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We calculate the one- and two-loop corrections of order ��Z��6 and �2�Z��6, respectively, to the Lamb shift
in hydrogenlike systems using the formalism of nonrelativistic quantum electrodynamics. We obtain general
results valid for all hydrogenic states with nonvanishing orbital angular momentum and for the normalized
difference of S states. These results involve the expectation value of local effective operators and relativistic
corrections to Bethe logarithms. The one-loop correction is in agreement with previous calculations for the
particular cases of S, P, and D states. The two-loop correction in the order �2�Z��6 includes the pure two-loop
self-energy and all diagrams with closed fermion loops. The obtained results allow one to obtain improved
theoretical predictions for all excited hydrogenic states.
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I. INTRODUCTION

The precise calculation of the electron self-energy contri-
bution to energy levels of hydrogenlike systems is a long-
standing problem in bound-state quantum electrodynamics.
The widely used direct numerical approach �1–3� is based on
a partial-wave decomposition of the Dirac-Coulomb propa-
gator, which corresponds to the exact all-order treatment of
the electron-nucleus interaction. The one-loop corrections
have already been calculated to a high numerical precision
for a wide range of nuclear charge numbers Z �including the
case of atomic hydrogen Z=1�, whereas the two-loop correc-
tion has been obtained only for Z�10 with limited numeri-
cal precision. The analytic method is based on an expansion
in powers of Z� and a subsequent analytic or semianalytic
integration. The two approaches are complementary. In prac-
tice, the numerical method has primarily been used for sys-
tems with a high nuclear charge number, whereas the ana-
lytic method usually provides more accurate predictions for
low-Z systems.

Here, we present a unified analytic derivation of the one-
and two-loop binding corrections of order �� /���Z��6mc2

and �� /��2�Z��6mc2, respectively, for arbitrary bound states
of a hydrogenlike system using the formalism of dimension-
ally regularized nonrelativistic quantum electrodynamics
�NRQED�. This method allows for a natural separation of
different energy scales, �i� the electron mass and �ii� the
binding energy, using only one regularization parameter: the
dimension d of the coordinate space. This leads to a straight-
forward derivation of radiative corrections in terms of expec-
tation values of some effective operators and the Bethe loga-
rithms. The calculation of these operators is the main task of
this work, and we obtain them from standard electromagnetic
form factors and the low-energy limit of the two-photon ex-
change scattering amplitude.

This paper is organized as follows: In Sec. II dimension-
ally regularized NRQED is outlined. In Sec. III, the one-loop
self-energy is derived by splitting the calculation into low-
�Sec. III B�, middle- �Sec. III C�, and high-energy parts. The
general one-loop result is presented in Sec. III D, and the
evaluation for D, P, and S states in Secs. III E, III F, and
III G respectively. The two-loop correction is separated into
four different gauge-invariant sets of diagrams, see Figs. 1–4
below. These are subsequently investigated in Secs. IV–VII.
Results are summarized in Sec. IX. Moreover, in Appendix C
we present the calculation of an additional two-loop logarith-
mic contribution to the ground state which was omitted in
the previous work �4�.

II. DIMENSIONALLY REGULARIZED NRQED

As is customary in dimensionally regularized quantum
electrodynamics �QED�, we assume that the dimension of the
space-time is D=4−2�, and that of space d=3−2�. The pa-
rameter � is considered as small, but only on the level of
matrix elements, where an analytic continuation to a nonin-
teger spatial dimension is allowed. Let us briefly discuss the
extension of the basic formulas of NRQED to the case of an
arbitrary number of dimensions. Some basis of dimension-
ally regularized NRQED in the context of hydrogen Lamb
shift has already been formulated in �5�, however, our ap-
proach presented below differs in many details.

The momentum-space representation of the photon propa-
gator preserves its form, namely g�� /k2. The Coulomb inter-
action is

FIG. 1. Pure two-loop self-energy diagrams �subset i of the two-
loop diagrams�. The double line denotes the bound-electron
propagator.
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V�r� = − Ze2� ddk

�2��d

eik�·r�

k2

= −
Ze2

4�r1−2���4���
��1 − 2��
��1 − �� �

� −
Z��

r1−2� , �2.1�

where the latter representation provides an implicit definition
of Z�, and we have used the formula for the surface area of a
d dimensional unit sphere

	d =
2�d/2

��d/2�
. �2.2�

The nonrelativistic Hamiltonian of the hydrogenic system is

H =
p�2

2m
−

Z��

r1−2� . �2.3�

We now turn to relativistic corrections for the Schrödinger
Hamiltonian in an arbitrary number of dimensions. These
corrections can be obtained from the Dirac Hamiltonian by
the Foldy-Wouthuysen transformation. In order to incorpo-
rate a part of the radiative effects right from the beginning,
we use an effective Dirac Hamiltonian modified by the elec-
tromagnetic form factors F1 and F2 �see, e.g., Chap. 7 of
�6��,

HD = �� · �p� − eF1��� 2�A� � + 
m + eF1��� 2�A0

+ F2��� 2�
e

2m
	i�� · E� −




2
�ijBij
 , �2.4�

where

Bij = �iAj − � jAi, �2.5�

�i � �i = �/�xi, �2.6�

�ij =
i

2
��i,� j� . �2.7�

Formulas for the electromagnetic form factors F1,2 can be
found in Appendix A. Having the Foldy-Wouthuysen trans-
formation defined by the operator S �see Ref. �7��,

S = −
i

2m
�
�� · �� −

1

3m2
��� · �� �3 +
e�1 + �

2m
i�� · E�

−
e

8m2 ��� · �� ,
�ijBij�� , �2.8�

where �F2�0�, the new Hamiltonian, is obtained via

HFW = eiS�HD − i�t�e−iS �2.9a�

and takes the form

HFW =
�� 2

2m
+ e�1 + F1��0��� 2�A0 −

e

4m
�1 + ��ijBij

−
�� 4

8m3 −
e

8m2 �1 + 2���� · E� + �ijEi,� j��

−
e

8m4 �F1��0� + 2F2��0���� 2��� · E� + �ijEi,� j��

+
p�6

16m5 +
3 + 4

64m4 ˆp�2,�� · E� + �ijEi,� j�‰

+
4�1 + � − 1

32m3 e2E� 2 + ¯ . �2.9b�

The ellipsis denotes the omitted higher-order terms. We
adopt the following conventions: X ,Y��XY +YX,

�� = p� −eA� , �ij = ��i ,� j� / �2i�, and the form factors F1 ,F2 are
defined in Eq. �A1� below. In d=3 spatial dimensions, the
matrices �ij are equal to �ijk�k. The electromagnetic field in
HFW is the sum of the external Coulomb field and a slowly
varying field of the radiation.

There is an additional correction that cannot be accounted
for by the F1 and F2 form factors. It is represented by an
effective local operator that is quadratic in the field strengths.
This operator is derived separately by evaluating a low-

FIG. 2. Feynman diagram with a vacuum-polarization loop in
the self-energy virtual photon line �this single diagram forms subset
ii in the convention adopted in this paper�.

FIG. 3. Two-loop diagrams �subset iii� generated by a fermion
loop in the Coulomb exchange of a one-loop self-energy.

FIG. 4. The remaining two-loop diagrams �subset iv� involve at
least one closed fermion loop in the Coulomb photon exchange
between the electron and nucleus, and no self-energy photons.
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energy limit of the electron scattering amplitude off the Cou-
lomb field. An outline of this calculation is presented in Ap-
pendix B. The result is

�H =
e2

m3E� 2� , �2.10�

where E is an electric field, and the functions ����1�+��2�

are given by Eq. �B12�.

III. ONE-LOOP ELECTRON SELF-ENERGY

A. Brief outline of the calculation

The one-loop electron self-energy contribution in hydro-
genlike atoms is

��1�E =
e2

i
� dDk

�2��D

1

k2 � ��̄��� 1

p” − k” − m − �0V
�����

− �m��̄��� . �3.1�

Here, p0=E� is the Dirac energy of the reference state, V is
the Coulomb potential in d dimensions, and we use natural
relativistic units with �=c=�0=1, so that e2=4��. The elec-
tron mass is denoted by m, and �m is the one-loop mass
counter term. By � we denote the Dirac wave function.
There are three energy scales in Eq. �3.1�, which imply a
natural separation of the one-loop ��1�E into three parts,

��1�E = EL + EM + EH. �3.2�

Each part is regularized separately using the same dimen-
sional regularization. EL is the low energy part, where the
photon momentum is of order k��Z��2m. EM is the middle-
energy part, where k�m, and the electron momentum is
p��Z��m. Finally, EH is a high-energy part, where all loop
momenta are of the order of the electron mass. It is given by
the forward three-Coulomb scattering amplitude and is rep-
resented as a local interaction, proportional to �d�r�.

The naming convention for the high-, middle-, and low-
energy parts is a little different from our previous conven-
tion. For example in �8�, the contribution referred to as the
“high-energy part” in this reference would correspond to the
sum of the “high-energy part” and the “middle-energy part”
in the context of the current evaluation. The renaming of the
contributions is influenced by the NRQED approach used
here and by the correspondence of the different parts to spe-
cific effective operators. In this work, for all operators Q, we
consider only the expectation values for states with

l � 0, �3.3a�

and the normalized difference of expectation values

��Q�� � n3�nS�Q�nS� − �1S�Q�1S� �3.3b�

for S states. For this reason the high-energy part EH vanishes
here. Consequently the “middle-energy part” as considered
in the current investigation corresponds exactly to the “high-
energy part” of Refs. �9,10�.

The one-loop bound-state self-energy for the states under
consideration can be written as

��1�E =
�

�

�Z��4

n3 A40 + �Z��2
†A61 ln��Z��−2� + A60‡� ,

�3.4�

where the indices of the coefficients indicate the power of Z�
and the power of the logarithm, respectively. The coefficient
A40 is well known �for reviews see, e.g., �11,12��, and we
focus here on the derivation of the general expression for the
��Z��6 term.

