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Using sum rules, the dipolar terms can be eliminated from the commonly-used sum-over-states (SOS)
expression for nonlinear susceptibilities. This new dipole-free expression is more compact, converges to the
same results as the common SOS equation, and is more appropriate for analyzing certain systems such as
octupolar molecules. The dipole-free theory can be used as a tool for analyzing the uncertainties in quantum
calculations of susceptibilities, can be applied to a broader set of quantum systems in the three-level model
where the standard SOS expression fails, and more naturally leads to fundamental limits of the nonlinear

susceptibilities.
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I. INTRODUCTION

The sum-over-states (SOS) expression for the nonlinear-
optical susceptibilities [1], which are expressed in terms of
the matrix elements of the dipole operator, —ex,,,, and the
energy eigenvalues, E,, have been used extensively over the
last 4 decades as a theoretical model of the nonlinear re-
sponse as well as a tool for analyzing experimental disper-
sion data. Indeed, the two-level model has guided the devel-
opment of molecules with large second-order nonlinear-
optical susceptibilities (also called hyperpolarizabilities).
Similarly, the SOS three-level model for the third-order sus-
ceptibility (also called the second hyperpolarizability) has
led to an understanding of the nature of the states, and inter-
actions between them, that yield the largest response.

While the SOS expression has reigned supreme for 4 de-
cades, there are several critical issues that have never been
addressed. Because the expression is over-specified, redun-
dant information is required to calculate nonlinear suscepti-
bilities. This redundancy not only leads to inefficiencies in
the computational process; but, the SOS expression can lead
to reasonable-looking results even when unphysical param-
eters are used as the input. As such, the underlying physics of
the nonlinear-optical response may be misinterpreted, lead-
ing to erroneous conclusions.

The sum rules are quantum mechanical identities that re-
late the dipole matrix elements and energies to each other;
so0, the SOS hyperpolarizability can be expressed in terms of
a subset of the dipole matrix [2]. In this work we show that
all the dipolar terms can be eliminated to yield a simplified
expression that is equivalent to the full SOS expression. This
theoretical result can be used as a tool for studying the
nonlinear-optical response. For example, differences between
the full SOS expression and the dipole-free expression can
be used to estimate the uncertainties in quantum calculations
since such discrepancies are a sign that the sum rules have
been violated (due to incorrect dipole matrix elements and
energies, or truncation errors). The approximate solution of a
particle in a tilted box is analyzed in this way as an illustra-
tion. More importantly, the three-level model of the dipole-
free theory may be applicable when the standard three-level
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SOS expression fails, thus providing a theoretical tool that
covers a broader base of quantum systems. To test our new
theoretical expression we show that for a clipped harmonic
oscillator, for which analytical solutions to the Schrédinger
Equation can be computed, the two theories converge to the
same results in the limit of an infinite-level model. Finally,
we shall show that the dipole-free expression more naturally
leads to fundamental limits of the nonlinear susceptibilities.

II. THEORY

In this section, we show how the SOS expression of the
first and second hyperpolarizabilities are simplified using the
sum rules. The commonly-used SOS expression for any di-
agonal component of B is given by [1]
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where e is the magnitude of the electron charge, x,,, the n,m
matrix element of the position operator, Ax,,=x,,— X is the
difference in the expectation value of the electron position
between state n and the ground state 0, £, =E,—E, is the
energy difference between the excited state n and the ground
state, E,o(wg) =E,n—fwg, and fiwg is the energy of one of
the photons. The primes indicate that the ground state is
excluded from the sum and the permutation operator
P(w,,wp) directs us to sum over all six frequency permuta-
tions given by the Feynman Diagrams. Since the dipole mo-
ment of the molecule is proportional to the position (p,
=—ex), we loosely call x,,, the transition moment and x,,, the
excited state dipole moment. The first term in Eq. (1) is
called the dipole term and the second term the octupolar
term; and, as we shall see below, the dipole term can be
expressed in terms of the octupolar one using the sum rules.

The generalized Thomas-Kuhn sum rules are a direct con-
sequence of the Schrodinger equation (without any approxi-
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mations) and relate the matrix elements and energies to each
other according to [3]

Ex, (E 1(E +E )) —hZNé ()
- = X, X, = s
= n 2 m P mn’*np ) m,p

where m is the mass of the electron, and N the number of
electrons in the molecule. The sum, indexed by n, is over all
states of the system. Equation (2) represents an infinite num-
ber of equations, one for each value of m and p. As such, we
refer to a particular equation using the notation (m,p).

