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We study the Landau damping of Bogoliubov excitations in two- and three-dimensional optical lattices at
finite temperatures, extending our recent work on one-dimensional �1D� optical lattices. We use a Bose-
Hubbard tight-binding model and the Popov approximation to calculate the temperature dependence of the
number of condensate atoms nc0�T� in each lattice well. As with 1D optical lattices, damping only occurs if the
Bogoliubov excitations exhibit anomalous dispersion �i.e., the excitation energy bends upward at low momen-
tum�, analogous to the case of phonons in superfluid 4He. This leads to the disappearance of all damping
processes in a D-dimensional simple cubic optical lattice when Unc0�6DJ, where U is the on-site interaction,
and J is the hopping matrix element.
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I. INTRODUCTION

Bose condensates in periodic optical lattices have at-
tracted much attention recently. However the effect of a ther-
mal cloud on the condensate excitations in an optical lattice
have not been studied very much. In a recent paper �1�, we
have given a detailed analysis of the Landau damping of the
Bogoliubov excitations in a one-dimensional �1D� optical
lattice. In the present paper, we extend these calculations to
two-dimensional �2D� and three-dimensional �3D� optical
lattices. As in Ref. �1�, we use a Bose-Hubbard tight-binding
model, calculating the temperature dependence of the con-
densate atom number nc0�T� in each lattice well using the
static Popov approximation. As discussed in Ref. �1�, for
damping processes to occur, the dispersion relation of the
Bloch-Bogoliubov excitations Eq must initially bend upward
as the quasimomentum q increases. This is referred to as
“anomalous dispersion” and is also the source of three-
phonon damping of long wavelength phonons in superfluid
4He �2,3�. This condition leads to a dramatic disappearance
of all damping processes of phonon modes in a
D-dimensional optical lattice when ��Unc0 /J�6D, where
U is the on-site interaction and J is the hopping matrix ele-
ment.

Recently, several experimental papers have reported re-
sults on the collective modes of Bose condensates in a one-
dimensional optical lattice �4–7� and its damping at finite
temperature �4�. In these experiments, a shift of the oscilla-
tion frequency in the presence of the optical lattice and a
sharp change of the damping rate with increasing depth of
the optical lattice have been observed. The measured fre-
quency shift �5� of the collective modes is in good agreement
with the renormalized mass theory of Krämer et al. �8�. The

damping of condensate oscillations in a 1D optical lattice at
T=0 has been measured �6�. However, damping of the Bo-
goliubov excitations at finite T has not been studied in any
detail.

In Sec. II we briefly recall the well-known Bose-Hubbard
tight-binding model for Bose gases in an optical lattice, and
give the dispersion relation for the excitations. We present
results for the condensate fraction as a function of the optical
lattice depth and temperature. In Sec. III, we discuss the
Landau damping of Bogoliubov excitations in 2D and 3D
optical lattices, and compare it with the results for a 1D
optical lattice discussed in Ref. �1�. We also briefly discuss
Beliaev damping in a 1D optical lattice.

II. EXCITATIONS IN A TIGHT-BINDING MODEL AT
FINITE T

We consider bosonic atoms in an optical lattice potential

Vop�r� = sER�
i=1

D

sin2�kxi� , �1�

where s is the usual dimensionless parameter describing the
optical lattice depth in units of the photon recoil energy
ER��2k2 /2m. D is the dimension of the optical lattice and
d=� /k=� /2 is the lattice period. We only consider simple
cubic lattices considered in recent experiments �9,10�. We
call attention to the recent technique �6� of producing a two-
dimensional array of long, tightly confined condensate tubes
by loading a Bose condensate into a deep 2D optical lattice
potential, which prevents atoms from hopping between dif-
ferent tubes. With an additional 1D optical lattice potential
along a tube, an ideal 1D system can be experimentally re-
alized �6�. One can also have an ideal 2D system by loading
a condensate into a deep 1D optical lattice and a shallow 2D
optical lattice. We assume this experimental setup for the
realization of 1D and 2D optical lattices in the present paper.
We also assume that the laser intensity determining the depth
of the optical lattice wells is large enough to make the atomic
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wave functions well localized on the individual sites �i.e.,
where we can use the tight-binding approximation�. The en-
ergy gap between the first and the second excitation bands is
large compared to the thermal energy �2kBT /ER�s�, and
thus only the first band is thermally occupied.

