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Single vortex states in a confined Bose-Einstein condensate
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It has been demonstrated experimentally that non-axisymmetric vortices precess around the center of a
Bose-Einstein condensate. Two types of single vortex states have been observed, usually referred to as the S
vortex and the U vortex. We study theoretically the single vortex excitations in spherical and elongated
condensates as a function of the interaction strength. We solve numerically the Gross-Pitaevskii equation and
calculate the angular momentum as a function of precession frequency. The existence of two types of vortices
means that we have two different precession frequencies for each angular momentum value. As the interaction
strength increases the vortex lines bend and the precession frequencies shift to lower values. We establish that
for given angular momentum the S vortex has higher energy than the U vortex in a rotating elongated
condensate. We show that the S vortex is related to the solitonic vortex, which is a nonlinear excitation in the
nonrotating system. For small interaction strengths the S vortex is related to the dark soliton. In the dilute limit
a lowest Landau level calculation provides an analytic description of these vortex modes in terms of the

harmonic oscillator states.
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I. INTRODUCTION

Quantized vortices in superfluids have been the subject of
an important research area since their theoretical prediction
in the context of liquid helium [1]. In the last years there has
been intense experimental and theoretical study on the cre-
ation and dynamics of single vortices as well as vortex lat-
tices in ultracold atomic Bose-Einstein condensates (BECs)
[2,3]. These systems offer the possibility for direct observa-
tion of vortex lines and of their dynamics. They are thus
excellent systems for a comprehensive theoretical study of
vortex lines in three dimensions.

In an experiment performed in a spherical trap [4] single
vortices were produced by a technique that induces a 27
phase winding using a rotating laser beam. The vortices were
located off the trap center, and they were seen to precess
robustly around it at an almost constant angular velocity.
Surprisingly the precession frequency was found to be al-
most independent of the displacement of the vortex from the
trap center.

In another important experiment it was established that
the vortex lines in the finite trap geometry can have non-
trivial shapes [2]. It was observed that a single vortex line
may have an S shape or a U shape. The length and precise
shape of the vortex can vary and this is directly related to the
angular momentum it carries. Theoretical work in high-
density very elongated condensates similar to those of Ref.
[2] showed that the U-shaped vortex can be the ground state
of the rotating system [5,6]. Some differences between the S
and the U-vortex were reported in Ref. [7].

In this paper, we establish that an axisymmetric BEC ge-
nerically supports both S- and U-shaped vortices. We study
these single vortices as precessing stationary states within
the nonlinear Gross-Pitaevskii theory for a range of interac-
tion strengths. Their frequency of precession around the trap
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center depends critically on the features of the vortex line.
Precession frequencies for U vortices depend only weakly on
their angular momentum and fall in a relatively narrow fre-
quency range that depends on the interaction strength. S vor-
tices have higher energy and their precession frequencies de-
pend strongly on their angular momentum. The nonrotating
member of this family is a non-axisymmetric vortex solution
of the nonlinear theory. This has been called a solitonic vor-
tex; it breaks spontaneously the symmetry in an axially sym-
metric potential and pierces through the trap in a direction
perpendicular to the symmetry axis [8,9].

In the dilute limit the low-energy states can be described
within a lowest Landau level (LLL) ansatz [10]. Motivated
by the fact that experiments are usually performed in elon-
gated condensates we generalize the LLL ansatz to include
longitudinal modes. Both types of single vortex states can
then be described within this formalism and some simple
analytic expressions capture the main features of the vortex
modes. Low-density condensates close to the LLL regime
have been created recently by fast rotation, where a vortex
lattice was formed [11].

The outline of the paper is as follows. In Sec. II we for-
mulate the problem and find numerically two types of single
vortex solutions of the Gross-Pitaevskii equation. We apply
our method for a spherical trap as in Ref. [4] as well as for
elongated condensates. In Sec. III we formulate the problem
in the LLL augmented to include the longitudinal modes and
we study the S and U vortices within this formalism. Finally,
Sec. IV contains a summary and our concluding remarks.

