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We measure the frequency of the low m=0 quadrupolar excitation mode of weakly interacting Bose-Einstein
condensates in the transition region from the three-dimensional �3D� to the 1D mean-field regime. Various
effects shifting the frequency of the mode are discussed. In particular we take the dynamic coupling of the
condensate with the thermal component at finite temperature into account using a time-dependent Hartree-
Fock-Bogoliubov treatment developed by Giorgini �Phys. Rev. A, 61, 063615 �2000��. We show that the
frequency rises in the transition from 3D to 1D, in good agreement with the theoretical prediction of Menotti
and Stringari �Phys. Rev. A 66, 043610 �2002��.
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One-dimensional �1D� quantum degenerate Bose gases
have recently attracted considerable theoretical and experi-
mental interest �1�. On the one hand, this interest is due to
their remarkable physical properties which are absent in
three-dimensional systems. On the other hand, a rapid ad-
vance in trapping techniques for ultracold gases has put these
systems within experimental reach. In particular optical lat-
tices �2�, optical dipole traps �3�, and atom chips �4� have
recently been used to realize such low-dimensional systems.
For further experiments under these conditions a good under-
standing of the transition between the 3D and the 1D regime
is therefore of crucial importance. In this paper this transition
region is characterized experimentally by monitoring the os-
cillation of a quantum degenerate Bose gas.

From a fundamental point of view, one of the most strik-
ing features of 1D quantum degenerate Bose gases is the
predominant role played by quantum fluctuations. For
trapped 1D gases a rich variety of many particle states can
exist, including true phase-coherent Bose-Einstein conden-
sates �BECs� as well as phase-fluctuating BECs, the so-
called quasicondensates �5�. The behavior of these 1D Bose
gases is governed by the ratio of interaction and kinetic en-
ergy �=m g1D/q2n1D, where n1D is the 1D atomic density, m
the atomic mass, and g1D the 1D coupling constant. Since
this ratio scales as 1 /n1D these gases counter-intuitively be-
come more non-ideal when the density is decreased. The
fascinating features of these systems have led to continued
theoretical interest over the past decades. For homogeneous
1D Bose gases with short-range interactions, the ground state
�6�, excitation spectrum �7� and thermodynamic properties
�8� of the system can be determined with a Bethe ansatz for
arbitrary values of �. In the case of trapped systems the
equation of state can be found by combining this approach
with the local density approximation �9�. For high densities
the system is in the weakly interacting regime, where it can
be well described in the frame of mean-field theories. On the
contrary, for low densities the system enters the strongly in-

teracting or strongly correlated regime, where a description
by mean-field theories fails. In the limit �→� the system is
equivalent to a 1D gas of impenetrable bosons, the so-called
Tonks-Girardeau �TG� gas �10�, where the bosonic particles
effectively acquire fermionic properties.

To experimentally prepare a 1D gas in a harmonic trap
with cylindrical symmetry one has to fulfill the condition

�,kBT � q ��, �1�

where �� denotes the radial trap frequency and � is the
chemical potential of the ensemble. If this condition is ful-
filled, neither the thermal nor the interaction energy is suffi-
cient to affect the radial shape of the ground-state wave func-
tion. The radial degree of freedom is then frozen, since the
atoms are confined to the ground state of the radial trapping
potential.

The first experimental realization of a weakly interacting
1D BEC was achieved in a magnetic trap with very high
aspect ratio and detected by a change in the ballistic expan-
sion �11,12�. The tight radial confinement required to fulfill
Eq. �1� can also be provided by magnetic microtraps �13� or
optical wave guides �14�. Such waveguides have allowed for
the first realization of stable matter-wave bright solitons �15�.
Two-dimensional optical lattices �16� offer the possibility to
realize arrays of 1D gases which are coupled via tunneling
between the lattice sites. In such a lattice gas a theoretically
predicted reduction of the three-body recombination rate
within the strongly correlated regime �17� has been experi-
mentally observed �18�. Recently, seminal experiments have
reached the TG regime in 2D optical lattices �19,20�.