To eliminate the dipole term, we consider the equation
(m,p) with m# p:

oo

> (Epn + Epp) XXy = 0. (3)
n=0
Equation (3) can be rewritten by explicitly expressing the n
=m and n=p terms:

o
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Using E,,,=-E,, and the definition Ax,,=x,,~X,,,, Eq. (4)
becomes
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Setting p=0 in Eq. (5) and solving for Ax,|xo,|*> after
multiplying through by x,,,, we get
i ’Enm + EnO

Em() X0mXmnXn0- (6)
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Substituting Eq. (6) with m <« n into Eq. (1), we get the final
result,
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We call this form of S the dipole-free expression or the re-
duced hyperpolarizability. The second term in brackets is the
dispersion term that results when the dipolar terms are elimi-
nated. In the standard SOS expression, the simplest approxi-
mation is the two-level model, with parameters x,, Ax,o, and
Eo. The simplest approximation to Eq. (7) is the three-level
model with parameters xg, Xo9, X2, Ejp, and Ejy. This is in
contrast to the standard SOS expression, where the three-
level model has two additional dipole terms.

It is important to note that while the dipole-free expres-
sion may seem to be less general than the common SOS one,
when all states are included, it is fully equivalent. Because
the sum rules are a direct consequence of the Schrodinger
Equation, they cannot be violated in any system, be it an
atom, molecule, or crystal. The SOS expression, in both
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forms, can be evaluated for unphysical values of the matrix
elements—yielding nonsensical values of the hyperpolariz-
ability. However, in its nonrestricted form, there is more
room for introducing errors. The restriction imposed on the
SOS expression used to get the dipole-free equation prevents
certain unphysical combinations of dipole and octupolar
terms, so in nontruncated form, is more robust. For example,
the lowest truncated-state model in the standard SOS expres-
sion is the two-level model, which only describes transitions
in which the dipole moment changes between these two
states. However, it ignores all octupolar terms. On the other
hand, the dipole-free expression—when truncated—can ap-
proximate molecules with octupolar character [4—6] as mea-
sured with hyper-Rayleigh scattering [7,8]; as well as dipolar
terms, which are implicitly taken into account by the extra
dispersion term in the reduced hyperpolarizability, as given
by Eq. (7).

All higher-order nonlinear susceptibilities can be treated
in the same way. As an illustration, we briefly consider the
third-order susceptibility. For any diagonal component of v,
the second hyperpolarizability, along the x direction is given
by
E ’ xOnfnmfmleO _ E/ X0rXn0X0mXmo (8)
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where D{n,m,...) are energy denominators and n,m,...
are arguments that show which energies are represented
(i.e., E,0» Epnp,...). In analogy to B as given by Eq. (1),
the denominators are of the form D(n,l,m)
=H3E (@) Eo@g) Ei(ws) /4e* and are most easily deter-
mined using Feynman diagrams for the particular phenom-
ena of interest. There are two terms in Eq. (8) that depend on
the dipole moment, which can be expressed as
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Using Eq. (5) with p=0 and n=1, Eq. (9) becomes
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Similarly, Eq. (10) can be written as
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Using Egs. (11) and (12), Eq. (8) for y can be written in
dipole-free form in analogy to Eq. (7). Given the algebraic
messiness of the result, it is not presented here.

053819-2



COMPACT SUM-OVER-STATES EXPRESSION WITHOUT ...

III. APPLICATIONS

In this section, we apply the dipole-free theory to several
problems to show both its usefulness; and, to confirm that in
the limit of including all states in the SOS expression, our
new theory and the standard SOS expression converge. Fur-
thermore, we show that when approximate wave functions
are used, such as the particle in a tilted box, the two results
do not converge, showing how such a comparison can be
used to assess the accuracy of the calculated nonlinearities.
In addition, we show how the reduced hyperpolarizability
leads to a more elegant calculation of the fundamental limits
of nonlinear susceptibilities.

First, we apply the theory to the calculation of the funda-
mental limits of the hyperpolarizability [2,3,9-12]. The issue
of fundamental limits has been an important one since it
guides the applied researcher in making better materials and
devices while giving the theorist a method of understanding
the nuances of what makes a large nonlinear-optical response
[13,14]. Using the new theory, we show that the results are
the same; but, lead to a more elegant approach that illustrates
the equivalence of viewing a molecule in terms of the stan-
dard expression that includes dipole terms or the reduced
form in terms of octupolar terms. This provides an important
paradigm shift in the sense that the sum rules show that the
two limiting cases are closely related while the general
nonlinear-optics community operates on the assumption that
the two are independent.