II. PRECESSING VORTICES

Motivated by the experiment [4] where off-center vortices
precess at an almost constant angular velocity around the
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center of the condensate, we look here for vortices that are
stationary states in a frame rotating at a constant frequency.
In this paper we suppose that the energy of a BEC is given
by the Gross-Pitaevskii theory. We consider an axially sym-
metric harmonic potential with frequencies w, in the trans-
verse direction and w; in the longitudinal direction and
implement rationalized units by the substitutions

172
W ——W, (1)

alaH

X—a,x, y—a,y,

Z—q,
where WV is the condensate wave function, N is the number of
atoms in the condensate, and a, j=\A/mw, ; are the oscil-
lator lengths in the transverse and longitudinal directions.
The wave function normalization condition reads as

J|\P|2dV=l. (2)
The energy functional per particle in units of Aw, has the
form
! 2, 22 oV |? 2|2
=5 [ | VoW P+p WP+ Bl | ——| +2 ¥
2 Jz
N
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a

where p, z, and ¢ are cylindrical coordinates, V | is the gra-
dient on the transverse plane, a, is the scattering length, and
the parameter

p="" (4)
Ol
is the ratio of the two frequencies. The value B=1 corre-
sponds to a spherical trap. The quartic term gives the
strength of the interactions and we introduce for later conve-
nience the parameter

1 Na
) 5, (5)
2\"57 q

which is a dimensionless measure of the interaction strength
relative to the transverse trapping energy fiw, .

Stationary states that precess at a constant angular fre-
quency w are extrema of the energy in the rotating frame:

Enw=E-wt, (6)

where € is the angular momentum per particle along the
symmetry axis, in units of #:

= l f \P*ﬂ dv. (7)
i o

The asterisk denotes complex conjugation, and the frequency
w is measured in units of w | .

Extremizing numerically the energy functional (6) is often
not practically convenient because some of the interesting
solutions may not correspond to its minima. Therefore, we
define the Lyapunov functional
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FIG. 1. The particle density |W|?> for vortex solutions of the
Gross-Pitaevskii model in a spherical trap (8=1) at §=85. The
parameters correspond to the conditions of the experiment [4]. We
show the plane containing the vortex line and the z axis along
which the angular momentum € is measured. The images corre-
spond to four representative values of €=0.17,0.49,0.73,0.98 with
precession frequencies w=0.268,0.221,0.205,0.196, respectively,
in units of w, . The size of the frames shown is 12X 12 in units of
a,. White color corresponds to no particles and black color to
maximum particle density.

a
El =E+ El(e- by)?, (8)
where we have introduced the constants a;,b;. An extremum
of E,, corresponds to an extremum of E, with w=a,(b,
—{). We find the minima of E, by using a variant of a
numerical norm-preserving relaxation algorithm [12] which,
in effect, capitalizes on a virial relation [13] in order to con-
verge to a wave function of unit norm. The method is applied
on a three-dimensional grid in Cartesian coordinates. The
advantage of using E, is that we can find stationary points
that are not necessarily minima of E. The constants a;,b,
should be chosen so as to ensure convergence to the desired
value of the angular momentum, say €,. This usually
amounts to choosing b, close to €, while @, should be posi-
tive and large enough so that the stationary point at €, be a
minimum. Once the solutions for a range of angular mo-
menta are known the frequency is given by w=dE/d¢.

We first apply the method for parameters similar to those
in Ref. [4]: B=1 and 6=85. Since the trap is spherical any
arbitrary axis in space can be chosen as the z axis along
which ¢ is measured. We find vortex states for the range of
angular momenta 0<{ <1 and we present images of the
particle density for some representative ones in Fig. 1. The
condensate is at the nonrotating spherically symmetric
ground state for €=0. For £ >0 a vortex line enters the con-
densate. As € is increased the vortex line is closer to the
center and it is curved for € <1; it becomes the axially sym-
metric vortex at the center of the condensate for €=1. Fol-
lowing Refs. [2,7] we call the vortex mode in Fig. 1 the U
vortex.