Within a tight-binding approximation, the Hamiltonian is
effectively described by the Bose-Hubbard model �11,12� as

H = − J�
�j,l�

�aj
†al + al

†aj� +
1

2
U�

j

aj
†aj

†ajaj , �2�

where aj and aj
† are destruction and creation operators of

atoms on the jth lattice site. �j , l� represents nearest-neighbor
pairs of lattice sites. The first term describes the kinetic en-
ergy due to the hopping of atoms between sites. The hopping
matrix element J is given by

J = −	 drwj
*�r�
−

�2�2

2m
+ Vop�r��wl�r� , �3�

where wj�r� is a wave function localized on the jth lattice
site, and m is the atomic mass. Expanding the optical lattice
potential around the minima of the potential wells, the well
trap frequency is �s�s1/2��k2 /m�. Approximating the local-
ized function as the ground state wave function of a har-
monic oscillator with frequency �s at the potential minima of
jth site

wj�r� = 
m�s

��
�D/4

exp
−
m�s

2�
�r − r j�2� , �4�

one obtains

J

ER
� 
�2s

4
−

s1/2

2
� −

1

2
s�1 + exp�− s−1/2���e−�2s1/2/4.

�5�

Here s1/2���2m�sER� /��d can be interpreted as a WKB fac-
tor for tunneling in an optical lattice potential which has
height sER and well width d.

The second term in Eq. �2� describes the interaction be-
tween atoms when they are at the same site. We assume that
atoms can move along the z direction in the 1D case and in
xy plane in the 2D case. The on-site interaction U depends
on the dimensionality of the optical lattice. U is given by
�12�

U = g	 dr��	��r���4	 dz�wj�z��4, �1D� �6�

=g	 dz�	��z��4	 dxdy�wj�x,y��4, �2D� �7�

=g	 dr�wj�r��4, �3D� �8�

where g=4��2a /m and a is the s-wave scattering length.
Here 	��r��= �m�� /���1/2 exp(−�m�� /2��r�

2 ) and
	��z�= �m�� /���1/4 exp(−�m�� /2��z2) are the ground state
wave functions in optical lattice well traps for confining at-

oms in 1D and 2D. Approximating the localized function wj
as a simple Gaussian, one obtains �12�

U

ER
�

g

�2��3/2a�
2 as

=
23/2ad

�3/2a�
2 s1/4, �1D� �9�

�
g

�2��3/2a�as
2 =

23/2a

�1/2a�

s1/2, �2D� �10�

�
g

�2��3/2as
3 =

23/2�1/2a

d
s3/4, �3D� �11�

where as=�� /m�s, a�=�� /m��, and a� =�� /m��.
The Bogoliubov excitation spectrum for a uniform optical

lattice is easily calculated for the model discribed by Eq. �2�
�13–15�, as summarized in Ref. �1� for a 1D optical potential.
This discussion is easily extended to 2D and 3D optical lat-
tices: The Bloch-Bogoliubov excitation energy in a
D-dimensional tight-binding optical lattice is given by

Eq = �
q
0�
q

0 + 2Unc0� , �12�

where


q
0 � 4J�

i=1

D

sin2 qid

2
�13�

and nc0 denotes the number of condensate atoms trapped in
each well of the optical lattice.

We call attention to an important feature of the dispersion
relation Eq in Fig. 1, considered as a function of the dimen-
sionless interaction parameter

� �
Unc0

J
. �14�

For ��6, the excitation energy Eq bends up before bending
over, as q approaches the Brillouin zone �BZ� boundary. This

FIG. 1. The Bogoliubov excitation spectrum Eq in a 1D optical
lattice plotted as a function of the quasimomentum q in the first
Brillouin zone, for ��6 and ��6. In contrast with Fig. 1 of �1�, Eq

is normalized to the recoil energy instead of J.
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behavior is analogous to the so-called “anomalous disper-
sion” of the phonon spectrum in superfluid 4He �2,3,16�. For
��6, in contrast, the spectrum simply bends over as one
leaves the low q �phonon� region. The excitation spectrum in
2D and 3D optical lattices also exhibit this kind of spectrum.
However, the critical value of � then depends on the direc-
tion of q, since simple cubic optical lattices in 2D and 3D do
not have rotational symmetry. The crucial effect of this
anomalous dispersion on damping processes is calculated in
Sec. III.