Second, the clipped harmonic SOS expression—for which
exact analytical wavefunctions can be calculated—the SOS
expression and the dipole-free theory presented here are
compared. The fact that the two converge shows that the two
expressions are identical in the infinite-level model. It is
common for theorists and experimentalists to use limited-
state models. The two- and three-level models have been
successfully applied to understanding the dispersion and
magnitude of the second- and third-order susceptibilities, but
clearly, such a simplified view can not be universally correct.
Indeed, the three-level model for the SOS expression and the
dipole-free one are totally different functions with different
dispersion.

There are two important ramifications of this observation.
First, in cases where the standard truncated SOS expression
is inconstant with observation, the dipole-free expression
may be more appropriate. As such, the dipole-free expression
provides researchers with a tool to study a class of systems
that was previously unaccessible. Octupolar molecules may
be one such class. Secondly, a comparison of the dipole-free
expression with the standard SOS theory can be used to es-
timate whether or not a theoretical calculation has converged
without the need for including more and more numbers of
states to test for convergence. So, the theory presented here
can save on computational time while providing the theorist
with another tool.

Third, B of a particle in a tilted box is analyzed. Since this
system 1is solved with perturbation theory, it is possible to
study how small errors in the matrix elements affect the non-
linear response predicted by the two theories. Most quantum
chemical calculations yield only approximate wavefunctions,
so this example shows how the two expressions can yield
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different results even in an infinite-state model. It must be
stressed that there are no means for determining which cal-
culation yields the “correct” 8 values that would be found
experimentally. Perhaps more importantly, a comparison be-
tween the two theories provides an estimate of the uncer-
tainty of the calculation: The calculated values of the nonlin-
earity can only be trusted to within the range between the
two values. If both converge to greatly differing values in the
infinite-state limit, then this suggests that the wavefunctions
may be unphysical.

A. Fundamental limits

To illustrate the usefulness of the dipole-free SOS expres-
sion, we apply it to calculate the fundamental upper limit of
B [2,3,9-12]. We start with the sum rules (0,0) and (1,1)
truncated to three levels, which yield

e
0] = VE(Ix§1 2 = xo1l?), (13)

and
E
beial = \/1 (o1 ™ + lxor), (14)
respectively, where
h2
6= (15)
mElO

Substituting Eqgs. (13) and (14) into Eq. (7) in the off-
resonance limit (w,=wz=0), we get

| MAX|3

B= 6\/; ) 2 GX)f(E) = BGX)f(E),  (16)

where

fE)=(1 —E)3’2<E2+§E+ 1), (17)

G(x)=‘\‘s’§X\/%(1 — X%, (18)

where X= xlO/xMAX and E=E o/ Ey.
G and X are maximum at G("{3)=1 and f(0)=1, yielding

and

eh N2
Buax = Bof (0)G( 3)_ {3 ( /—> { 7/2}- (19)
\m Eip
This is identical to the results from the usual sum-over-states
expression; however, the calculation is much more concise
and elegant because the dipolar term does not need to be
considered.

B. The clipped harmonic oscillator

In this section, we test the dipole-free SOS expression by
comparing the results it gives with the standard SOS expres-
sion for a potential in which the Schrodinger equation can be
solved analytically. This approach ensures that the energies
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FIG. 1. B(0)/ ﬁg“x, the zero-frequency (off-resonance) limit of
B—normalized to the off-resonant fundamental limit—as a function
of the number of excited states included in a clipped harmonic
oscillator and 1D tilted box for the standard SOS model and the
dipole-free SOS expression.

and dipole matrix elements are physically sound and that
pathologies or inaccuracies normally inherent in approxima-
tion techniques are avoided. We use the exact solution to the
clipped harmonic oscillator (CHO) (where the potential is
harmonic for x>0 and infinite for x<<0) since it is the sim-
plest case of an asymmetric potential that yields a large hy-
perpolarizability that is in fact near the fundamental limit
[15]. The matrix elements of the position operator of the
clipped harmonic oscillator (CHO) are given by

MAX
Xon =X10  8mn> (20)
where the dimensionless matrix g, is defined by

gm,1=i<—1)<<'"+")’2>< = )(”’,”””>, 1)
N (m=n)"=1/\ \m!n!

where m and n are restricted to the odd integers. The energy
of state n is given by

1
E,,:ﬁw0<n+ 5) (22)

Figure 1 shows the calculated off-resonant hyperpolariz-
ability normalized to the maximum off-resonant hyperpolar-
izability as a function of the number of states included in the
calculation. Both theories converge to the same result as the
number of states included in the sums is large, showing that
the two models are identical. Note that the standard SOS
expression converges more quickly than the dipole-free ex-
pression, which suggests that the clipped harmonic oscillator
is more dipolar in nature. Presumedly, an octupolar molecule
would be better modelled with the dipole-free term, resulting
in faster convergence; though, there are no simple exactly
soluble octupolar potentials. The average of the two models
is also shown, suggesting that a variational principle applied
to a weighted average (with the weights as parameters) may
yield the exact result with only a few terms.