The angular momentum € as a function of the precession
frequency w of the vortex around the z axis is shown in Fig.
2. We find that single vortex states with 0 <<€ <1 have fre-
quencies in the range 0.195 < w<<0.35. However, except for
very low values of €, the branch has frequencies in a narrow
frequency range, say, @=0.195 to 0.25. In physical units the
frequency f defined from w=2f takes values in the range
1.52 Hz<f<1.95 Hz (e.g., f=1.72 Hz for €=0.5); which is
in agreement with the value 1.8 Hz measured in [4]. In Ref.
[14] the precession frequency of the vortex is explained in
terms of an anomalous mode of the Bogoliubov spectrum
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FIG. 2. Angular momentum per particle € (in units of %) as a
function of the precession frequency w (in units of w ) for B=1,
=385 (solid line), which corresponds to Fig. 1 (and to experiment
[4]). We have a U-vortex branch with precession frequencies
0.195<w<0.35. We include the corresponding line (dashed) for a
smaller interaction strength 6=41 for comparison.

and it is related to its stability. The frequencies 1.58 Hz
given in the above reference should be compared with the
limiting frequency (1.52 Hz) obtained in our calculation. A
somewhat counterintuitive feature of the results presented in
Fig. 2 is that the precession frequency decreases as the an-
gular momentum increases, which means that vortices closer
to the axis precess slower. This point is discussed further at
the end of this section in connection with stability.

Further in this section we expand our calculations to axi-
ally symmetric elongated traps. This is an important direc-
tion since the majority of experiments involving vortices
have been performed in elongated condensates. Previous the-
oretical work on few-vortex solutions has focused on very
dense elongated condensates which are practically in the
Thomas-Fermi regime [5-7] and satisfy the condition &
>1,B. In this section we shall focus on the regime 6~ 1.

Here we present a calculation for S=1/2 and 6=2. Using
Na atoms and trapping frequencies w, =27 X 7.8 Hz, o,
=w, /2, these values are obtained for N=27 000 atoms (N
=6700 for Rb). In Fig. 3 we show by a solid line the angular
momentum for the U vortex as a function of the precession
frequency. The angular momentum is a decreasing function
of w, and the precession frequency range over which the U
vortex exists is narrow and it is located at much higher fre-
quencies compared to Fig. 2. In Fig. 4 we present images of
the U vortices for various values of the angular momentum.
Vortices are off center and slightly curved. The axially sym-
metric vortex is obtained as the limit for a frequency wy
=0.60.

References [8,9,15] study a solution of the Gross-
Pitaevskii equation that has been called the solitonic vortex.
This appears to be different than all the vortices discussed in
this section so far. The solitonic vortex is an excited state in
an elongated nonrotating condensate that pierces through the
trap in a direction perpendicular to the symmetry axis and
therefore it has angular momentum €¢=0 (along the symme-
try axis). An example is shown in the first entry of Fig. 5.
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FIG. 3. (Color online) Angular momentum per particle € (in
units of ) as a function of the precession frequency w (in units of
w,) for vortices in an axially symmetric elongated trap with B
=1/2, 6=2. The solid line shows the U-vortex branch. The dashed
line is the S-vortex branch which contains the solitonic vortex for
£=0 (at @=0). Both modes give the axially symmetric vortex for
€=1, but this is obtained at different limiting frequencies: w=0.60
for the U vortex and w=0.44 for the S vortex.

The solitonic vortex exists for sufficiently high interaction
strengths and it bifurcates from the dark soliton solution.
We notice that the solitonic vortex breaks spontaneously
the axial symmetry and if we assume a finite precession fre-
quency w, it may acquire a nonvanishing angular momentum
{={(w). In order to explore this possibility we use the soli-
tonic vortex solution as an initial guess in our numerical
algorithm and choose appropriate values for the constants in
Eq. (6). Representative results for vortex solutions with 0
<{ =<1 are shown in Fig. 5, for an elongated condensate
(8=1/2) and for an interaction strength constant =2. The
first entry, for €=0, is the solitonic vortex and the next en-
tries show almost straight vortex lines that are tilted with
respect to the z axis. As the frequency increases the vortex
line progressively aligns with the symmetry axis while its
angular momentum increases. The dependence of € on w is
shown by a dashed line in Fig. 3. This mode, which may be
called the S-vortex following Ref. [7], gives the axially sym-

t=0.8 t=0.97

FIG. 4. The particle density |W|? for the U vortex corresponding
to the solid line in Fig. 3 (B=1/2,5=2) for four values of the
angular momentum €. Here we show the plane containing the sym-
metry axis and the vortex line. At €=0 we have the nonrotating
ground state and for =1 we obtain the axially symmetric vortex.
For 0<{ <1 the vortex lines are slightly curved. The size of the
frames shown is 6 X 10 (in units of a ).