As discussed in Ref. �1�, one can easily extend the usual
T=0 excitation spectrum to finite T within the standard
Popov approximation �17,18�. This assumes that the noncon-
densate in each lattice well is always in thermal equilibrium,
i.e., the dynamics is ignored. Within this approximation, Eq
is identical to the T=0 result in Eq. �12�, except that now
nc0�T� is temperature-dependent �1�.

Expressing the number of noncondensate atoms in a lat-
tice site ñ0�T� in terms of Bogoliubov-Popov excitations, we
have �1,13,14,17�

n = nc0 +
1

ID �
q�0

�aq
†aq� = nc0 +

1

ID �
q�0

��uq
2 + vq

2�f0�Eq� + vq
2� ,

�15�

where ID is the total number of lattice sites. uq and vq are the
standard Bogoliubov transormation functions �1�. f0�Eq�
= �exp�Eq�−1�−1 is the Bose distribution function. Apart
from the limiting case of ��1, we must always use the full
Bogoliubov spectrum Eq to describe the thermal cloud com-
posed of excitations in the first band of an optical lattice.
This is different from Bose gases trapped in harmonic poten-
tials, where one can always use the Hartree-Fock approxima-
tion �19� for the excitations describing the thermal cloud as
long as the kinetic energy of the atoms ��kBT� is much
larger than the interaction energy �Unc0�.

The number of condensate atoms nc0�T� at a site is found
by solving Eq. �15� self-consistently for a fixed value of the
total site density n. The condensate fraction nc0�T� /n in a
D-dimensional optical lattice is shown in Fig. 2. We take
n=2 and use the parameters from Ref. �6�. These experimen-
tal parameters are quite different from those used in the cal-
culations reported in Ref. �1�, which were based on the ex-
periments in Ref. �4�. A 3D optical lattice used to produce
1D systems in Ref. �6� decreases the number of atoms per
site compared to the experiments in Ref. �4� with a combined
potential of a 1D optical lattice and a harmonic trap. The
spurious finite jump in the condensate atom number nc0 at
the transition temperature Tc is an inherent problem of the
Bogoliubov theory in a uniform gas �20�.

In Fig. 3, we plot the parameter ��Unc0�T� /J as a func-
tion of the temperature for several values of the optical depth
s. The dimensionless interaction parameter � and the results
in Fig. 3 will be very important in our analysis in Sec. III.
Since we limit our discussion to the first energy band of the
optical lattice, our results only apply when s�2kBT /ER.
Higher excitation bands would be thermally populated if we
consider lower values of s �weak optical lattices�.

III. DAMPING OF BOGOLIUBOV EXCITATIONS AT
FINITE T

The damping of Bogoliubov excitations ��q=Eq− i�q� in
an optical lattice is given by

�q = �q
L + �q

B, �16�

where

�q
L = � �

p1,p2�0
�Mq,p2;p1

�2�f0�Ep2
� − f0�Ep1

����Eq − Ep1
+ Ep2

� ,

�17�

FIG. 2. The condensate fraction nc0 /n in D-dimensional optical
lattice as a function of temperature. The height of the optical lattice
potential �in units of ER� is always denoted by s. The experimental
parameters used are from Ref. �6�.
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�q
B =

�

2 �
p1,p2�0

�Mp1,p2;q�2�1 + f0�Ep1
� + f0�Ep2

��

���Eq − Ep1
− Ep2

� . �18�

The matrix element is

Mp1,p2;p3
= 2U�nc0

ID �
G

��up1
up3

+ vp1
vp3

− vp1
up3

�up2

− �up1
up3

+ vp1
vp3

− up1
vp3

�vp2
��p1+p2,p3+G,

�19�

where G is a reciprocal lattice vector. The Kronecker delta

�p1+p2,p3+G expresses the conservation of quasimomentum of
the three excitation scattering processes �Umklapp processes
are associated with G�0�.