B. Low-energy part

In the low energy part, all electron momenta are of the
order of Z�, so in principle, one could perform a direct non-
relativistic expansion of the matrix element

��̄��� 1

p” − k” − m − �0V
����� �3.5�

that enters into Eq. �3.1�. It is more convenient however,
instead of using Eq. �3.1�, to take the Dirac Hamiltonian with
an electromagnetic field and to perform this expansion by
applying the Foldy-Wouthuysen transformation. The result-
ing Hamiltonian, in d dimensions, is given in Eq. �2.9�. Here,
we can neglect form factors, and HFW becomes �from now on
we will set the electron mass m equal to unity�

HFW =
�� 2

2
+ V�r� −

e

4
�ijBij −

�� 4

8
+

�

2
Z��d�r� +

1

4
�ij�iV� j

−
e

8
��� · E� + �ij�Ei� j + � jEi�� . �3.6�

The contribution from the Coulomb potential V is explicitly

separated from the additional electromagnetic fields E� and B� .
The Hamiltonian in Eq. �3.6� may be used to derive the
low-energy part, which receives a natural interpretation as
the sum of various relativistic corrections to the Bethe loga-
rithm. We use the Coulomb gauge for the photon propagator,
and only the transverse part will contribute. This treatment of
the low-energy part is similar to previous calculations �8,9�;
the difference lies in the presence of dimensional regulariza-
tion.

The leading nonrelativistic �dipole� low-energy contribu-
tion is

EL0 = e2� ddk

�2��d2k
	�ij −

kikj

k2 
���pi 1

E − H − k
pj��� ,

�3.7�

where by H we denote the nonrelativistic Hamiltonian in d
dimensions, Eq. �2.3�. The wave function �, in contrast to �
�see Eq. �3.1��, denotes the nonrelativistic Schrödinger-Pauli
wave function. In the following, we will denote the expecta-
tion value of an arbitrary operator Q, evaluated with the non-
relativistic Schrödinger-Pauli wave function, by the short-
hand notation �Q�.

After the d dimensional integration with respect to k, and
the expansion in �, EL0 becomes �5�

NONRELATIVISTIC QED APPROACH TO THE LAMB SHIFT PHYSICAL REVIEW A 72, 062102 �2005�

062102-3



EL0 = �4�����1 + ��
2�

3�

��p��H − E�� 1

2�
+

5

6
− ln�2�H − E���p�� , �3.8�

where we ignore terms of order � and higher. Because the
factor �4�����1+�� appears in all the terms, we will drop it
out consistently in the low-, middle-, and high-energy parts,
and as well as in the form factors. Moreover, in the two-loop
calculations discussed below, we will drop the square of this
factor. The contribution EL0 can be rewritten as

EL0 =
4�

3
Z�� 1

2�
+

5

6
+ ln��Z��−2����d�r�� −

4�

3�

�Z��4

n3 ln k0,

�3.9�

where the second term in this equation involves the Bethe
logarithm ln k0 defined as

�Z��4

n3 ln k0 =
1

2
�p��H − E�ln�2�H − E�

�Z��2 �p�� . �3.10�

We consider now all possible relativistic corrections to
Eq. �3.9�, and introduce the notation

�Q�pi 1

E − H − k
pj� � �pi 1

E − H − k
�Q − �Q��

1

E − H − k
pj�

+ 2�Q
1

�E − H��
pi 1

E − H − k
pj� ,

�3.11�

where Q is an arbitrary operator. �Q involves the first-order
perturbations to the Hamiltonian, to the energy, and to the
wave function. The first correction EL1 is the modification of
EL0 by the relativistic correction to the Hamiltonian,

HR = −
p�4

8
+

�

2
Z��d�r� +

1

4
�ij�iVpj , �3.12�

where �d�r� is a d dimensional Dirac delta function. One
could obtain EL1 by including this HR in Eq. �3.9�. However,
for the comparison with former calculations and for conve-
nience we will return to Eq. �3.7�, and split EL1 by introduc-
ing an intermediate cutoff �

EL1 = e2	�
0

�

+ �
�

� 
 ddk

�2��d2k
	�ij −

kikj

k2 

� �HR�pi 1

E − H − k
pj� . �3.13�

After the Z� expansion with �=��Z��2, one goes subse-
quently to the limits �→0 and �→�. Under the assumptions
�3.3�, we may perform an expansion in 1/k in the second part
and obtain

EL1 =
2�

3�
�

0

�

dkk�HR�p�
1

E − H − k
p��

+
�

3�
�1 + �	5

3
− 2 ln 2
��

�

�

dk
1

k1+2�

���†p� ,�HR,p��‡� + 2�HR
1

�E − H��
†p� ,�H,p��‡�� .

�3.14�

After performing the k integration and with the help of com-
mutator relations it reads

EL1 =
�

�

�Z��6

n3 
1 +
�

3�
� 1

2�
+

5

6
+ ln�1

2
�Z��−2��

� �� 1

8
�� 4V +

i

4
�ijpi�� 2Vpj� + 2�HR

1

�E − H��
�� 2V�� .

�3.15�

Here, 
1 is a dimensionless quantity, defined as a finite part
of the k-integral with divergent terms proportional to
�n�n=1,2 , . . . � and ln��� dropped out in the limit of large �,

�

�

�Z��6

n3 
1 = lim
�→�

2�

3�
�

0

�

dkk�HR�pi 1

E − H − k
pi� .

�3.16�

We recall the relation �=��Z��2. In all integrals with an
upper limit � to be discussed in the following, the divergent
terms in � will be subtracted. Following earlier treatments
�e.g., Ref. �13��, we subtract exactly the term proportional to
ln���, but not ln�2��. The presence of the factor 1

2 under the
logarithm in Eq. �3.15� is a consequence of this subtraction.

The quantity 
1 can only be calculated numerically. It
constitutes one of three contributions to the relativistic Bethe
logarithm L, being defined as in �13�,

L = 
1 + 
2 + 
3. �3.17�

Two others, 
2 and 
3 are defined in Eqs. �3.20� and �3.25�
below. In this sense, the definition of 
1 in Eq. �3.16� corre-
sponds to the definition of the low energy part L in Eq. �9� of
Ref. �13�.

The second relativistic correction, EL2, is the nonrelativ-
istic quadrupole contribution in the conventions adopted in
�8,9�. Specifically, it is the quadratic �in k� term from the
expansion of exp�ik� ·r��,

EL2 = e2� ddk

�2��d2k
	�ij −

kikj

k2 
��pi�ik� · r��
1

E − H − k
pj

��− ik� · r��� + �pi�ik� · r��2 1

E − H − k
pj�� . �3.18�

In a similar way as for EL1, we split the integration into two
parts, by introducing a cutoff �. In the first part, with the
k-integral from 0 to �, one can set d=3 and extract the
logarithmic divergence. In the second part, with the
k-integral from � to �, we perform a 1/k expansion and
employ commutator relations, with the intent of moving the
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operator H−E to the far left or right where it vanishes when
acting on the Schrödinger-Pauli wave function. In this way
we obtain

EL2 =
�

�

�Z��6

n3 
2 +
�

�
���� V�22

3
�1

�
+

103

60
+ 2 ln�1

2
�Z��−2��

+ �� 4V
1

40
�1

�
+

12

5
+ 2 ln�1

2
�Z��−2��

+ �� 2Vp�21

6
�1

�
+

34

15
+ 2 ln�1

2
�Z��−2��� . �3.19�

Here, 
2 is defined as the finite part of the integral �see the
discussion following Eq. �3.16��

�

�

�Z��6

n3 
2 = 4�� lim
�→�

�
0

� d3k

�2��32k
	�ij −

kikj

k2 

���pi�ik� · r��2 1

E − H − k
pj�

+ �pi�ik� · r��
1

E − H − k
pj�− ik� · r���� .

�3.20�

The third contribution, EL3, originates from the relativistic
corrections to the coupling of the electron to the electromag-
netic field. These corrections can be obtained from the
Hamiltonian in Eq. �2.1�, and they have the form of a cor-
rection to the current

�ji = −
1

2
pip�2 +

1

2
�ijkjk� · r� +

i

4
�ijkpj −

1

4
�ij� jV .

�3.21�

The corresponding correction EL3 is

EL3 = 2e2� ddk

�2��d2k
	�ij −

kikj

k2 
��ji 1

E − H − k
pj� .

�3.22�

We now perform an angular averaging of the matrix element,
replace k in the numerator by E–H, and use commutator
relations to bring the correction EL3 into the form

EL3 = − 2e2d − 1

d
� ddk

�2��d2k

��	 pkp�2

2
+

d − 2

d − 1

�kl�lV

2

 1

E − H − k
pk� .

�3.23�

We again split this integral into two parts. In the first part
k��, one can approach the limit d=3, and in the second
part k�� one performs a 1/k expansion and obtains

EL3 =
�

�

�Z��6

n3 
3 −
4�

3�
� 1

2�
+

5

6
+ ln�1

2
�Z��−2��

�� 1

4
�� 2Vp�2 +

1

2
��� V�2� , �3.24�

where 
3 is the finite part of the integral

�

�

�Z��6

n3 
3 = −
4�

3�
lim
�→�

�
0

�

dkk

��	1

2
pip2 +

1

4
�ij� jV
 1

E − H − k
pi� .