In this paper, we experimentally study collective excita-
tions of weakly interacting BECs in the transition region
between 3D and 1D, i.e., for values of the chemical potential
��q ��. The experimental investigation of collective exci-
tations allows for quantitative tests of the underlying theoret-
ical description. We focus on the observation of the low
m=0 quadrupolar mode. Collective modes were investigated
experimentally and theoretically in 3D BECs �21–27� and in
arrays of 1D gases confined in a 2D optical lattice �28,29�.*Electronic address: schulte@iqo.uni-hannover.de
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Our experimental investigation in the transition region re-
veals clear signatures of one-dimensional behavior and is
complementary to experiments on the phase-coherence prop-
erties �30� of the system.

The dynamics of the low m=0 mode consists of an out-
of-phase oscillation of the axial and radial diameters of the
cloud. For Bose gases confined in cylindrically symmetric
traps the hydrodynamic equations of superfluids �31� allow
for the analytic determination of the mode frequency at T
=0: For the case of a very elongated but 3D weakly interact-
ing BEC the frequency is �=�5/2�z �32�, where �z is the
axial trap frequency. In the transition from the 3D mean-field
regime to the 1D mean-field regime, the radial dynamics of
the condensate freezes out, and accordingly the radial com-
ponent of the low m=0 mode vanishes. In this process, the
mode frequency rises to �=�3�z �32,33�. For the TG gas the
frequency increases to �=2 �z �34�, identical to a non-
interacting Fermi gas. The frequency in the intermediate re-
gimes has been numerically determined by using a combina-
tion of hydrodynamic equations with a sum-rule approach
�35� and later by exclusively relying on hydrodynamic equa-
tions �36�. Note that the analytic solutions given above de-
pend on the axial trap frequency only, whereas the mode
frequency in the intermediate regimes depends on the radial
confinement as well �35�.

Our experiments were performed with 87Rb Bose-Einstein
condensates in the �F=1,mF=−1� hyperfine ground state
confined in a strongly elongated magnetic trap. The axial trap
frequency was 3.40 Hz and the radial trap frequency was
varied between 265 and 385 Hz, resulting in aspect ratios as
low as �=�z /��	1/113. Further details of our experimen-
tal apparatus can be found elsewhere �37�. In such a trap with
fixed geometry, the 1D criterion �1� reduces to a condition on
the number of atoms in the sample. Neglecting the contribu-
tion of thermal atoms to the chemical potential, the gas is 1D
if the number of condensed atoms N0 is smaller than �11�

N0
1D =� 32

225

az
2

a a�

, �2�

where a� and az denote the harmonic oscillator length in the
radial and axial directions and a is the s-wave scattering
length. For our trap parameters N0

1D	4000. To approach this
regime we reduce the number of atoms by adjusting the end
of the forced evaporation ramp. We are restricted by our
detection system to a minimum number of N	2000 atoms.
For this minimum number of atoms � /q��	0.75, thus we
obtain ensembles on the border of one dimensionality.

We performed the following experimental procedure:
Laser-cooled atoms were loaded into a moderately elongated
magnetic trap with �	1/25. Radio-frequency evaporative
cooling was performed to obtain temperatures just above the
transition temperature. Then the trap was axially decom-
pressed to reach the desired aspect ratio, and the final evapo-
ration ramp to obtain BEC was performed in the strongly
elongated trap. The low m=0 mode was excited by modulat-
ing the current of the magnetic trap for five periods at a
frequency close to the expected value of the mode frequency
�. The condensate was allowed to oscillate in the magnetic

