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We study the effect of lower dimensional geometry on the frequency splitting of the quadrupole oscillations
of a harmonically trapped Bose-Einstein condensate due to the presence of a quantized vortex. To study the
effect of two-dimensional geometry we consider a pancake-shaped condensate and employ various models for
the coupling parameter depending on the thickness of the condensate relative to the value of the scattering
length. Using these models and the sum-rule approach we obtain analytical expressions for the frequency
splitting. These expressions are valid for positive scattering length and large N. We show that the frequency
splitting of the quadrupole oscillations are significantly altered by the reduced dimensionality and also study
the evolution of the splitting as the system makes transition from one scattering regime to the other.
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I. INTRODUCTION

The reduction of dimensionality modifies the physical
properties of a Bose-Einstein condensate �BEC� trapped in a
harmonic potential significantly in comparison to its three-
dimensional �3D� counterpart. Many theoretical and experi-
mental studies devoted to the influence of dimensionality on
the various properties of BEC have been reported in the lit-
erature �1–18�. By making the anisotropy parameter � �de-
fined as the ratio between the frequencies of the harmonic
trap in the axial and the transverse directions� much larger
than unity ���1� nearly two-dimensional �2D� flat pancake
shaped condensates have been produced in magneto-optical
�17� and optical �18� traps. Such pancake-shaped conden-
sates are expected to exhibit the special features of a BEC in
reduced dimensions. In the purely 2D case the scattering
properties are quite different as compared to the 3D case and
this in turn leads to significant modification of the boson-
boson coupling parameter. For example, the boson-boson
coupling parameter in the 2D limit becomes density depen-
dent even at the low density and zero temperature regime. In
contrast to this, for the 3D case to the lowest order in density
the interactions are described by a constant coupling strength
and the deviations occur only when the quantum depletion
and the finite temperature effects are taken into consideration
�19�.

It is well known that the phenomenon of superfluidity is
strongly related to the phenomenon of Bose-Einstein conden-
sation. The quantized vortex states play an important role in
establishing the superfluid nature of the condensates. There-
fore, it is natural to expect that the vortex states will also
play a crucial role in understanding and characterizing the
superfluid nature of the condensates in lower dimensions
also. However, in an experiment direct observation of vortex
in a trapped gas is difficult due to the small size of the vortex
core in comparison to the size of the condensate. This prob-
lem has been circumvented by observing the free expansion
of the cloud. When the cloud is allowed to expand freely

after the trap has been switched off, the size of the vortex
core increases faster than that of the condensate cloud which
then allows one to distinguish the free expansion of a cloud
with a quantized vortex from that of without any vortex state.
Realizing the importance of vortex states in lower dimen-
sional condensates studies on the effects of the boson-boson
coupling parameter on the ground-state density of the con-
densate with a vortex state �9,11�, free expansion of a cloud
with a vortex �14� and the critical angular frequency needed
for the creation a low angular momentum vortex state �15�
have already been carried out.

The measurements of frequencies of the collective oscil-
lations also serve as a way to detect the vortex states in the
BEC. For example, the presence of a quantized vortex state
leads to the splitting of the frequencies of the two modes of
quadrupole oscillations with opposite values of the third
component of the angular momentum, which are degenerate
in the absence of a quantized vortex state �20–23�. The vor-
tex state in a condensate breaks the time reversal symmetry
which in turn results in the removal of the degeneracy of the
two modes of oscillations carrying opposite values of angu-
lar momentum. It is well known that the measurement of the
frequencies of the collective oscillations can be carried out
with very high precision. Therefore, the splitting of the two
quadrupole modes of collective oscillations can be employed
to detect the presence of a quantized vortex state in a BEC
with quite high accuracy �23�. This has motivated us to study
the effect of the lower dimensionality on the splitting of two
degenerate quadrupole modes due to the presence of a vortex
state. To this end we investigate the effect of different mod-
els for the boson-boson coupling parameter, simulating the
inter-boson interaction in reduced dimensions, on the split-
ting of the degenerate quadrupole modes of collective oscil-
lations in the BEC with a quantized vortex state.

The paper is organized as follows. We briefly describe the
models of boson-boson coupling parameters corresponding
to different scattering regimes and derive the expressions for
the splitting in the frequencies of quadrupole modes caused
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by a quantized vortex by sum-rule approach of many-body
response theory in Sec. II. In Sec. III we present and discuss
our results. The paper is concluded in Sec. IV.