�3.25�

This completes the treatment of the low energy part, which is

EL = EL1 + EL2 + EL3. �3.26�

C. Middle-energy part

We here consider the middle-energy part EM as the con-
tribution originating from photon momentum of the order of
the electron mass and electron momenta of order Z�. In this
momentum region, radiative corrections can be effectively
represented by electron form factors and higher-order struc-
ture functions. Electron form factors F1 and F2 modify the
coupling of the Dirac electron to the electromagnetic field
and the resulting effective Hamiltonian is given in Eq. �2.4�.
Here we assume that A� =0, A0 represents a static Coulomb

potential, and E� =−�� A0 is the electric field of the nucleus.
One finds a nonrelativistic expansion by the Foldy-
Wouthuysen transformation in Eq. �2.8�, and the resulting

Hamiltonian �see Eq. �2.9b�� after putting A� =0 and neglect-
ing F2�0�2 is

HFW =
p�2

2
+ eF1��� 2�A0 −

p�4

8
−

e

8
�F1��� 2� + 2F2��� 2��

���� · E� + 2�ijEipj� +
p�6

16
+

e

64
�3 + 4F2�0��

�p�2,�� · E� + 2�ijEipj� −
1 − 4F2�0�

32
e2E� 2. �3.27�

The leading �� /���Z��4 one-loop correction reads

EM0 = ���1�V� , �3.28�

where the “radiative potential” �V is defined as

�V = �F1��0� +
1

4
F2�0���� 2V +

F2�0�
2

�ij�iVpj , �3.29�

and the superscript �1� in Eq. �3.28� denotes the one-loop
component of �V. The expansion of Fi in powers of q2 is
obtained in Eq. �A3�. Using these results, one obtains

EM0 = −
1

6�

�

�
��� 2V� +

�

4�
��ij�iVpj� . �3.30�

Together with the low-energy part EL0 in Eq. �3.9�, this gives
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E0 � EL0 + EM0 =
�

�
�Z��4�10

9
+

4

3
ln��Z��−2���l0

n3

+
�

4�
��ij�iVpj� −

4�

3�

�Z��4

n3 ln k0, �3.31�

which is the well known leading �� /���Z��4 contribution to
the hydrogen Lamb shift.

Let us now consider the one-loop correction of relative
order �Z��2. The first contribution EM1 comes from the one-
loop form factors F1 and F2 in Eq. �2.9b� combined with the
relativistic correction to the wave function,

EM1 = 2���F1�
�1��0� +

1

4
F2

�1��0���� 2V

+
F2

�1��0�
2

�ij�iVpj� 1

�E − H��
HR�

+
F1�

�1��0� + 2F2�
�1��0�

8
��� 4V + 2i�ijpi�� 2Vpj�

+ F1�
�1��0���� 4V� −

F2
�1��0�
16

�p�2,�� 2V + 2�ij�iVpj��

+
F2

�1��0�
8

���� V�2� . �3.32�

By the superscript �1�, we denote the one-loop component of
the form factors, as given in Eq. �A2� in Appendix A.

The second contribution EM2 comes from an additional
term ��1�H in the NRQED Hamiltonian, see Eq. �2.10�,

��1�H = 	1

6
−

1

3�

�

�
��� V�2. �3.33�

The corresponding correction to the energy is

EM2 = ���1�H� , �3.34�

and the total EM contribution is

EM = EM1 + EM2. �3.35�

D. General one-loop result

We may now present the complete one-loop correction
��1�E up to the order �� /���Z��6. It is a sum of the low-
energy term EL given in Eq. �3.26�, the middle-energy term
EM in Eq. �3.35�, and the lower-order term E0 as defined in
Eq. �3.31�,

��1�E =
�

�

�Z��4

n3 ��10

9
+

4

3
ln��Z��−2���l0 −

4

3
ln k0� +

Z�2

4�
��ij�iVpj�

+
�

�
� �Z��6

n3 L + 	5

9
+

2

3
ln�1

2
�Z��−2�
��� 2V

1

�E − H��
HR� +

1

2
��ij�iVpj 1

�E − H��
HR�

+ 	 779

14 400
+

11

120
ln�1

2
�Z��−2�
��� 4V� + 	 23

576
+

1

24
ln�1

2
�Z��2�
�2i�ijpi�� 2Vpj�

+ 	589

720
+

2

3
ln�1

2
�Z��2�
���� V�2� +

3

80
�p�2�� 2V� −

1

8
�p�2�ij�iVpj�� . �3.36�

The first two terms corresponds to the ��Z��4 term in Eq.
�3.4�, whereas the latter terms give the ��Z��6 contribution.
The relativistic Bethe logarithm L, defined in Eq. �3.17�,
consists of a sum of 
1 defined in Eq. �3.16�, 
2 in Eq.
�3.20�, and 
3 in Eq. �3.25�. For the convenience of the
reader we briefly recall that all matrix elements should be
evaluated in d=3 spacetime dimensions, which implies

�� 2V → 4�Z��3�r� , �3.37a�

�ij�iVpj → Z�
�� · L�

r3 , �3.37b�

�ijpi�2Vpj → 4�Z�p� � ��3�r�p�� , �3.37c�

�ij� jV → Z�
r� � ��

r3 . �3.37d�

This concludes the calculation of the one-loop electron self-
energy. The matrix elements entering into Eq. �3.36� are
evaluated below in Secs. III E–III G for a number of hydro-
genic states and compared to results previously obtained in
the literature.

E. Results for D states

Our aim is to give a few numerical results for some phe-
nomenologically important hydrogenic states, based on the
general result �3.36�. For D states, the wave function behaves
at the origin as �r2. This means that a few matrix elements,

such as ��� 4V�, are actually vanishing. The following is a list
of the nonvanishing matrix elements for l=2:
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�nD�Z�

r3

1

�E − H��
p�4�nD� =

�Z��6

n3 	−
1118

7875
−

4

25n

+
86

105n2
 , �3.38a�

�nD�Z�

r3

1

�E − H��
Z�

r3 �nD� =
�Z��6

n3 	−
709

94 500
−

1

150n

+
1

105n2
 , �3.38b�

�nD� �Z��2

r4 �nD� =
�Z��6

n3

2�n2 − 2�
105n2 , �3.38c�

�nD�p�2Z�

r3 �nD� =
�Z��6

n3 	 4

105
−

1

7n2
 . �3.38d�

All of the above are evaluated on the nonrelativistic
Schrödinger wave function. They are finite so that one may
set the space dimension equal to three. The final results for
the different fine-structure sublevels are

A60�nD3/2� + A61�nD3/2�ln��Z��−2�

= L�nD3/2� −
157

30 240
−

3

80n
+

3007

37 800n2

+
4

315
	1 −

2

n2
ln	1

2
�Z��−2
 , �3.39a�

and

A60�nD5/2� + A61�nD5/2�ln��Z��−2�

= L�nD5/2� +
379

18 900
+

1

60n
−

1759

18 900n2

+
4

315
	1 −

2

n2
ln	1

2
�Z��−2
 . �3.39b�

They are in agreement with results reported previously in
Eqs. �12c� and �12d� of �13�. Values for L�nD3/2� and
L�nD5/2� can be found in Table 1 of Ref. �13�.

F. Results for P states

For P states, a few more of the matrix elements in Eq.
�3.36� are nonvanishing, and we have

�nP�Z�

r3

1

�E − H��
p�4�nP� =

�Z��6

n3 	−
346

135
−

4

3n
+

22

5n2
 ,

�3.40a�

�nP�Z�

r3

1

�E − H��
Z�

r3 �nP� =
�Z��6

n3 	−
227

540
−

1

6n
+

1

5n2
 ,

�3.40b�

�nP� �Z��2

r4 �nP� =
�Z��6

n3

2�3n2 − 2�
15n2 , �3.40c�

�nP�p�2Z�

r3 �nP� =
�Z��6

n3 	4

5
−

13

15n2
 , �3.40d�

�nP��� 2�4��Z���3�r���nP� =
�Z��6

n3

8

3
	1 −

1

n2
 ,

�3.40e�

�nPJ�i�ijpi�4��Z���3�r��pj�nPJ�

= �nPJ��� · L� �nPJ�
4

3

�Z��6

n3

�1 − n2�
n2 . �3.40f�

The results for the different fine-structure sublevels are

A60�P1/2� + A61�P1/2�ln��Z��−2�

= L�nP1/2� +
637

1800
−

1

4n
−

767

5400n2

+ 	11

15
−

29

45n2
ln	1

2
�Z��−2
 , �3.41a�

and

A60�P3/2� + A61�P3/2�ln��Z��−2�

= L�nP3/2� +
2683

7200
+

1

16n
−

2147

5400n2

+ 	2

5
−

14

45n2
ln	1

2
�Z��−2
 . �3.41b�

As for D states, the values for L�nP1/2� and L�nP3/2� can
then be found in Table 1 of �13�, and the polynomials in n−1

which are part of the above results are consistent with those
reported in Eqs. �12a� and �12b� of Ref. �13�.

G. Results for the normalized difference of S states

Considering the following matrix elements for l=0 of the
S state normalized difference ��·��, as defined in Eq. �3.3�, we
obtain

��4��Z���3�r�
1

�E − H��
p�4��

= 32�Z��6�−
1

4
−

1

n
+

5

4n2 + � + ��n� − ln n� ,

�3.42a�

��4��Z���3�r�
1

�E − H��
4��Z���3�r���

= 16�Z��6�1 −
1

n
+ � + ��n� − ln n� , �3.42b�

���� 2�4��Z���3�r���� = 8�Z��61 − n2

n2 , �3.42c�
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�� �Z��2

r4 �� = 8�Z��6�−
2

3
+

1

2n
+

1

6n2 + � + ��n� − ln n� .

�3.42d�

Here, �=0.577 216¯ is Euler’s constant. One finally obtains
the following result for the general normalized difference of
the self-energy for S states:

A60�nS� − A60�1S� + �A61�nS� − A61�1S��ln��Z��−2�

= L�nS1/2� − L�1S1/2� −
16 087

5400
+

263

60n
−

7583

5400n2

+
163

30
�� + ��n� − ln n� + ln	1

2
�Z��−2


��−
103

45
+

4

n
−

77

45n2 + 4�� + ��n� − ln n�� .

�3.43�

Here, ��x�=���x� /��x� is the logarithmic derivative of the
Euler gamma function. Values for A60�nS1/2� in the range
n=1, . . . ,8 have been obtained using the above formula
�3.43� and a generalization of methods used previously for
states with nonvanishing angular momentum quantum num-
bers �see Table I�.

One observes the somewhat irregular behavior of 
1 as a
function of n, which is partially compensated by the other
contributions to A60. Compared to other families of states
with the same angular momenta but varying principal quan-
tum number �13�, the A60 for S states display a rather unusual
behavior as a function of n, with a minimum between n=2
and n=3. The calculations of the relativistic Bethe loga-
rithms L, for higher excited S states, are quite involved and
will be described in detail elsewhere. The value for 1S as
reported in Table I represents an improved result �with a
numerically small correction� as compared to the result com-
municated in Ref. �8�, as already detailed in �14�. For n�3,
the results for A60 have not appeared in the literature to the
best of our knowledge. The results for n=3 and n=4 are

consistent with numerical results for the self-energy remain-
der function as reported in Ref. �15� for these states.