Landau damping �q
L in Eq. �17� is expected to be domi-

nant at higher temperatures where there are thermally excited
quasiparticles. In contrast, Beliaev damping �q

B in Eq. �18� is
due to a decay process and can arise in the absence of ther-
mally excited excitations. Beliaev damping is possible even
at T=0 �i.e., f0�Ep�=0� and is expected to be dominant at
low temperatures.

A. Landau damping in 2D and 3D optical lattices

The Landau damping has been calculated in Ref. �1� for a
1D optical lattice. This simple case is useful background to
the analogous but more algebraically complicated calcula-
tions in the 2D and 3D optical lattices. The energy conser-
vation condition Eq+Ep=Eq+p+G=Eq+p needs to be satisfied,
where G is a reciprocal lattice vector. The solution of the
energy conservation condition Eq+Ep=Eq+p for a 1D optical
lattice is illustrated in Fig. 4 of Ref. �1�. As discussed in Ref.
�1�, for Eq+Ep=Eq+p to be satisfied, the dispersion relation
Eq must bend up as q increases, before bending over. From
Fig. 1, we see that the 1D optical lattice dispersion relation
Eq has this feature only for ��6 and thus Landau damping
can occur only when ��6. If the solution Eq+p is outside of
the first Brillouin zone, it has to be reduced in the first
Brillouin zone by subtracting a reciprocal lattice vector
Gm=2�m /d �m is an integer�, corresponding to an Umklapp
process.

We now discuss the analogous energy conservation
condition in a 2D optical lattice. We imagine a surface
in a three-dimensional space which satisfies the Bogoliubov
dispersion relation �qx ,qy ,Eq�. Then, we draw a new disper-
sion Eq in the three-dimensional space, with a point on
the surface �q1x ,q1y ,Eq1

� as origin. That is, we draw
�qx ,qy ,Eq−q1

+Eq1
�. If those two surfaces intersect, the en-

ergy conservation condition Eq1
+Eq2

=Eq1+q2
is satisfied, the

intersection being given by �q1x+q2x ,q1x+q2y ,Eq1+q2
�. For

this condition to be satisfied, the surface �qx ,qy ,Eq� has to be
above the other surface �qx ,qy ,Eq−q1

+Eq� around
�q1x ,q1y ,Eq1

�. Since the Bogoliubov spectrum is phononlike
Eq�cq for small q, the maximum gradient of Eq at
�q1x ,q1y ,Eq1

� must be greater than c. Since ��qEq�q=q1
is the

maximum gradient of Eq at q1, this condition is equivalent to
the requirement:

��qEq�q=q1
= 2Jd

Ẽq1

Eq1

�sin2 q1xd + sin2 q1yd � c . �20�

Ẽq=
q0 +Unc0 is the Hartree-Fock excitation spectrum.
Equation �20� is the 2D version of the condition for the Bo-
goliubov spectrum of a 1D optical lattice to have anomalous
dispersion. If Eq. �20� is satisfied, the energy conservation
condition Eq1

+Eq2
=Eq1+q2

can be satisfied. An excitation Eq1
can then decay into Eq1+q2

by absorbing Eq2
�Landau�, or an

excitation Eq1+q2
can decay into two excitations Eq1

and Eq2
�Beliaev�.

FIG. 3. The demensionless interaction parameter �=Unc0�T� /J,
plotted as a function of temperature, for several values of the optical
well depth s. The number of condensate atoms at a lattice site
nc0�T� is given in Fig. 2. The dashed line shows the critical value
�c=6D, above which there is no damping.
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The condition for such a q1 to exist is that the maximum
value of ��qEq� as a function of �qx ,qy� is greater than c. Due
to ��qEq�q=0=c, we only need to consider the condition that
��qEq� takes its maximum at q�0. When ��qEq� has its
maximum value,

�q��qEq� =
2Jd2 sin qxd

�sin2 qxd + sin2 qyd
�  Ẽq

Eq

cos qxd

cos qyd
�

−
2JU2�nc0�2

Eq
3 �sin2 qxd + sin2 qyd�
1

1
�� = 0.