t=0.0 t=0.4
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t=0.37 (=0.75 ¢=0.99

t=0.0

FIG. 5. The particle density [W|> for the S vortex corresponding
to the dashed line in Fig. 3 (8=1/2,6=2) for four values of the
angular momentum €. We show here the plane containing the sym-
metry axis and the vortex line. At =0 we have the solitonic vortex
and for £=1 we obtain the axially symmetric vortex. For 0<¢
<1 the vortex lines are slightly curved. The size of the frames
shown is 6 X 10 (in units of a ).

metric vortex (€=1) at a limiting frequency wg=0.44 [this
value should be compared with Eq. (13) in Sec. II1.] Thus the
S and the U vortex are two different types of single vortex
states in elongated condensates.

The picture summarized in Figs. 3, 4, and 5 is apparently
robust for large interaction strengths. In particular, in the
experiments in Ref. [2] and in Refs. [5-7], S and U vortices
are found in condensates that are practically in the Thomas-
Fermi regime (6> 1, B). Unlike in the present case, all vor-
tices were found to be distinctly curved. Also, in Ref. [7] the
limiting (€=1) frequencies for the axially symmetric vortex
appear to coincide for both the S vortex and the U vortex.
These differences should be attributed to the Thomas-Fermi
nature of the condensates studied in the above references.

In order to complete the study of S vortices, we note that
the qualitative picture should be modified for low interaction
strengths. This is because the solitonic vortex is a solution of
the nonlinear theory that exists only above a certain value of
the interaction strength, 5> &,, which depends on 8 [9,15].
In order to explore the regime << &, we choose 6=0.28 in
the elongated trap with S=1/2. Figure 6 shows the angular
momentum of the vortex modes as a function of the preces-

sion frequency. A substantial modification for the S vortex is
that now € —0 for a finite limiting frequency w=0.26. For
w=10.26 we obtain an axially symmetric wave function with
a node on the z=0 plane, which, in the context of the present
nonlinear theory, is called a dark soliton by comparison to
the dark soliton of the nonlinear Schroédinger equation. Sum-
marizing, the picture in Fig. 6 could also be described as the
following: a dark soliton that may initially be created in a
trap would not respond to rotations of the system until we
exceed a limiting frequency 0.26. For w>0.26 it could turn
into an S vortex that would become an axially symmetric one

for >>0.49 [these frequencies should be compared with Eq.
(16) in Sec. III when setting €=0 and €=1, respectively.]
Finally, we note that the particle density plots for the S vor-
tices are qualitatively similar to those for higher interaction
strengths presented above (as in Fig. 5), except, of course,
for the £=0 case.

The U-vortex branch is qualitatively similar to its coun-
terpart for 6=2 but its frequency range is shifted closer to the
transverse trapping frequency (w,) while it becomes nar-

rower as o decreases.
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FIG. 6. (Color online) Angular momentum per particle € (in
units of ) as a function of the precession frequency w (in units of
w,) for vortices in an axially symmetric elongated trap with B
=1/2, 6=0.28. The solid line shows the U-vortex branch. The
dashed line is the S vortex for which the €=0 state (for =<0.26) is
a dark soliton. Both modes become the axially symmetric vortex at
the limit € — 1, but this is obtained at different frequencies.

In Ref. [13] a series of virial relations are derived that
should be satisfied by any vortex solution. We have checked
that the solutions presented here have, in particular, the coun-
terintuitive property that the moments of the particle density
vanish: [x|W|?dV=[y| V> dV=[z|V|* dV=0. This is trivi-
ally satisfied by the S vortex due to its symmetry along the z
axis, but it is a nontrivial result for the U vortex.

We comment briefly on the relation of the vortex modes
presented here to vortices in helium 11. In Ref. [16] an equa-
tion is derived for the dynamics of a vortex line in a rotating
bucket containing the superfluid and it is found that there are
vortex lines precessing on an unstable orbit around the
bucket center at some distance », which is an increasing
function of the precession frequency. Since the angular mo-
mentum of the vortex is a decreasing function of r (as dis-
cussed in Ref. [17]), we conclude that the angular momen-
tum is a decreasing function of the precession frequency, that
is the situation is analogous to that for the U vortex in Figs.
2, 3, and 6.