IV. TWO-LOOP ELECTRON SELF-ENERGY

A. Calculation

The two-loop bound-state energy shift, for the states un-
der investigation here, can be written as

��2�E = 	�

�

2 �Z��4

n3 B40 + �Z��2�B62 ln2��Z��−2�

+ B61 ln��Z��−2� + B60�� . �4.1�

Here, the indices of the coefficients indicate the power of Z�
and the power of the logarithm, respectively. The coefficient
B40 is well known �for reviews see, e.g., �11,12��, and we
focus here on general expressions for the �2�Z��6 coeffi-
cient. We split the calculation into four parts, labeled i–iv
according to the subsets of diagrams in Figs. 1–4. This en-
tails a separation of the two-loop energy shift according to

��2�E = ��2�Ei + ��2�Eii + ��2�Eiii + ��2�Eiv. �4.2�

The specific contributions will be considered subsequently in
the following sections of this article. The B coefficients cor-
responding to the subsets i–iv will be distinguished using
appropriate superscripts.

We first focus on the pure two-loop self-energy diagrams
as shown in Fig. 1 and denote the corresponding energy
shifts and B coefficients by a superscript i. As compared to
the one-loop case treated in Sec. III, the two-loop calculation
involves a few more terms with regard to the form factor
contributions. However, as it has been stressed in Refs.
�16,17�, the leading order of the two-loop low-energy part is
already �� /��2�Z��6, so there are no relativistic or quadru-
pole corrections to include at this energy scale. More pre-
cisely, we split the two-loop contribution into four parts �4�

��2�Ei = EL + EM + EF + EH. �4.3�

Here, the contributions EL, EM, and EH are appropriately
redefined for the two-loop problem �cf. Eq. �3.2� for the one-

TABLE I. Detailed breakdown of the contributions to A60�nS�, obtained with the help of Eq. �3.43�. The results for A60�1S� and A60�2S�
are obtained here with an increased accuracy as compared to Ref. 8. The generalized Bethe logarithms 
1, 
2, and 
3 are defined in Eqs.
�3.16�, �3.20�, and �3.25�, respectively. The contribution H is a contribution to A60 from high-energy virtual photons, given in Eq. �5.116� of
Ref. 8 for the 1S state and generalized to arbitrarily high principal quantum numbers using Eq. �3.43�. We have A60�nS�=L�nS�+H�nS� and
recall that L=�i=1

3 
i.

n 
1�nS� 
2�nS� 
3�nS� L�nS� H�nS� A60�nS�

1 −3.268 213 21�1� −40.647 026 69�1� 16.655 330 43�1� −27.259 909 48�1� −3.664 239 98 −30.924 149 46�1�
2 −6.057 407 04�1� −39.829 658 28�1� 17.536 099 97�1� −28.350 965 35�1� −3.489 499 74 −31.840 465 09�1�
3 −6.213 948�1� −39.669 430�1� 17.656 995�1� −28.226 383�1� −3.476 117 −31.702 501�1�
4 −6.167 093�1� −39.611 903�1� 17.695 346�1� −28.083 650�1� −3.478 272 −31.561 922�1�
5 −6.100 341�1� −39.584 944�1� 17.712 334�1� −27.972 951�1� −3.482 442 −31.455 393�1�
6 −6.039 851�1� −39.570 199�1� 17.721 349�1� −27.888 701�1� −3.486 429 −31.375 130�1�
7 −5.988 793�1� −39.561 272�1� 17.726 711�1� −27.823 354�1� −3.489 870 −31.313 224�1�
8 −5.946 180�1� −39.555 462�1� 17.730 161�1� −27.771 481�1� −3.492 776 −31.264 257�1�
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loop case�. We use definitions local to the current section for
the specific contributions.

The two-loop EH is a high-energy part given by a two-
loop forward scattering amplitude with three Coulomb verti-
ces. Because it leads to a local potential �proportional to a
Dirac � in coordinate space�, the term EH does not contribute
to the energy of states with l�0 or to the normalized differ-
ence of S states. So, we will not consider this contribution
here. For S states, this term gives an n independent contribu-
tion to the nonlogarithmic term B60.

The form-factor contribution EF corresponds to an inte-
gration region where both photon momenta are of the order
of the electron mass, but the electron momentum is of the
order of Z�. This part is the sum of two terms

EF = EF1 + EF2. �4.4�

The first term EF1 comes from two-loop form factors, in the
same way as the one-loop EM1 �see Eq. �3.32��. It contains
additionally an iteration of the one-loop potential ��1�V and
the term proportional to 2 from Eq. �2.9b�

EF1 = ���2�Vi� + 2���2�Vi 1

�E − H��
HR�

+
F�1

�2��0� + 2F�2
�2��0�

8
��� 4V + 2i�ijpi�� 2Vpj� + F�1

�2��0�

���� 4V� −
F2

�2��0�
16

�p�2,�� 2V + 2�ij�iVpj��

+
F2

�2��0� + �F2
�1��0��2

8
���� V�2� + ���1�V

1

�E − H��
��1�V� .

�4.5�

The two-loop form factors are given in Eq. �A3� below, and
��1�V ,��2�V are the one- and two-loop components, respec-
tively, of the potential given in Eq. �3.29�. The explicit form
of ��2�Vi can be found in Eq. �4.20� below.

EF2 comes from the low-energy two-loop scattering am-
plitude and is the analog of the one-loop EM2 in Eq. �3.34�.
The effective interaction is

��2�H = ��2���� V�2, �4.6�

where ��2� is defined in Eq. �B12b� below. It is assumed that
vacuum polarization diagrams do not contribute in the cur-
rent section to form factors as well as to �. The energy shift
due to ��2�H is

EF2 = ���2�H� . �4.7�

It is a remarkable fact that this two-loop scattering-amplitude
contribution is infrared finite, in contrast to the correspond-
ing one-loop result in Eq. �3.34�.

For the two-loop problem, we redefine EM to be the con-
tribution where one of the photon momenta is of the order of
the electron mass, the second photon momentum is of order
�Z��2, and the electron momenta are of order Z�. In the
spirit of NRQED, the contribution coming from large photon
momenta is accounted for by form factors. Therefore EM is

given by the correction to Bethe logarithms coming from
one-loop form factors. It is a sum of two parts

EM = EM1 + EM2. �4.8�

The contribution EM1 is similar to the one-loop term EL1 with
HR replaced by ��1�V

EM1 = e2� ddk

�2��d2k

d − 1

d
���1�V�p�

1

E − H − k
p�� . �4.9�

We calculate it by splitting the integral in two parts k��
and k�� in analogy to the one-loop case,

EM1 = e2�
0

� ddk

�2��d2k

d − 1

d
���1�V�p�

1

E − H − k
p��

+
�

�

�

2
��†p� ,���1�V,p��‡� + 2���1�V

1

�E − H��
�2V�� ,

�4.10�

where

� =
1

3�
+ �5

9
−

2

3
ln�2�Z��2�� + ��28

27
−

2

3
��2�

+
10

9
ln	1

2
�Z��−2
 +

2

3
ln2	1

2
�Z��−2
� . �4.11�

We have not approached the limit d=3 in the first part, be-
cause ��1�V contains 1/�. It will eventually cancel when
combined with EL, and only then one approaches this limit.
EM2 is similar to the one-loop EL3 and comes from the F2�0�
correction to the coupling with the radiation field,

HFW = −
e

4
�ijBij�1 + F2�0��

−
e

8
�1 + 2F2�0���� · E� + �ij�Ei� j + � jEi�� ,

�4.12�

which yields

�ji =
F2

�1��0�
2

�ik�k� · r�kk + ikpk − �kV� � −
�

�

2d − 3

4�d − 1�
�ik�kV .

�4.13�

The corresponding correction EM2 is

EM2 = 2e2� ddk

�2��d2k
	�ij −

kikj

k2 
��ji 1

E − H − k
pj�

= −
1

2
	�

�

2�

0

�

dkk��ij� jV
1

E − H − k
pi� , �4.14�

and this integral in �Z��6 order does not depend on the cutoff
in the limit �→�, when one drops the linear term in �.

The low-energy part EL, appropriately redefined for the
two-loop problem, is a contribution from two low-energy
photon momenta, ki��Z��2. Its explicit expression is rather
long
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EL = �e2� ddk1

�2��d2k1

d − 1

d
��e2� ddk2

�2��d2k2

d − 1

d
�P�k1,k2� ,

P�k1,k2� = �pi 1

E − �H + k1�
pj 1

E − �H + k1 + k2�
pi 1

E − �H + k2�
pj� +

1

2
�pi 1

E − �H + k1�
pj 1

E − �H + k1 + k2�
pj 1

E − �H + k1�
pi�

+
1

2
�pi 1

E − �H + k2�
pj 1

E − �H + k1 + k2�
pj 1

E − �H + k2�
pi� + �pi 1

E − �H + k1�
pi 1

�E − H��
pj 1

E − �H + k2�
pj�

−
1

2
�pi 1

E − �H + k1�
pi��pj 1

�E − �H + k2��2 pj� −
1

2
�pi 1

E − �H + k2�
pi��pj 1

�E − �H + k1��2 pj�
+ �pi 1

E − �H + k1�
1

E − �H + k2�
pi� −

1

k1 + k2
�pi 1

E − �H + k2�
pi� −

1

k1 + k2
�pi 1

E − �H + k1�
pi� . �4.15�

We calculate EL by splitting both integrals in a way similar to the derivation presented in �4�,

EL = 	�

�

2 �Z��6

n3 bL + e2�
0

� ddk2

�2��d2k2

d − 1

d

�

�

�

2
��2V�p�

1

E − H − k
p�� + ��

�

�

2
�2���� 2V

1

�E − H��
�� 2V� +

1

2
��� 4V�� .

�4.16�

Here, the two-loop Bethe logarithm bL is obtained as the finite part of the integral

�Z��6

n3 bL =
4

9
�

0

�1

dk1k1�
0

�2

dk2k2P�k1,k2� , �4.17�

where it is assumed that the following limits are performed in order: first d→3, next �2→�, and finally �1→� in the above.
This definition of bL corresponds to the one in Refs. �16,17�.