Figure 2 shows the dispersion predicted by both models
for a CHO in the 3- and 6-level models for the second har-
monic generation hyperpolarizability as a function of the en-
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FIG. 2. The normalized second harmonic hyperpolarizability
(B(E)/ BY*Y) as a function of the incident photon energy for a 3-
and 6-level model of a clipped harmonic oscillator for standard and
dipole-free SOS expressions. Insets show magnified view of key
regions as indicated by the dashed boxes. The first excited state
energy is arbitrarily set to 1 eV.

ergy of the fundamental photon. The two theories agree well
in the 6-level model except near resonance. The insets show
an expanded view of the regions in which the two theories
disagree the most. In the 25-level model(Fig. 3), the agree-
ment is excellent at all wavelengths, as expected, since the
CHO is an exact solution to the Schrédinger equation.

C. Particle in a tilted box

Next we consider a particle in a 1-dimensional box that is
perturbed by the potential V=ex to make the system asym-
metric. First-order perturbation theory is used to get the
wave function to first-order in €, from which the matrix ele-
ments of x are calculated. 8 is calculated from these matrix
elements also to first-order in e. This is an interesting ex-
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FIG. 3. The normalized second harmonic hyperpolarizability
[BE)/ ,BSMX] as a function of the incident photon energy for a 25-
level model of a clipped harmonic oscillator for standard and
dipole-free SOS expressions. The inset shows a magnified view.
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FIG. 4. The normalized second harmonic hyperpolarizability
[B(E)/ BIOWAX] as a function of the incident photon energy for a 25-
level model of a particle in an asymmetric box for standard and
dipole-free SOS expressions. The inset shows a magnified view.

ample because the wave functions, while reasonably accu-
rate, are nevertheless only approximate. Figure 1 shows
B/ BOMAX for the two models as a function of the number of
states and Fig. 4 shows the 25-level model. Note that the
matrix elements are accurate to better than 5%, yielding con-
vergence of the off-resonance limit of the two 25-level mod-
els of B to better than 7% of each other. However, near
resonance, the two models do not agree as well
quantitatively—though the qualitative features are similar.
These variations are due to the inaccuracies introduced by
the approximations used in calculating the wave functions,
so it is not possible to determine which model is more accu-
rate. However, based on the two dispersion graphs, it is clear
that the dipole free-expression and standard SOS expressions
are equivalent to within the levels of uncertainty one expects
from the level of approximation used.
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IV. CONCLUSION

In conclusion, we have derived an expression that is
equivalent to the standard SOS equation for 8 and vy, but
does not include dipole terms. The fact that they are identical
is illustrated with the exact wave functions of a clipped har-
monic oscillator; when the number of terms included in the
sums is large, the two results converge. However, when the
approximate wave functions of a particle in a tilted box are
used, the two expressions do not converge, illustrating how
the difference can be used to estimate the uncertainty in the
result. Furthermore, such a variance may also be a sign that
the wave functions used violate the sum rules.

The dipole-free expression is more compact; and, when
truncated to a finite number of states is easier to apply to
certain classes of problems, such as calculating the funda-
mental limits of the nonlinear susceptibility. The dipole-free
expression is a new tool for studying classes of molecules
that are not well described by the truncated SOS expression.
As such, it may, for example, provide a more accurate means
for analyzing the dispersion of S for octupolar molecules.
The standard approach is to truncate the sums in Eq. (5) to
the first two excited states (yielding the term with numerator
X01X12%20). Clearly, the dipole-free 3-level model includes
more information so it may be a more accurate expression
for the dispersion than simply setting the dipole term in Eq.
(1) to zero in the standard 3-level model.

The theory for 8 and vy presented here is therefore an
additional avenue for analyzing molecules that go beyond
the common dipolar push-pull paradigm, can be used to as-
sess the accuracy of molecular orbital calculations, and sheds
light on the fundamental limits of nonlinear susceptibilities.
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