We finally turn to the delicate issue of stability of the
calculated vortex states. According to Ref [10], “mechanical
stability” requires that the energy be a convex function of
angular momentum: dw/d¥€ =d?E/d¢*>0. However, this is
a condition for stability of the solution in the rotating frame
under variations that change the angular momentum. In ex-
periments in which the trap is axially symmetric (i.e., when
the system is no longer being stirred), the angular momen-
tum is conserved and this condition is irrelevant for the sta-

bility of the modes: what is relevant is that the mode should
be dynamically stable against decay into other modes that
have the same angular momentum. As is evident from Fig. 2,
the precessing U vortex has dw/d€ <0, so it does not satisfy
the criterion of the mechanical stability of Ref. [10]. How-
ever, the U vortex must be dynamically stable since it is the
lowest-energy configuration for given angular momentum
0< € <1, as we know from the calculations in the present
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section. Indeed the U vortex has been seen in experiments
[4] in which angular momentum is conserved.

It is also interesting to comment on the issue of overall
thermodynamic stability of the rotating system. In the rotat-
ing frame, a single axially symmetric (€=1) vortex is the
lowest-energy state if w>Ey—E, where Ey and E, are the
vortex and the ground state energies in the laboratory frame
[1]. Now, taking into account that w=dE/df, we may write

1
EV—E0=f0 w)dl . 9)

Applying this relation for the U vortex calculated for a
spherical trap with §=85 (see Fig. 2) we find Ey—E;=0.23
or, in physical units, 1.8 Hz, which lies in the range of pre-
cession frequencies for the U vortex.

III. DILUTE CONDENSATES

We now turn to discuss more specifically dilute conden-
sates that offer the possibility to study vortex modes in the
limit of a small interaction strength where the energy levels
of the system are close to those of the harmonic oscillator.
This analysis will provide an analytic description of the fea-
tures of the S and U vortices. In Ref. [10] the energy E,. of
a rotating system is minimized in the case of the very dilute
limit in the sense that the nonlinear term in Eq. (3) is much
smaller than the other energy scales, namely Zw | , fi wj, or

6<1,B. (10)
The problem is then reduced to the lowest Landau level
(LLL) on the transverse plane (6<<1) while the wave func-
tion in the longitudinal direction z is the Gaussian ground
state of the 1D harmonic oscillator. We refer to this as the 2D
LLL regime. An analytic solution for vortices with angular
momentum in the range 0< € <1 is given in Ref. [18]. The
minimization of E,; gives the Gaussian nonrotating ground
state as the global minimum for w<wy=1-4. For 0> wy
the axially symmetric vortex becomes the global minimum
of the functional (6). Exactly at w=wy, there is a set of states
with 0 <€ <1 that are off-center vortices. These are denoted
by a solid line in Fig. 7 that shows the angular momentum as
a function of the precession frequency. For higher values of
w (but still lower than the transverse frequency of the poten-
tial), many-vortex states and vortex lattices become the ab-
solute minimum [10,18]. All vortex lines are parallel to the
symmetry axis of the trap since this is a 2D calculation. For
larger values of & these evolve in the curved vortex lines as,
e.g., in Fig. 1 and thus they correspond to the U-vortex mode
discussed in the previous section.

In elongated traps excited states of the rotating condensate
can be found without mixing higher Landau levels. This is an
interesting issue also because most experiments involving
vortices, and in particular those in which the shapes of indi-
vidual vortex lines were studied, were performed in very
elongated traps, that is, at 8<<1 [2]. We first consider the
case of a noninteracting gas, i.e., 6=0, whose first excited
state has a node in the z direction:
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FIG. 7. (Color online) Angular momentum per particle € (in
units of #) as a function of the precession frequency w (in units of
w,) for §<1,B,1-p for single vortex states. The solid line is the
result of Ref. [10]. The dashed line is a plot of Eq. (16). The hori-
zontal axis is not to scale. The wave function at €=0 for the dashed
line (w<1-8-10) is ¥, while for the solid line (o=<1-) it is the
Gaussian. The €=1 state is ¥, for both cases.