B. General result for the pure two-loop self-energy

The pure two-loop self-energy contribution up to the order �2�Z��6, denoted ��2�Ei �see Fig. 1�, may now be obtained as the
sum of EF+EM +EL. With the partial results given in Eqs. �4.4�, �4.8�, and �4.15�, respectively, we obtain

��2�Ei = ���2�Vi� + 	�

�

2 �Z��6

n3 �bL + 	10

9
+

4

3
ln�1

2
�Z��−2�
N + 
4 + 
5� + �VI

1

�E − H��
VI� + 2���2�Vi 1

�E − H��
HR�

+ 	�

�

2� 31

256
+

3

16
��2�ln�2� −

5

32
��2� −

3

64
��3���p2,�� 2V + 2�ij�iVpj�� + 	�

�

2�−

559

1152
+

17

8
��2�ln�2� −

41

72
��2�

−
17

32
��3������ V�2� + 	�

�

2�−

3295

41 472
+

9

10
��2�ln�2� −

4063

14 400
��2� −

9

40
��3� +

5

54
ln	1

2
�Z��−2
 +

1

18
ln2	1

2
�Z��−2
�

���� 4V� + 	�

�

2�−

3059

23 040
−

1

5
��2�ln�2� +

1321

5760
��2� +

1

20
��3� +

1

24
ln	1

2
�Z��−2
��2i�ijpi�� 2Vpj� . �4.18�

Here, the first term ���2�Vi� is of lower order ��2�Z��4�, and

VI =
�

�
��� 2V

4
	10

9
+

4

3
ln�1

2
�Z��−2�
 +

�ij

4
�iVpj� , �4.19�

��2�Vi = 	�

�

2��−

163

288
+

9

4
��2�ln 2 −

85

144
��2� −

9

16
��3���� 2V + �−

31

32
−

3

2
��2�ln 2 +

5

4
��2� +

3

8
��3���ij�iVpj� . �4.20�

The various generalized Bethe logarithms that enter into Eq. �4.18� are given as follows �with the implicit assumption that
polynomial divergences as well as logarithmic ones for large �=� / �Z��2 are dropped�
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�Z��6

n3 N =
2

3
Z��

0

�

dkk���3�r��p�
1

E − H − k
p�� ,

�4.21a�

�Z��6

n3 
4 =
2

3
�

0

�

dkk���ij�iVpj/4��p�
1

E − H − k
p�� ,

�4.21b�

�Z��6

n3 
5 =
2

3
�

0

�

dkk�−
3

4
�ij� jV

1

E − H − k
pi� ,

�4.21c�

The N term has previously been defined in Refs. �16,4�; it is
generated by a Dirac delta correction to the Bethe logarithm.
All the explicit matrix element occurring in the formula
�4.18� can be calculated, using standard techniques, for arbi-
trary hydrogenic states with nonvanishing angular momen-
tum, and for the normalized difference �3.3� of S states. The
evaluation of the generalized Bethe logarithms N, 
4, and 
5
is more complicated �see Refs. �13,18��. The calculation of
the two-loop Bethe logarithm bL for arbitrary excited hydro-
genic states is a challenging numerical problem. So far re-

sults have been obtained only for excited S states �16,17�.
The formula �4.18� thus provides the basis for complete two-
loop calculations in the order �2�Z��6, and reduces the re-
maining part of the problem, for a general hydrogenic state,
to well defined and in essence merely technical numerical
calculations. In the following sections we discuss the evalu-
ation of the formula �4.18� for particular hydrogenic states
for which the generalized Bethe logarithms can be inferred
from previous calculations. These comprise the fine-structure
difference of D and P states, and the normalized difference
for S states.

C. Results for the fine-structure difference of D states

For D states, we use the general result �4.18� and the fact
that matrix elements involving a Dirac delta function vanish.
Thus, logarithmic terms for D levels vanish, B61

i �D3/2�
=B61

i �D5/2�=0. The absence of logarithmic terms even holds
for the sum of all two-loop diagrams �not only for the subset
i�, and even for arbitrary states with orbital angular momen-
tum l�2. This result generalizes the well known fact that the
double-logarithmic contribution B62 vanishes for states with
l�2 �19,20�. For the fine-structure difference of B60

i , we use
the result in Eq. �4.18� and the matrix elements in Eq. �3.38�,
to obtain

B60
i �D5/2 − D3/2� = −

38 497

403 200
−

133

640n
+

895

1344n2 + 	−
3817

25 200
−

13

40n
+

29

28n2
��2�ln�2� + 	 3817

30 240
+

13

48n
−

145

168n2
��2�

+ 	 3817

100 800
+

13

160n
−

29

112n2
��3� + 
4�D5/2 − D3/2� + 
5�D5/2 − D3/2� . �4.22�

Numerical data for B60�D5/2−D3/2� can be found in Table II.
The unknown two-loop Bethe logarithm bL�nD� does not
contribute to the fine-structure difference of D states.

D. Results for the fine-structure difference of P states

We again use the fact that the unknown two-loop Bethe
logarithm bL does not contribute to the fine-structure differ-
ence of P states. With the help of the general result in Eq.

�4.18� and the matrix elements in Eq. �3.40�, we obtain

B61�P3/2 − P1/2� = −
1

3
	1 −

1

n2
 �4.23�

in agreement with the literature �21� and

TABLE II. Numerical values for the pure two-loop self-energy diagrams as shown in Fig. 1. The B60 coefficients receive a
superscript i.

n B60
i �D5/2−D3/2� B60

i �P3/2− P1/2� bL�nS� N�nS� R�n� B60
i �nS�−B60

i �1S�

1 −81.4�3� 17.855 672 03�1�
2 −0.361 196 −66.6�3� 12.032 141 58�1� −0.671 347 14.1�4�
3 −0.018 955 −0.410 149 −63.5�6� 10.449 809�1� −1.041 532 16.9�7�
4 −0.022 253 −0.419 927 −61.8�8� 9.722 413�1� −1.254 980 18.3�10�
5 −0.023 395 −0.420 828 −60.6�8� 9.304 114�1� −1.392 573 19.4�11�
6 −0.023 826 −0.419 339 −59.8�8� 9.031 832�1� −1.488 456 20.1�11�
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B60
i �P3/2 − P1/2� = −

217

1280
−

151

128n
+

325

288n2 + 	1

3
−

1

3n2
ln�2�

+ 	−
103

240
−

15

8n
+

37

20n2
��2�ln�2�

+ 	−
23

160
+

25

16n
−

749

720n2
��2�

+ 	103

960
+

15

32n
−

37

80n2
��3�

+ 
4�P3/2 − P1/2� + 
5�P3/2 − P1/2� . �4.24�

Numerical values of the relevant quantities for n=2, . . . ,6
can be found in Table II. They are in full agreement with
results previously obtained in �21�. The generalized Bethe
logarithms 
4 and 
5 in these expressions are equivalent to
the quantities �fs�4�n� and �fs�5�n� as defined in Ref. �21�.
In the context of the current investigation, the numerical val-
ues of �fs�4�n� and �fs�5�n� were reevaluated with improved
accuracy as compared to Ref. �22� and the data in Table II
are consistent with them.

E. Results for the normalized difference of S states

We evaluate the general formula given in Eq. �4.18� for
the normalized difference of S states, using the matrix ele-
ments given in Eq. �3.42�. In the result, we identify terms
with the square of the logarithm ln��Z��−2� �B62

i coefficient�,

and with single logarithm �B61
i coefficient�, and the nonloga-

rithmic term B60
i . The results discussed here probably are the

phenomenologically most important ones reported in this pa-
per, because of the high accuracy of two-photon spectro-
scopic experiments which involve S-S transitions.

For the double-logarithmic term, we recover the following
known result �see Refs. �4,23��:

B62
i �nS� − B62

i �1S� =
16

9
	3

4
+

1

4n2 −
1

n
+ � − ln�n� + ��n�
 .

�4.25�

Here � denotes the logarithmic derivative of the gamma
function, and �=0.577 216¯ is Euler’s constant. The result
for B61, restricted to the two-loop diagrams in Fig. 1, reads

�4,23�

B61
i �nS� − B61

i �1S� =
4

3
�N�nS� − N�1S�� + 	80

27
−

32

9
ln 2


�	3

4
−

1

n
+

1

4n2 + � − ln�n� + ��n�
 .

�4.26�

This result is recovered here from Eq. �4.18�, using the ma-
trix elements in Eq. �3.42�. Moreover, we obtain the com-
plete n dependence of the nonlogarithmic term B60

i

B60
i �nS� − B60

i �1S� = bL�nS� − bL�1S� + 	10

9
−

4

3
ln�2�
�N�nS� − N�1S�� +

10 529

5184
−

14 099

2592n
+

17 699

5184n2 + 	4

3
−

16

9n
+

4

9n2
ln2�2�

+ 	−
20

9
+

80

27n
−

20

27n2
ln�2� + 	−
53

15
+

35

2n
−

149

30n2
��2�ln�2� + 	1357

2700
−

167

36n
+

2792

675n2
��2� + 	53

60
−

35

8n

+
419

120n2
��3� + 	−
497

1296
+

16

9
ln2�2� −

80

27
ln�2� + 8��2�ln�2� −

79

36
��2� − 2��3�
�� + ��n� − ln�n�� .

�4.27�

The generalized Bethe logarithms 
4 and 
5, which make an
occurrence in Eq. �4.18� but are not present in Eq. �4.27�,
vanish for S states. The result �4.27� can also be written as

B60
i �nS� − B60

i �1S� = bL�nS� − bL�1S� + R�n� , �4.28�

which provides a definition of the remainder R�n�. Numerical
values for bL�nS�, N�nS�, R�n� and the normalized S state
difference B60

i �nS�–B60
i �1S� are given in Table II, and we

have the opportunity to correct a calculational error for

N�2S� whose value had previously been given as 12.032 209
in �18�.