trap for a hold time �. Subsequently, the trapping potential
was switched off and the atomic density distribution was
detected by resonant absorption imaging after 30 ms time of
flight. A bimodal fit to the density distribution was used to
extract the aspect ratio, the total and condensed particle num-
bers and the temperature of the ensemble. By varying the
hold time � in the magnetic trap the oscillation was strobo-
scopically monitored as shown in Fig. 1. The axial compo-
nent of the oscillation is clearly visible in these images.
However, the amplitude of the radial oscillation is very small
in the dimensional transition region. In addition these images
show axial density modulations, which are related to the
presence of phase fluctuations in the condensate. These
phase fluctuations are caused by the finite temperature and
reduced dimensionality of the system �30�. However, for the
parameter regime under investigation, density modulations in
the magnetic trap are suppressed by interactions �38� and
hence the phase fluctuations do not directly affect the fre-
quency of oscillation.

Since the mode frequency depends on the dimensionality
of the system, the data was sorted according to the parameter

P = N0�a/a�, �3�

which appropriately describes the degree of dimensionality
for our purposes �35�. For P�1 the cloud enters the 1D
regime, whereas large values P	1 correspond to a 3D
cloud. Figure 2 shows the aspect ratio of clouds within an
interval of the parameter P versus the hold time �. To extract
the frequency we fit this data with a damped sinusoidal func-
tion.

The frequency rise which accompanies the transition from
the 3D to the 1D mean-field regime constitutes a shift of only
10%. Due to the small size of this effect other influences on

FIG. 1. �Color online� Absorption images after 30 ms time of
flight for various hold times � in the magnetic trap �indicated on the
right�. The axial component of the oscillation is clearly visible. The
axial displacement of the cloud is due to the simultaneous excitation
of the dipole mode. Axial density modulations observable in the
absorption images are related to the presence of phase fluctuations
in the condensate and develop during time of flight �30�. We have
vertically compressed the images for graphical representation.

KOTTKE et al. PHYSICAL REVIEW A 72, 053631 �2005�

053631-2



the oscillation frequency have to be considered carefully. In
principle, frequency shifts can be caused by effects beyond
the mean-field approximation, by large oscillation ampli-
tudes and by the finite temperature of the system.

The frequency shift due to corrections to the mean-field
approximation can be analyzed in the frame of the hydrody-
namic theory of superfluids. Using the first quantum correc-
tion to the Bogoliubov equation of state, this shift of the
lowest quadrupolar mode at T=0 is �39�


�

�
=

63��

128
�a3n�0�f��� , �4�

where f��� is a function that depends on the geometry of the
trap �see Eq. �17� in Ref. �39��. Since the gas parameter
a3n�0� is very small for our experimental conditions, this
frequency shift is below the 0.1% level and thus negligibly
small.

The hydrodynamic equations are also well suited to inves-
tigate the effect of large oscillation amplitudes at T=0. Large
amplitudes cause nonlinear coupling between the normal
modes of the system and shifts of the oscillation frequency.
The frequency shift for the low m=0 quadrupolar mode is
�40�


��Az�
�

=

���Az

2

16
, �5�

where Az is the relative oscillation amplitude of the conden-
sate length in the trap and 
��� is a factor depending on the
trap geometry �see Eq. �22� in Ref. �40��. The amplitude Az
can be extracted from the oscillation amplitude in the time of
flight images Az

TOF by using scaling theory �41�. For our pa-
rameters we obtain Az	Az

TOF/�2 and the oscillation ampli-
tudes in the trap are Az�20% for our measurements. Hence
the corresponding frequency shift is limited to 
��Az� /�
�0.5% and is thus clearly smaller than the expected shift
due to dimensional effects.