-
V2
\1}1 = 7T3/4Ze

(11)

—(p*+2))12
b

its energy is E;=/, and has vanishing angular momentum.
Here, we have substrated the ground state energy of the har-
monic oscillator 1+3/2, a convention that will be adopted
from now on. We note that for increasing & the wave func-
tion W, evolves to the dark soliton in the framework of the
nonlinear Gross-Pitaevskii model. A further excited state is

of the vortex type

r . 2,2
v, = Wpe"/’e"(p )2 (12)

and it has energy E,=1 and angular momentum €=1. It is
thus obvious that for the frequency,

(DS=1—B,

the two states (11) and (12) have the same energy E,, in the
rotating frame. For o <wg we have W, as the first excited
state while ¥, becomes the first excited state for w> wy.
The simple picture is modified in the presence of a weak
interaction term, that is, for ¢ small but finite. For 6<f,1

— B we make the ansatz

(13)

\Ifzcl\lf1+czq’2, (14)

where the coefficients c;,c, are constrained by |c;[>+]c,|?
=1 and |c,|*=¢. Substituting ¥ in Eq. (3), we find the energy
of the first excited state as a function of the angular momen-

tum ¢:

E(€)=§€2+(1—,B—5)€ +3+375. (15)

Now, E,.(f) has a minimum for any € in the range 0<¢
<1 and a frequency w=dE/d{ or
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w=1-B-81-10), (16)

as depicted by the dashed line in Fig. 7. For o<1-8-the
wave function is W=V, (£=0) while for ®=1- we have
=y, (€=1).

The vortex line represented by the ansatz (14) is found by
setting

V=0= \Eclz +cy(x+iy)=0=>y=0, \J'Eclz +cpx=0,
(17)

where, for simplicity, we may consider c;,c, real. For fre-
quencies in the range 1-B-06<w<1-B we have c,c,
#0, and thus Eq. (17) gives a straight vortex line that is
tilted with respect to the symmetry axis z. Summarizing, the
first excited state (14) has a wave function with a nodal plane
perpendicular to the z axis for low frequencies that turns to a
tilted vortex for 1-B8-56<w<1-p. This gradually aligns
with the symmetry axis as the frequency increases. It be-
comes the axially symmetric vortex above the limiting fre-
quency w= wg=1-p. This is the weak interaction limit of
the S vortex discussed in the previous section.

Both the S vortex and the U vortex become the axially
symmetric vortex for a sufficiently high w. However, the
corresponding limiting frequencies for the two types of vor-
tices do not coincide. In fact, there is no sense of precession
in an axially symmetric vortex and the limiting frequency
may be absorbed into an effective chemical potential w=pu
+ w while the wave function reduces to a quasistatic configu-
ration with chemical potential .

We are able to take our calculation one step further if we
assume a very elongated trap, i.e., S<<1, and an interaction
strength comparable to the latter energy scale:

6<1 and 6~ B. (18)
In this case it is useful to extend the LLL calculation to three
dimensions by including higher axial oscillator states. We
use the wave function ansatz

V(p,2,8) = 2 ConXmn(ps B)E(2), (19)

where c,,, are complex constants,

1 172 ) )
Xm(p,¢)=<—wm,) empre (20)

are eigenstates of the 2D harmonic oscillator, and

on 172 )
&(2) = (m) e 2 (21)

form a basis for the expansion of the wave function in the
axial direction. We aim to find the vortex states for a fixed
angular momentum within the present ansatz. An efficient
way to do this is by minimizing the Lyapunov functional,

EU

rot

—E+ %(e- b1)2+%(v—b2)2, (22)
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FIG. 8. (Color online) Angular momentum per particle € (in
units of #) as a function of the precession frequency w (in units of
w ) for the S vortex (dashed line) and U vortex (solid line) within
the 3D LLL calculation for 6/8=2. Here, d{/dw>0 (except for
small values of €) unlike in Fig. 7.

where ¢ is the angular momentum functional of Eq. (7) and
v= [|W|> dV. The constants a,,a,,b,,b, are chosen so as to
obtain a solution for the desired number of particles and
angular momentum. We substitute the wave function (19) in
Eq. (22) and minimize E| with respect to ¢,,, by a conjugate
gradient method. Computer limitations allow for modes typi-
cally up to m=4 and n=14.