V. FERMION LOOP IN THE SELF-ENERGY PHOTON
LINE

We here calculate the mixed self-energy vacuum-
polarization diagram in Fig. 2. The result can be easily in-
ferred from the terms in square brackets in Eqs. �4.6�, �A3�,
and �B12�, and reads
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��2�Eii = ���2�Vii� + 2���2�Vii 1

�E − H��
HR�

+ 	�

�

2�−

119

576
+

1

8
��2���p2,�� 2V + 2�ij�iVpj��

+ 	�

�

2��119

288
−

1

4
��2������ V�2�

+ �−
4511

51 840
+

65

1152
��2����� 4V�

+ � 2633

10 368
−

175

1152
��2���2i�ijpi�� 2Vpj�� , �5.1�

where

��2�Vii = 	�

�

2��−

7

324
+

5

144
��2���� 2V

+ �119

72
− ��2���ij�iVpj� . �5.2�

is a radiative potential in the sense of Eq. �3.29�, but includes
here only the vacuum polarization part of form factors. We
observe the absence of ln�Z�� terms.

Numerical values for S, P, and D states can now be ob-
tained using matrix elements in Eqs. �3.38�, �3.40�, and
�3.42�. For the fine-structure intervals, we obtain

B60
ii �D5/2 − D3/2� =

64 889

388 800
+

1547

4320n
−

493

432n2

+ 	−
3817

37800
−

13

60n
+

29

42n2
��2� ,

�5.3�

B60
ii �P3/2 − P1/2� =

5293

25 920
+

595

288n
−

2867

1620n2

+ 	−
11

80
−

5

4n
+

781

720n2
��2� . �5.4�

Considering S states, as is evident from Eq. �5.1�, using the
matrix elements in Eq. �3.42�, the normalized difference of
B61

ii vanishes, B61
ii �nS�−B61

ii �1S�=0, and this result is in agree-
ment with the literature. For the normalized n dependence of
B60

ii , we obtain the following result.

B60
ii �nS� − B60

ii �1S� = −
21 319

6480
+

1015

648n
+

1241

720n2 + 	301

144

−
31

36n
−

59

48n2
��2� + �1099

324
−

77

36
��2��

��� + ��n� − ln�n�� . �5.5�

Numerical values are presented in Table III.

VI. COMBINED SELF-ENERGY WITH A FERMION LOOP
IN THE COULOMB PHOTON LINE

The Feynman diagrams in Fig. 3 represent the modifica-
tion of a leading one-loop self-energy correction by a per-
turbing Uehling potential VU=−�4/15���Z���d�r�
=−�� /15���� 2V. One can easily obtain the result from
EL0+EM0 in Eqs. �3.9� and �3.30�, by replacing the Coulomb
potential V by V+VU, and expanding all matrix elements in
VU, up to the linear terms. The result is

��2�Eiii = −
4

15
	�

�

2 �Z��6

n3 N −
1

15
	�

�

2�5

9
+

2

3
ln	1

2
�Z��−2
�

���� 2V	 1

E − H

�

�� 2V� −
1

120
	�

�

2

�2i�ijpi�� 2Vpj�

− 	�

�

2� 1

54
+

1

45
ln	1

2
�Z��−2
���� 4V� . �6.1�

Here, N is a correction to the Bethe logarithm as defined in
Eq. �4.21a�. All matrix elements in this result vanish for D
states and for states with higher angular momenta. The ab-
sence of both logarithmic as well as nonlogarithmic terms
holds from subset iii holds for arbitrary states with orbital
angular momentum l�2. For P states, we obtain the fine-
structure difference B61

iii �nP3/2�−B61
iii �nP1/2�=0, in agreement

with the literature. For the nonlogarithmic term, we obtain

B60
iii �nP3/2� − B60

iii �nP1/2� =
1

15
	1 −

1

n2
 . �6.2�

As a last example, we consider the S state normalized differ-
ence defined in Eq. �3.3� using the matrix elements given in
�3.42�. For the double-logarithmic term, we recover the
known result B62

iii �nS�=0 �see Refs. �4,23��. The result for B61
iii

reads �4,23�

TABLE III. Values of the fine structure for D and P states and normalized difference of S states coming
from fermion loop diagrams in Fig. 2.

n B60
ii �D5/2−D3/2� B60

ii �P3/2− P1/2� B60
ii �nS�−B60

ii �1S�

2 −0.013 435 0.109 999

3 0.000 757 −0.017 089 0.114 502

4 0.000 878 −0.018 613 0.110 743

5 0.000 915 −0.019 431 0.106 566

6 0.000 925 −0.019 935 0.102 982
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B61
iii �nS� − B61

iii �1S� = −
32

45
	3

4
+

1

4n2 −
1

n
+ � + ��n� − ln�n�
 .

�6.3�

This result is recovered here from Eq. �6.1�. Moreover, we
obtain the complete n dependence of the nonlogarithmic
term B60

iii :

B60
iii �nS� − B60

iii �1S� = −
4

15
�N�nS� − N�1S�� −

4

9
+

16

27n
−

4

27n2

+ 	 8

15
−

32

45n
+

8

45n2
ln�2�

+ 	−
16

27
+

32

45
ln�2�
�� + ��n� − ln�n�� .

�6.4�

Using this formula, it is then possible to infer the values of
B60

iii �nS�−B60
iii �1S� as given in Table IV.

VII. PURE TWO-LOOP VACUUM POLARIZATION

We investigate the subset of Feynman diagrams in Fig. 4.
The vacuum polarization correction to the Coulomb potential
is

−
4�Z�

q�2 → −
4�Z�

q�2

1

�1 + �̄�− q�2��

= −
4�Z�

q�2 �1 − �̄�− q�2� + �̄�− q�2�2 + ¯ � ,

�7.1�

where the one- and two-loop parts read �24,25� as follows:

�̄�− q�2� = �̄�1��− q�2� + �̄�2��− q�2� + ¯ ,

�̄�1��− q�2� = 	�

�

�− q�2�	 1

15
−

q�2

140
+ ¯ 
 , �7.2�

�̄�2��− q�2� = 	�

�

2

�− q�2�	 41

162
−

449q�2

10 800
+ ¯ 
 . �7.3�

In the integral representation for �̄�2� given in Eqs. �15� and
�16� of Ref. �8�, one should make the replacement
ln��1+�� / �1−���→ ln��1+�� / �1−���ln��1+�� /2� in order to

correct for a typographical error in an intermediate step of
this calculation. In the coordinate space, the correction be-
comes

Vvp = �− �̄��2� + �̄��2�2 + ¯ �V . �7.4�

The contributions to the energy involves the first and second
order matrix element together with relativistic corrections,

�E = �Vvp� + �Vvp
1

�E − H��
Vvp� + 2�Vvp

1

�E − H��
HR�

+
1

8
��2�Vvp� + 2�ij�i�Vvp�pj� . �7.5�

The two-loop part of this expression reads

��2�Eiv = −
41

162
	�

�

2

��� 2V�

−
953

16 200
	�

�

2��� 2V

1

�E − H��
�� 2V�

+
41

648
	�

�

2��� 2V

1

�E − H��
p�4�

−
41

1296
	�

�

2

�2i�ijpi�� 2Vpj� −
557

8100
	�

�

2

��� 4V� .

�7.6�

The first term in this result corresponds to the �2�Z��4 term
in Eq. �4.1�. The remaining terms give the B60

iv coefficient.
We first notice the complete absence of logarithmic terms

in the result �7.6�. All matrix elements in �7.6� vanish for D
states and for states with higher angular momenta, in the
order of �2�Z��6. The fine-structure difference of the non-
logarithmic term for P states is as follows:

B60
iv �nP3/2� − B60

iv �nP1/2� =
41

162
	1 −

1

n2
 . �7.7�

The n dependence of the nonlogarithmic term B60
iv is as fol-

lows:

B60
iv �nS� − B60

iv �1S�

= −
1817

2025
−

2194

2025n
+

1337

675n2 +
2194

2025
�� + ��n� − ln�n�� .

�7.8�

This completes our investigation of the subset iv.

VIII. TOTAL RESULT FOR ALL TWO-LOOP DIAGRAMS

The two-loop subsets i–iv �see Figs. 1–4� have been con-
sidered in Secs. IV–VII. We are now in the position to add
the results given in Eqs. �4.18�, �5.1�, �6.1�, and �7.6�, and to
present a general expression for the complete two-loop cor-
rection to the Lamb shift, including the vacuum-polarization
terms, valid for general hydrogenic bound states with nonva-
nishing angular momenta, and for the normalized difference
of S states. This general result reads

TABLE IV. Values of the difference B60
ii �nS�−B60

ii �1S� for the
diagrams in subset iii.

n B60
ii �nS�−B60

ii �1S�

2 1.491 199

3 1.890 577

4 2.072 903

5 2.177 348

6 2.245 177
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��2�E = ��2�Ei + ��2�Eii + ��2�Eii + ��2�Eiv