Let us now turn to the most important correction to the
mode frequency, which is caused by the finite temperature of
the system. Early experiments on collective excitations in 3D
systems investigated effects due to the finite temperature of
the sample, including frequency shifts with respect to the
zero temperature predictions �42,43�. On the theory side
various approaches have been proposed to include finite tem-
perature into the theory of weakly interacting trapped gases.
To describe the observed features, such as the damping of
excitations or the dynamic coupling between the condensed
and thermal components, time-dependent mean-field
schemes are appropriate. In this paper, we rely on the linear-
ized time-dependent Hartree-Fock-Bogoliubov approach
proposed in �44�. Within this approach the coupled equations
for the dynamics of the condensate and the thermal compo-
nent are not solved self-consistently, but perturbatively up to
second order in the coupling constant g. Thus the nonphysi-
cal gap in the self-consistent static quasiparticle excitation
spectrum is replaced by a well-behaved gapless Bogoliubov
type of spectrum. Moreover at T=0 this approach recovers
the first order quantum correction �4�, and therefore includes
the frequency shift due to corrections to the mean-field ap-
proximation.

Figure 3 shows a comparison between the measured fre-
quency shifts with respect to the T=0 calculation in Ref. �35�
and the theoretical prediction for the shifts due to finite tem-
perature according to Ref. �44�. The vertical error bars cor-
respond to the uncertainty of the frequency determination as
shown in Fig. 2. The typical horizontal error bar shown re-
flects the temperature distribution of the clouds contributing
to one frequency measurement. The calculated frequency
shift depends on temperature, the aspect ratio of the trap, and
on the parameter =� / �kBTc� which describes the interac-
tions in a 3D Bose gas �44�. Here Tc denotes the critical
temperature for a non-interacting gas. Due to the variation of
the atom number in the experiments, the corresponding val-
ues for  range from 0.33 to 0.41. The theoretical prediction

FIG. 2. Aspect ratio of the clouds after time of flight as a func-
tion of the hold time in the magnetic trap. The fit to the data gives
a mode frequency of �=5.41±0.02 Hz. The data points originate
from clouds with an average dimensionality parameter P=13.3 and
reduced temperature T /Tc=0.34.

FIG. 3. Normalized frequency difference between our measure-
ments and the T=0 prediction in Ref. �35� as a function of the
reduced temperature. The values of P for the data points shown lie
in the dimensional transition region, see Fig. 4. The lines indicate
the theoretical frequency corrections for an interaction parameter of
=0.33 �solid� and =0.41 �dotted� according to Ref. �44�.
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for these cases is shown in Fig. 3. Despite the low atom
numbers used in some of the measurements this theory, de-
veloped for 3D gases in the thermodynamic limit, shows
good agreement with the measured frequency shifts in the
dimensional transition region. Since the finite-temperature
shifts are of the order of a few percent, they constitute an
important contribution to the mode frequency. For a subse-
quent correction of the mode frequency, the parameter  and
the resulting frequency shift was calculated for each data
point.

To compare our finite-temperature measurements with the
zero-temperature prediction in Ref. �35�, we correct our data
for the finite-temperature shift and the smaller shift due to
the oscillation amplitude. Figure 4 shows the measured mode
frequencies, including these corrections. The variation in the
number of particles allowed for measurements covering al-
most the entire transition region between the 3D and 1D
mean-field regimes. Within the experimental error, our data
shows good agreement with the predicted frequency depen-
dence at zero temperature. The error increases towards small
values of the dimensionality parameter P due to the small
particle numbers involved in these measurements. A small
discrepancy between the theoretical prediction and the mea-
surement might be due to the loss of atoms during the oscil-
lation or systematic uncertainties in the determination of the
number of atoms.

In conclusion, we have measured the increase of the os-
cillation frequency of the low m=0 quadrupolar mode in the
crossover region between the 3D and 1D regimes. To com-
pare our measurements with the zero-temperature prediction,
various effects that can lead to shifts of this frequency were
carefully evaluated. We have identified finite-temperature ef-
fects as an important contribution to the frequency shift. In-
cluding frequency corrections due to the finite temperature

and the oscillation amplitude, our data shows good agree-
ment with the theoretical prediction. The observed frequency
increase constitutes a clear signature of the onset of one di-
mensionality. These results confirm that mode frequency
measurements provide a sensitive probe of the dimensional-
ity of quantum degenerate Bose gases.
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ported by the Deutsche Forschungsgemeinschaft within the
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