�21�

From Eq. �21�, ��qEq� has its maximum value when
cos qxd=cos qyd, i.e., at the two values qx= ±qy. If we as-
sume qx=qy and define u�sin2 qxd, Eq. �21� reduces to

u = sin2 qxd =
− �3� − 4� + �5�2 + 24� + 16

16
. �22�

From Eq. �22�, one sees that u decreases as � increases,
vanishing when �=12. Therefore we conclude that the Lan-
dau damping when ��12 is due to excitations with momen-
tum qx= ±qy, and all damping processes in a 2D optical lat-
tice will vanish when ��12. We have confirmed this
analytical result by numerically solving the energy conserva-
tion condition in Eq. �17�.

The condition for the disappearance of Landau damping
in a 3D optical lattice can be derived by generalizing the
procedure described above for a 2D optical lattice. One can
show that ��qEq� has its maximum when cos qxd=cos qyd
=cos qzd, i.e., qx= ±qy = ±qz and

sin2 qxd =
− 3�� − 2� + �5�2 + 36� + 36

24
. �23�

One finds that u→0 when �→18, and damping in a 3D
optical lattice vanishes when ��18. As in the 2D case, Lan-
dau damping when ��18 only occurs for an excitation with
momentum qx= ±qy = ±qz.

We next discuss the energy conservation condition in a
2D optical lattice in detail, restricting ourselves to the
damping of a long wavelength phonon. Using the approxi-
mation for the long wavelength phonon Eq�cq and
Eq+p�Eq+�pEp ·q, the energy conservation condition
Eq+Eq=Eq+p can be written as

�

2
�qx

2 + qy
2� =

Ẽp
2

Ep
2 �sin2�pxd�qx

2 + 2 sin�pxd�sin�pyd�qxqy

+ sin2�pyd�qy
2� . �24�

When qx�0 and qy =0, Eq. �24� can be solved easily. Defin-
ing X�sin2�pxd /2� and Y �sin2�pyd /2�, the solution of Eq.
�24� is

Y = − 
X +
�

4
� +

1

4
� �3

8X2 − 8X + �
. �25�

One can confirm that Eq. �25� reduces to the 1D result given
in Ref. �1� when Y =0, namely

sin2
 p0d

2
� =

− �� − 2� + �2�� + 2�
4

. �26�

Equation �25� is plotted in Fig. 4 for several values of �.
We see that as �→6 the line in the �px , py� plane which
satisfies the energy conservation condition shrinks and van-
ishes when ��6. Therefore the Landau damping of an ex-
citation with qy =0 disappears when ��6.

For a long wavelength phonon q with qx=qy �0, we solve
the energy conservation condition numerically. The solution
is shown in Fig. 5. There is no solution when ��12, as
expected. Figures 4 and 5 clearly show that the threshold
value of � for the disappearance of damping strongly de-
pends on the direction of q due to the anisotropy of 2D
square lattice. This result also holds for a 3D simple cubic
optical lattice.

As in the 1D case, �q
L becomes larger than Eq around the

threshold value of � in 2D and 3D optical lattices. In this

FIG. 4. The solution of the energy conservation condition
Eq+Ep=Eq+p for a 2D optical lattice, with qx�0 and qy =0. p0 is
defined in Eq. �26� and we note p0→0 as �→6.

FIG. 5. The solution of the energy conservation condition
Eq+Ep=Eq+p in a 2D optical lattice, for qx=qy =0.1� /d.
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case, the simple Golden Rule expression of the Landau
damping given by Eq. �17� is no longer valid. One would
have to extend it using higher order perturbation theory �21�
in order to calculate the Landau damping when � is close to
the threshold value �22�.

B. Beliaev damping

We briefly discuss the Beliaev damping of the Bogoliubov
excitations, which can occur even at T=0. Beliaev damping
is due to spontaneous decay of an excitation into two exci-
tations, and thus we need to satisfy the energy conservation
condition Eq=Eq−p+Ep. For simplicity, we only consider a
1D optical lattice.