= 	�

�

2 �Z��4

n3 B40 + �Z��2
†B62 ln2��Z��−2� + B61 ln��Z��−2� + B60‡�

= 	�

�

2�−

2179

2592
+

9

4
��2�ln 2 −

5

9
��2� −

9

16
��3����� 2V� + �197

288
−

3

2
��2�ln 2 +

1

4
��2� +

3

8
��3����ij�iVpj�

+ 	�

�

2 �Z��6

n3 �bL + 
4 + 
5 + 	38

45
+

4

3
ln�1

2
�Z��−2
�N� + 	�

�

2�−

42 923

259 200
+

9

16
��2�ln�2� −

5��2�
36

−
9��3�

64

+
19

135
ln	1

2
�Z��−2
 +

1

9
ln	1

2
�Z��−2
���� 2V

1

�E − H��
�� 2V� + 	�

�

2� 2179

10 368
−

9

16
��2�ln�2� +

5

36
��2� +

9

64
��3��

���� 2V
1

�E − H��
p�4� + 	�

�

2�−

197

1152
+

3

8
��2�ln�2� −

1

16
��2� −

3

32
��3���p�4 1

�E − H��
�ij�iVpj�

+ 	�

�

2�233

576
−

3

4
��2�ln�2� +

1

8
��2� +

3

16
��3����ij�iVpj 1

�E − H��
�ij�iVpj� + 	�

�

2�−

197

2304
+

3

16
��2�ln�2�

−
1

32
��2� −

3

64
��3���p�2,�� 2V + 2�ij�iVpj�� + 	�

�

2�−

83

1152
+

17

8
��2�ln�2� −

59

72
��2� −

17

32
��3������ V�2�

+ 	�

�

2�−

87 697

345 600
+

9

10
��2�ln�2� −

2167

9600
��2� −

9

40
��3� +

19

270
ln	1

2
�Z��−2
 +

1

18
ln	1

2
�Z��−2
���� 4V�

+ 	�

�

2�−

16 841

207 360
−

1

5
��2�ln�2� +

223

2880
��2� +

1

20
��3� +

1

24
ln	1

2
�Z��−2
��2i�ijpi�� 2Vpj� . �8.1�

The third line in the above equation corresponds to the
lower-order �2�Z��4 contribution �B40 coefficient�. We now
turn to the evaluation of this expression for S states. The sum
of the contributions in Eqs. �4.27�, �5.5�, �6.4�, and �7.8�
corresponds to the sum of all the matrix elements in Eq.
�8.1�, evaluated for the normalized difference of S states. The
logarithmic terms �4� have already been verified for the nor-

malized difference. The n dependence of the total nonloga-
rithmic term may be expressed as

B60�nS� − B60�1S� = bL�nS� − bL�1S� + A�n� , �8.2�

where A�n� is an additional contribution beyond the n depen-
dence of the two-loop Bethe logarithm, defined in analogy to
Eq. �4.28�. The result for A is

A�n� = 	38

45
−

4

3
ln�2�
�N�nS� − N�1S�� −

337 043

129 600
−

94 261

21 600n
+

902 609

129 600n2 + 	4

3
−

16

9n
+

4

9n2
ln2�2�

+ 	−
76

45
+

304

135n
−

76

135n2
ln�2� + 	−
53

15
+

35

2n
−

419

30n2
��2�ln�2� + 	28 003

10 800
−

11

2n
+

31 397

10 800n2
��2�

+ 	53

60
−

35

8n
+

419

120n2
��3� + 	37 793

10 800
+

16

9
ln2�2� −

304

135
ln�2� + 8��2�ln�2� −

13

3
��2� − 2��3�
�� + ��n� − ln�n�� .

�8.3�

Numerically, A�n� is found to be much smaller than
bL�nS�−bL�1S�, as shown in Table VI. This implies that the
numerically most important contribution to B60�nS�

−B60�1S� is exclusively due to the two-loop Bethe logarithm.
The theoretical uncertainty of B60�nS�−B60�1S�, for higher
excited nS states, is caused entirely by the numerical uncer-
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tainty of the two-loop Bethe logarithm bL�nS�, with explicit
data for higher excited states taken from Ref. �17�.

For the fine-structure difference of D states, the total two-
loop results is obtained by evaluating the general result in
Eq. �8.1� on D states, or alternatively by adding just the
contributions from subsets i and ii �see Eqs. �4.22� and
�5.3��, because the subsets iii and iv do not contribute to the
D fine structure. For the P-state fine structure, the sum of the
results in Eqs. �4.24�, �5.4�, �6.2�, and �7.7� gives the com-
plete result, including the nonlogarithmic term B60. It has
already been stressed that in order to determine the absolute
value of B60 for P and D states, an evaluation of the Bethe
logarithm bL for these states would be required, and its
knowledge is currently restricted to S states.

Despite this, we may evaluate general logarithmic terms
for P and D states. For D states and states with higher an-
gular momenta, a direct evaluation of Eq. �8.1� immediately
reveals that the logarithmic terms vanish,

B62�nD� = B61�nD� = 0. �8.4�

The same holds for any hydrogenic states with orbital angu-
lar momentum l�2. For P states, an evaluation of �8.1� con-
firm that

B62�nP� =
4

27

n2 − 1

n2 . �8.5�

Furthermore, the logarithmic terms are

B61�nP1/2� =
4

3
N�nP� +

n2 − 1

n2 	166

405
−

8

27
ln 2
 , �8.6�

B61�nP3/2� =
4

3
N�nP� +

n2 − 1

n2 	 31

405
−

8

27
ln 2
 . �8.7�

Numerical values for N�nP� can be found in Eq. �17� of
Ref. �18�.

IX. SUMMARY

We have presented a unified approach to the one- and
two-loop electron bound-state self-energy correction in hy-
drogenlike atoms, including terms of order ��Z��6 and
�2�Z��6, respectively. We consider states with nonvanishing
orbital angular momentum and the normalized difference of
S states. The general analytic structure of the one- and two-
loop corrections is given in Eqs. �3.4� and �4.1�, respectively.
The general result for the one-loop correction is given in Eq.
�3.36�. We evaluate our formulas for specific families of hy-
drogenic states in Secs. III E–III G �one-loop case�. All one-
loop results are in agreement with those previously reported
in the literature. In addition, we obtain results for the non-
logarithmic terms �A60 coefficients�, for higher excited S
states, as listed in Table I.

For clarity, we separate the two-loop calculation into four
different subsets i, ii, iii, and iv consisting of separately
gauge-invariant diagrams �see Secs. IV–VII and Figs. 1–4�.
A general formula for the “pure” two-loop self-energy dia-
grams is presented in Eq. �4.18�. The corresponding expres-
sion for the self-energy vacuum-polarization diagram in Fig.
2 can be found in Eq. �5.1�. For the subsets iii and iv, we
present general expressions in Eqs. �6.1� and �7.6�. For the
total sum of the two-loop effects, a summary is provided in
Sec. VIII.

The two-loop fine-structure difference for P states for the
subset i as given in Eq. �4.24� is in agreement with previous
results �21,22�. This constitutes an important cross-check of
the method used in the current investigation, which is based
on dimensional regularization, and on effective operators for
the contributions stemming from hard virtual photons. The
results given in Eqs. �5.4�, �6.2�, and �7.7� complete the fine-
structure difference of P states in the order �2�Z��6.

The central result of the current investigation, however, is
the complete n dependence of all two-loop logarithmic and
nonlogarithmic contributions to the Lamb shift of S states up
to the order �2�Z��6. In this regard, our study follows a
number of previous investigations on related subjects �see
Refs. �4,26–28��, where the logarithmic terms were primarily
investigated, but the nonlogarithmic term was left unevalu-
ated. The n dependence of all logarithmic terms for S states
�corresponding to the B62 and B61 coefficients in Eq. �4.1�� is
recovered in full agreement with the literature. For the B61
coefficient, we refer to Eqs. �4.26� and �6.3�. Moreover we
obtain in Appendix C an additional logarithmic contribution
B61�1S� to the ground 1S state, which was omitted in the
former work �4�.

Partial results for the n dependence of the nonlogarithmic
term B60�nS� are given in Eqs. �4.27�, �6.4�, and �7.8�. A
summary including all two-loop subsets is provided in Eqs.
�8.1�–�8.3�. Our results lead to predictions for the S-state
normalized difference with an accuracy of the order of

TABLE V. Values of the difference B60
iv �nS�−B60

iv �1S� for the
diagrams in subset iv.

n B60
iv �nS�−B60

iv �1S�

2 −0.611 365

3 −0.603 468

4 −0.560 004

5 −0.521 300

6 −0.490 240

TABLE VI. Total values of the difference B60�nS�−B60�1S�
coming from all diagrams.

n A�n� B60�nS�−B60�1S�

2 0.318 486 15.1�4�
3 0.360 079 18.3�7�
4 0.368 661 20.0�10�
5 0.370 042 21.2�11�
6 0.369 462 22.0�11�
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100 Hz �see Ref. �29� and Appendix D�. We find that the
largest contribution to the n dependence of B60 stems from
the two-loop Bethe logarithm bL, but the remaining contri-
butions in Eqs. �5.5�, �6.4�, and �7.8� are essential for obtain-
ing complete predictions �see also Tables VI and VII�.

ACKNOWLEDGMENTS

We wish to thank Roberto Bonciani for the collaboration
at an early stage of the project. This work was supported by
EU Grant No. HPRI-CT-2001-50034. A.C. acknowledges
support by the Natural Science and Engineering Research
Council of Canada. U.D.J. acknowledges support from DFG
�Heisenberg program� under Contract No. JE285-1.

APPENDIX A: ELECTROMAGNETIC FORM FACTORS

We consider the form factors defined by

�� → �� = F1�q2��� +
i

2m
F2�q2�	 i

2

�q” ,��� , �A1�

where q is the outgoing photon momentum. The form factors
are expanded in � up to the second order,

F1�q2� = 1 + F1
�1��q2� + F1

�2��q2� , �A2a�

F2�q2� = F2
�1��q2� + F2

�2��q2� , �A2b�

where the superscript corresponds to the loop order, i.e., to
the power of �. They have recently been calculated analyti-
cally by Bonciani, Mastrolia, and Remiddi in �31�. The re-

sults for the form factors expanded into powers of q2 up to q4

read �in D=4−2��,

F1
�1��q2� =

�

�
�q2	−

1

8
−

1

6�
−

1

2
�


+ q4	−
11

240
−

1

40�
−

5

48
�
� , �A3a�

F2
�1��q2� =

�

�
�1

2
+ 2� + q2	 1

12
+

5

12
�
 + q4	 1

60
+

11

120
�
� ,

�A3b�

F1
�2��q2� = 	�

�

2�q2�	−

1099

1296
+

77

144
��2�


vp
−

47

576

+ 3��2�ln 2 −
175

144
��2� −

3

4
��3��

+ q4�	−
491

1440
+

5

24
��2�


vp
+

1721

12 960
+

1

72�2

+
1

48�
+

11

10
��2�ln 2 −

14 731

28 800
��2� −

11

40
��3��� ,

�A3c�

F2
�2��q2� = 	�

�

2�	119

36
− 2��2�


vp
−

31

16
− 3��2�ln 2 +

5

2
��2�

+
3

4
��3� + q2�	311

216
−

7

8
��2�


vp
−

77

80
−

1

12�

−
23

10
��2�ln 2 +

61

40
��2� +

23

40
��3��

+ q4�	 533

1080
−

3

10
��2�


vp
−

1637

5040
−

19

720�

−
15

14
��2�ln 2 +

689

1050
��2� +

15

56
��3��� . �A3d�

The subscript vp denotes the contribution to the two-loop
form factors which involves a closed fermion loop �see Fig.
2�.