When the interaction term is small, i.e., << the algo-
rithm converges to the two single-vortex solutions that were
discussed in Fig. 7. Specifically, for the U vortex we have
that all ¢,,, with n# 0 vanish. For the S vortex we have that
only cg;,co are nonzero. When & becomes comparable or
greater than S several c,,, are nonzero and their values de-
crease with respect to both indices. For the S vortex we find
that all c,,,, with m+n even vanish, and this is consistent with
the symmetry of an S-shaped vortex. For the U vortex we
find that for all n odd c,,,=0, which is consistent with the
symmetry of a U-shaped vortex.

Figure 8 shows the angular momentum of the two vortices
as a function of the precession frequency for parameter val-
ues 6/ B=2. The most dramatic effect is seen in the U vortex
where d€/dw is now positive, except for small values of €.
This means that the abrupt transition from the €=0 to the
€=1 state depicted in Fig. 7 is smoothed out and the angular
momentum of the U vortex is now a smooth function of the
frequency w, although the range of frequencies correspond-
ing to 0< € <1 is narrow. The vortices in the latter range are
located off center while the contribution of modes with n
>0 in the wave function (19) means that vortex lines are
curved. The S-vortex lines are also curved and the slope of
the branch (the dashed line in Fig. 8) is not constant, unlike
in Fig. 7.

A concise presentation of the main features of the two
vortex modes can be given by the graph of the energy as a
function of the angular momentum shown in Fig. 9. The
energy of the U-vortex mode for €=0 is the energy of the
nonrotating ground state. The corresponding value for the S
vortex is the energy of the wave function W,. The S vortex
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FIG. 9. (Color online) The energy per particle E (in units of
fiw ) of Eq. (3) as a function of the angular momentum per particle
€ (in units of #) for the S vortex (dashed line) and the U vortex
(solid line) of Fig. 8, where &8/ 3=2. The energies of the nonrotating
ground state, and of the wave functions W and W,, are E, E;, and
E, correspondingly. (In the noninteracting system the corresponding
energies are 0, 3, and 1, having subtracted the ground state energy
of the harmonic oscillator 1+3/2.)

has higher energy than the U vortex, but both curves con-
verge to the same value for €=1, which is the energy of the
axially symmetric vortex W,.

IV. CONCLUSIONS

We have analyzed the two single vortex modes, the S
vortex and the U vortex, which are stationary states of the
Gross-Pitaevskii model precessing at a constant frequency w
in a BEC confined in an axially symmetric harmonic poten-
tial. Vortices for the whole range of angular momenta 0
=< ¢ <1 have been studied. The precession frequency range
is distinctly different for the two modes. The U vortices fall
within a relatively narrow frequency range. For those U vor-
tices studied in Sec. II, we find that the precession frequency
is a decreasing function of the angular momentum. The S
vortex is an excited state in elongated condensates. Their
frequency range extends down to zero (for sufficiently high
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interaction strengths) and the nonrotating member of the
family is the so-called solitonic vortex, which is a solution of
the nonlinear Gross-Pitaevskii model [8,9]. Both the U vor-
tex and the S vortex have been directly seen in the experi-
ment [2,4]. Perhaps the S vortex is also related to shape
deformations of vortex lines observed in the form on Kelvin
modes [19,20].

A complete analysis for vortex solutions could be carried
out for a dilute condensate within a 3D lowest Landau level
calculation that includes the axial oscillator states. We have
given a derivation for the S vortex that is complementary to
the LLL calculation for the U vortex [10]. Including the axial
oscillator states causes the transition from a nonrotating
ground state to an axially symmetric vortex to occur
smoothly as the rotation frequency increases: vortices with
an angular momentum ¢ of less than unity are thermody-
namically stable.

Both the S vortex and the U vortex become axially sym-
metric in the limit € — 1, but this occurs at different frequen-
cies in the two cases. This seems to be in disagreement with
the results reported in Ref. [ 7], however, one should note that
in the latter reference very elongated and very dense conden-
sates are studied. Although the results are related, an extrapo-
lation of our results to the Thomas-Fermi regime, and thus a
direct comparison to Ref. [7], does not appear straightfor-
ward. We further find that, for weak interactions, an S vortex
line is only slightly bent, in contrast to the original observa-
tions in Ref. [2]. In fact, both vortex modes in the dilute limit
presented in Fig. 7 represent straight vortex lines. However,
as the density increases vortex lines tend to bend (as, e.g., in
Figs. 4 and 5). Thus, the difference between the present re-
sults and the observations is clearly due to the difference in
the density of the condensates.
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