��l�2 are the
matrix elements of 	̂z in the meter basis,

 = � cos � − sin �

− sin � − cos �
� . �19�

Here, � is the polar angle of the measurement axis relative to
the quantization axis.

The dynamics simplifies essentially if the measurement
axis is either parallel with or perpendicular to the quantiza-
tion axis. For the parallel case kl= ±�kl, and the different k
and l states decouple. If, on the other hand, the meter axis is
orthogonal to the quantization axis, kk=0. Therefore, the
measurement axis should be chosen neither parallel with nor
orthogonal to the quantization axis in order to obtain a non-
trivial contribution to the dynamic system.

We choose system parameters such that b=0 in the
Hamiltonian �17� and assume the parameter c to be suffi-
ciently large such that the measurement axis can be chosen to
satisfy 00=cos �=−c−1a. Then, in the limit of continuous
measurement, �t→0, with the meter state ��0�, the reduced
dynamic system evolves according to the Hamiltonian

��0 � Ĥeff ��0�=−�an̂2. This is similar to Kerr nonlinearity
and can be used to generate Schrödinger cat superposition
states, in line with proposals based on an optical single-mode
Kerr nonlinearity �14–16�.

We assume a coherent initial state ��� and evaluate it only
at discrete times tm=� / �2 �c cos � � �m. Under the Hamil-
tonian quadratic in n̂, the evolution is cyclic �via complicated
intermediate states� according to

��� →
1 + i

2
���+

1 − i

2
�− �� → �− ��

→
1 − i

2
��� +

1 + i

2
�− �� → ��� , �20�

from now on we choose m=4k+1 and hence consider the
first superposition state of each cycle. The evolution period is
given by T=2� / �c cos ��.

With finite measurement intervals the evolution deviates
from that presented above, and is subject to decoherence.
Consequently, the state departs from the superposition as k
increases. We divide the evolution period into N measure-
ment cycles, such that �t=T /N. The eventual steady state is
obtained directly from Eq. �4�. For m�n �and the measure-
ment angle ��0� the eigenvalues of the time-step operator
are smaller than one but not equal to zero, and the steady
state value is given by �k,l

�m,n����=0. The diagonal elements
of the oscillator state stay constant whereas the coherences
tend to zero, and the initial coherent state ��� evolves into a
Poissonian mixture of Fock states. We note that the rate of
coherence loss increases exponentially in the coherent ampli-
tude.

In Fig. 1 we illustrate the evolution of initial state
��=3� both over one unitary evolution cycle with Kerr-type
Hamiltonian, and simulated nonunitary evolution subject to
meter with measurement period �t=10−6T. In the ideal case
of continuous measurements, one evolution cycle follows
Eq. �20�, illustrated in the upper row. For a finite measure-
ment interval �t, decoherence appears and the decohering
evolution of the Schrödinger cat state is shown over several
cycles until the final steady state is nearly reached. Note
again that this is stroboscopic picture and the actual evolu-
tion within each cycle roughly follows that shown in the
upper row.

V. CONCLUSIONS

In this paper we have considered the time evolution of a
dynamic quantum system coupled via nondemolition interac-
tion to a microscopic meter, represented with a repeatedly
measured ancilla. Given the time lapse �t between two sub-
sequent measurements, the combined system may be de-
scribed using a difference master equation whereas, in the
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continuous measurement limit �t→0, the evolution of the
dynamic system is unitary and defined by the state of the
ancilla. For an arbitrary �t, we also formulated a master
equation that interpolates smoothly the exact evolution given
by the difference equation.

The master equation of the dynamic system can be repre-
sented independently for each element of the density opera-
tor and each obeys a non-Markovian master equation. We
formulate these equations as �Na�th-order differential equa-
tions in time, where Na is the dimension of the ancilla Hilbert
space or, equivalently, as Zwanzig equations with an explicit
memory over the system evolution.

The meter may represent the internal degrees of freedom
of a particle �22�, which themselves can be measured by the
environment. For a rising number of meter levels the quan-
tumlike evolution of the dynamic system is increasingly dif-
ficult to maintain until eventually for a very large meter the
classical behavior of the dynamic system is observed.

The above approach has been applied to a harmonic os-
cillator coupled to a two-level system, that serves as the
meter. In the limit of continuous measurements, suitably cho-

sen physical parameters lead to an effective meter-induced
Kerr interaction, but finite measurement intervals are shown
to eventually destroy the coherence. This is demonstrated by
a periodic generation of a Schrödinger cat state. The deco-
herence process is highly nonlinear in the initial state ampli-
tude and the decoherence time decreases rapidly for increas-
ing amplitude.

We conclude that the presence of a microscopic quantum
meter can introduce evolution that transforms classical-like
states into quantumlike states and vice versa. Although the
projective measurements performed on the meter eventually
lead to loss of quantum coherence, close to the limit of con-
tinuous measurements the effect is clearly quantum and not
classical.
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