APPENDIX B: LOW-ENERGY LIMIT OF THE
SCATTERING AMPLITUDE

In the leading order, the electron self-energy can be incor-
porated by electromagnetic form factors F1 and F2, and more
precisely by the leading terms of its low momentum expan-
sion. In the higher order, namely ��Z��6, single vertex form
factors Fi are not sufficient, and the additional term is the
low-energy limit of the spin-independent part of the scatter-
ing amplitude with two �0 vertices �see Fig. 5�, with the form

TABLE VII. Theoretical values of the normalized Lamb-shift
difference �n defined in Eq. �D1�, using results obtained here �see
Eq. �8.3��. Units are kHz.

n �n n �n

2 187225.70�5� 17 281845.77�11�
3 235070.90�7� 18 282049.05�11�
4 254419.32�8� 19 282221.81�11�
5 264154.03�9� 20 282369.85�11�
6 269738.49�9� 21 282497.67�11�
7 273237.83�9� 22 282608.78�11�
8 275574.90�10� 23 282705.98�11�
9 277212.89�10� 24 282791.50�11�

10 278405.21�10� 25 282867.11�11�
11 279300.01�10� 26 282934.29�11�
12 279988.60�10� 27 282994.18�11�
13 280529.77�10� 28 283048.01�11�
14 280962.77�10� 29 283096.35�11�
15 281314.61�10� 30 283140.01�11�
16 281604.34�11� 31 283179.54�11�

FIG. 5. Tree and one-loop diagrams with two
Coulomb exchanges.
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factor contributions subtracted. This term has not yet been
considered in the literature. A detailed derivation is in work
in a separate paper; here we present only a brief derivation.

To construct the projection operators for a spin-
independent part of the scattering amplitude, let us consider

the matrix element of an arbitrary operator Q̂, namely

ū�p� ,s��Q̂u�p ,s�, where u�p ,s� is a positive solution of the
free Dirac equation, normalized according to ūu=1. We
transform this matrix element to the more convenient form

ū�p�,s��Q̂u�p,s� = Tr�Q̂u�p,s�ū�p�,s��� . �B1�

Because we aim to calculate only the low energy limit, we
can use an approximate form of u�p ,s�,

u�p,s� � 	�s
1
2 ��� · p���s


 , �B2�

where �s is a spinor. Using

�
s

�s�s
+ = I , �B3�

where I is the 2�2 unit matrix, the spin-averaged projection
operator becomes

�
s

u�p,s�ū�p�,s� � � I −
�� · p��

2

�� · p�

2
−

�� · p�

2

�� · p��

2
� �

p” + 1

2

p”� + 1

2
.

�B4�

The spin-averaged matrix element of an arbitrary operator Q̂
can now be expressed as

�Q̂� = 1
8 Tr��p”� + 1�Q̂�p” + 1�� . �B5�

We can now turn to the scattering amplitude T. The ex-
pression corresponding to the tree diagram of Fig. 5 is

T�0� =
1

8
Tr��p”1 + 1��0

1

p”2 − 1
�0�p”3 + 1�� , �B6�

and this expression defines our normalization. The presence
of �0 in Eq. �B6� results from the fact that we consider the
scattering by the Coulomb potential

e��A� = �0V = − �0
Ze2

q�2 . �B7�

The momenta p1 and p3 are on mass shell �p1
2=1, p3

2=1�. Let
us define the exchange momenta according to

q1 = p1 − p2, q2 = p2 − p3, �B8�

and the static momentum t, such that t= �1,0�� and t2=1.
Because we consider the scattering of a static potential, the
exchange momenta are spatial,

q1
�t� = q2

�t� = 0. �B9�

The one- and two-loop radiative corrections, T�1� and T�2�,
are obtained using standard rules of quantum electrodynam-

ics. However, we additionally subtract from these amplitudes
the corresponding form factor contribution. This subtraction
is carried out using the tree diagram with the vertex �0 re-
placed by �0,

1

8
Tr��p”1 + 1��0�q1�

1

p”2 − 1
�0�q2��p”3 + 1�� . �B10�

The vertex function �� is defined in Eq. �A1�. In the one-
loop order, the subtraction permits the approximation
���1 for one of the vertices, with a form-factor correction
at the other, and a second term where the approximations at
the vertices are interchanged. For the two-loop case, it is
understood that the subtraction includes only �� /��2 terms,
so there are a total of three terms, one with both vertices
modified by one loop corrections, and two others where only
one vertex receives a two-loop correction. After the form-
factor subtractions and small momenta expansion, the scat-
tering amplitude takes a simple form

T�i� = q1 · q2��i�, �B11�

where the superscript denotes the loop order. The coefficients
� have been calculated with the help of the symbolic pro-
gram FORM �32� and read

��1� = 	�

�

	1

6
−

1

3�

 , �B12a�

��2� = 	�

�

2�−

79

288
+

5

2
��2�ln�2� −

127

144
��2�

−
5

8
��3� + 	−

391

648
+

205

576
��2�


vp
� . �B12b�

where the subscript vp denotes the contribution from the
diagram in Fig. 2. Using the relation q1 ·q2=−q�1 ·q�2, and in-
cluding the factors given by the Coulomb potential, one ob-
tains the effective interaction Hamiltonian

�H = − �Ze2�2q�1 · q�2

q�1
2q�2

2 � → − �− i�� V�2� = ��� V�2� = e2E� 2� ,

�B13�

where by → we denote the transition to the coordinate space
by the corresponding Fourier transform.

APPENDIX C: ADDITIONAL LOGARITHMIC
CONTRIBUTION TO THE GROUND STATE LAMB SHIFT

The two-loop logarithmic contribution to the Lamb shift
has been considered by one of us �K.P.� in �4�. The obtained
results for B61 coefficient of the ground state was

B61
old =

39 751

10 800
+

4

3
N�1S� +

55�2

27
−

616 ln�2�
135

+
3�2 ln�2�

4
+

40 ln2�2�
9

−
9��3�

8

= 50.309 654. �C1�
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After careful reanalysis of the performed calculations we
found that there is an additional logarithmic contribution,

which can be associated to the e2E� 2= ��� V�2 term in the ef-
fective Hamiltonian in Eqs. �2.9b� and �2.10�,

�H = �F2
�2��0� + �F2

�1��2

8
+ ��2����� V�2. �C2�

Although the coefficient is finite, the matrix element of

��� V�2 yields the logarithm

���� V�2� � − 4
�Z��6

n3 ln��Z��−2� . �C3�

The additional contribution to B61 is therefore

�B61 = − 4�F2
�2��0� + �F2

�1��2

8
+ ��2��

=
559

288
+

41

18
��2� −

17

2
ln�2���2� +

17

8
��3�

+ 	493

648
−

61

144
��2�


vp

= − 1.385 414. �C4�

Again, the subscript vp denotes the contribution from the
subset ii of two-loop diagrams �Fig. 2�. The new value for
the logarithmic contribution including the vacuum polariza-
tion is

B61 = B61
old + �B61 =

413 581

64 800
+

4

3
N�1S� +

2027

864
�2

−
616

135
ln�2� −

2

3
�2 ln�2� +

40

9
ln2�2� + ��3�

= 48.958 590. �C5�

Since this additional contribution is numerically small, it
does not explain the discrepancy with the direct numerical
calculation by Yerokhin et al. in Ref. �3�, although the dif-
ference is now slightly smaller. We postpone further conclu-
sions until the evaluation of the constant term B60 is com-
pleted.

APPENDIX D: EVALUATION OF THE LAMB-SHIFT
DIFFERENCE

We denote the Lamb shift of an nS states by �E�nS� and
use the definition in Eq. �67� of Ref. �9�. We focus on the
evaluation of the normalized difference for S states, which
we denote as

�n � n3�E�nS� − �E�1S� . �D1�

Important contributions to the Lamb shift as used for the data
in Table VII can be found in Tables 1–10 of Ref. �11�. The
results derived in this paper for the nonlogarithmic two-loop
term B60�nS�−B60�1S� can now be used for an improvement
of the accuracy of the theoretical predictions as listed in
Table VII.

Extrapolations of the two-loop Bethe logarithms bL�nS�,
and of the A60 coefficients in Table I to higher principal
quantum numbers, are performed by assuming a functional
form of the type a+b /n+c /n2 for the correction, with a, b,
and c as constant coefficients. This functional form has re-
cently been shown to be applicable to a variety of quantum
electrodynamic corrections for bound states, see, e.g., Refs.
�13,18�. The same functional forms are used to extrapolate
the difference GSE���−A60, as a function of n, to higher prin-
cipal quantum numbers (numerical results of the nonpertur-
bative self-energy remainder GSE��� can be found in Refs.
�15,30�).

The principal theoretical uncertainty with regard to the
normalized difference �n currently originates from the un-
known n dependence of the two-loop coefficient B71�nS�. An
estimate for this correction may be obtained as follows. We
first map the one-loop coefficient A50 onto an effective Dirac
delta potential V50, with

V50 =
�

�
�Z��2�427

384
−

1

2
ln 2��� 2V . �D2�

Of course, �� 2V=4��3�r�, and we may use this potential as
an “input” for evaluation of the additional one-loop correc-
tion to the Bethe logarithm generated by the local potential.
This leads to a correction of order �2�Z��7, with logarithmic
terms. The leading double-logarithmic term �corresponding
to a B72 coefficient� is n-independent. The well-known
n-dependence of the single logarithm, which gives rise to a
B71 coefficient, may be found, e.g., in Eq. �20� of Ref. �4�.
The calculation leads to the estimate

B71�nS� − B71�1S� � �	427

36
−

16

3
ln�2�


��3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n��
�D3�

for the nS-1S difference of the logarithmic term. As an un-
certainty estimate for B71�nS�−B71�1S�, we take half the
value of the above expression.
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