In Fig. 6, the solution of the energy conservation condi-
tion for 1D optical lattice Eq=Eq−p+Ep is shown in a �q , p�
plane. As predicted in the previous section �see Ref. �1� for
more details�, one finds that the curve of the solution shrinks
as � increases and vanishes when ��6, which indicates the
disappearance of the Beliaev damping for ��6.

Even for values of ��6, Beliaev damping of an excita-
tion Eq is only possible when q is between the threshold
momenta q0 and qc shown in Fig. 6. The same phenomenon
has been discussed for phonons in superfluid 4He �16,21�. At
the threshold momenta q0 and qc, two excitations Ep and
Eq−p created by the decay of an excitation Eq have the same
velocity �21�. At q=q0, one of the generated excitations is a
phonon having the sound velocity c. Therefore the other one
also has the velocity equal to the sound velocity c, namely
q0= p0. It is clear from Fig. 6 that at the upper threshold
momentum qc an excitation decays into two identical excita-
tions Eqc/2 �21�. Generally, the upper threshold momentum qc

n

for the decay process of an excitation into n excitations is
given by Eq. �4� in Ref. �16�. For the decay into two excita-
tions, qc=�4

3 p0. As discussed in �16�, due to the uncertainties
in energy conservation, qc

n=�=�5
3 p0 is a true upper threshold

momentum for Beliaev damping.
In addition to Landau damping and Beliaev damping, one

also has intercollisional damping arising from two body col-
lisions which transfer atoms between the condensate and

thermal cloud at finite temperatures �18,19�. Such processes
also involve the energy conservation condition for three-
excitation processes. Thus the intercollisional damping also
disappears when ��6D in a D-dimensional optical lattice.

IV. CONCLUSIONS

In conclusion, we have given a detailed treatment of the
damping of Bogoliubov excitations associated with Bose
condensates in 2D and 3D optical lattices at finite tempera-
ture using the tight-binding Bose-Hubbard model. This ex-
tends our recent work on a 1D optical lattice in Ref �1�.

We have used the Popov approximation in the Bose-
Hubbard model to extend the usual T=0 theory to finite tem-
peratures. As a by-product, we have calculated the number of
condensate atoms per lattice site as a function of both the
temperature and the lattice well depth s. These results may
be of interest in other problems.

We have calculated and compared the Landau damping of
Bogoliubov excitations in 1D, 2D, and 3D optical lattices.
Previous work �see, for example, Refs. �23,24�� on this prob-
lem only considered dynamical instabilities and did not in-
clude the dissipation processes we have considered here. In
optical lattices of any dimension, the Bogoliubov-Popov ex-
citation spectrum Eq must exhibit “anomalous dispersion”
for damping processes to occur. This is analogous to the case
of phonon damping in superfluid 4He. In the absence of this
“bending-up” of the low q spectrum, energy conservation
cannot be satisfied. As a consequence, we find that the exci-
tation damping is absent when �=Unc0 /J�6D, where D is
the dimension of the optical lattice.

The first studies �4� of damping of excitations were lim-
ited to 1D optical lattices along the axis of a cigar-shape
magnetic trap, but one would need a much tighter magnetic
trap �in the radial direction� for our 1D model results to
apply. In the more recent experiments by Stöferle et al. �6�, a
3D optical lattice is prepared first, and the lattice potential
depths in two lattice axes are then made much larger than the
third one to produce a 2D array of tightly bound 1D optical
lattices. An analogous 2D optical lattice can be formed by
choosing a much larger lattice potential depth along one lat-
tice axis than that in the other two axes. This effectively 2D
optical lattice might be better for checking our theoretical
predictions than the 2D periodic array of 1D tubes used in
Ref. �10�, since excitations along the direction perpendicular
to the 2D lattice potential can be neglected.

Due to our use of a tight-binding approximation, our re-
sults are not directly applicable to the damping of excitations
found in very weak optical lattices �s�1� �7�. Extension of
our calculations to such weak optical lattices would be
clearly of interest �25�.
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FIG. 6. The solution of the energy conservation condition
Eq=Ep+Eq−p for Beliaev damping in a 1D optical lattice.
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