II. FORMULATION

A. Models

We consider a dilute condensate with N bosons confined
in an anisotropic �pancake shaped� harmonic trap character-
ized by the frequencies �� and �z=��� with the anisotropy
parameter � being much larger than unity. For such a highly
anisotropic trap the motion in the z-direction is frozen and
the state of the condensate can be described by wave func-
tion ��r� in �x ,y� plane. The wave function ��r� can be
determined by minimizing the local density energy func-
tional

E��� =� d2r� �2

2m
	��	2 + vext�r�	�	2 + ����	�	2
 , �1�

where the density �= 	�	2 and vext�r� is the external har-
monic potential in the transverse direction given by

vext�r� = 1
2m��

2 �x2 + y2� . �2�

In the above equation �Eq. �1�� the first and the third terms
represent the kinetic energy and the energy due to the inter-
atomic interaction within local density approximation
�LDA�, respectively. The above energy functional can be
generalized to describe the condensate with a quantized vor-
tex state �9,24�. For this purpose we consider a condensate
with a vortex at the center of the trap. The wave function of
such a state can be written as

��r� = 	�r�ei
�, �3�

where r=�x2+y2, � is the angle around the vortex core and

 is an integer denoting the quantum circulation. Substituting
the above complex wave function in Eq. �1� we obtain the
generalized energy functional for the condensate with a vor-
tex state as �9,24�

E�	� =� d2r� �2

2m
	�		2 +

�2
2

2mr2 			2 + vext�r�			2 + ����			2
 .

�4�

In the above equation ��r�= 		�r�	2 and the presence of cen-
trifugal term due to the vortex state makes the above func-
tional different from Eq. �1�. The minimization of the above
functional with respect to 	�r� with the constraint condition

� 		�r�d2r = N �5�

leads to the Gross-Pitaevskii equation for the condensate
with vortex state �14,24�

�−
�2

2m
�2 +

�2
2

2mr2 +
1

2
m��

2 r2 +
��������

��

	�r� = �	�r� ,

�6�

where � is the chemical potential. The wave function 	�r�
for the condensate with a single vortex is determined by

solving the above nonlinear Schrödinger equation.
In order to determine the wave function of the condensate

we need to know the form of interatomic interaction energy
����. In the following we discuss the forms of ���� employed
in this paper to study the effect of lower dimensionality on
the splitting of the two quadrupole modes of collective os-
cillations. Within the local density approximation the inter-
action energy per particle ���� is given by

���� =
g

2
��r� , �7�

where g is the coupling constant whose form depends on the
collisional properties of the condensate. For example, g is
independent of the density for the 3D case, on the other
hand, in the purely 2D regime it depends logarithmically on
the density. In the following we briefly describe the models
for the coupling constant g valid in different collisional re-
gimes.

For the 3D system the coupling parameter g which is a
constant and completely determined by the s-wave scattering
length a given by

g =
4�2

m
a . �8�

When the linear dimension az of the condensate along the
z-direction is much larger than the 3D scattering length
a �az�a�, the collisions still take place in three dimensions.
Under this condition the effective coupling constant which
includes the effects of reduced dimensionality is expressed as
gQ3D=g	�0�0�	2 where g is the 3D coupling constant given
above and �0�0�= �2az

2�−1/4 is the axial ground state wave
function at z=0. More explicitly �4,10,12,25�,

gQ3D = 2�2
�2a

maz
. �9�

On further increasing the anisotropy and simultaneously az
becoming comparable to a �az�a�, the collisions between
the bosons start getting affected by the tight confinement
along the z-direction. Under such a condition a condensate is
said to be in the quasi-two-dimensional �Q2D� regime. The
coupling constant in this regime is given by

gQ2D =

2�2
�2a

maz

1 +
a

�2az

	ln�2�2�3/2��r�aaz�	
. �10�

Here ��r� is the ground state density of the condensate. The
above expression was originally derived by Petrov et al.
�5,6� by studying the scattering properties of a bosonic sys-
tem which is trapped harmonically in the z-direction and
uniform in the �x ,y� plane. A similar expression was later
derived by Lee et al. �9� employing the many-body T-matrix
approach. It is important to note here that in the Q2D regime
the coupling constant becomes dependent on the density in
accordance with the behavior of collisions in two dimen-
sions. Finally, when az becomes much smaller than a �az

�a�, the collisions can be safely assumed to be taking place
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in two dimensions resulting in a 2D condensate. The cou-
pling constant in the 2D regime is given by

g2D =
4�2

m

1

	ln ��r�a2	
. �11�

Notice that the expression for g2D also depends on the den-
sity ��r� but the information about the confinement direction
is absent as it corresponds to the purely 2D case. The expres-
sion for g2D was derived in Ref. �26� for a homogenous Bose
gas of hard disks. This form of g2D has been employed to
study the properties confined bosons in two-dimensions �3,7�
and the rigorous justification for this use was provided by
Lieb et al. �8�. We will employ these expressions for the
boson-boson coupling parameter to study the effect of re-
duced dimensionality on the splitting of frequencies of the
degenerate quadrupole modes of collective oscillations of
harmonically trapped Bose gas with a quantized vortex state.

B. Sum-rule approach for collective oscillations

Having described the models for the coupling constant in
different scattering regimes, we now describe the sum-rule
approach of many-body response theory for calculation of
frequencies of collective oscillations. In the collisionless re-
gime the collective excitation frequencies of a confined
bosonic gas is well described by the sum rule approach. The
most important advantage of this approach is that the calcu-
lation of frequencies requires the knowledge of the ground-
state wave function �or the ground-state density� of the
many-body system only. This method has been extensively
applied to calculate the frequencies of the collective oscilla-
tions of trapped atomic gases �27�. In this paper we follow
the sum-rule approach developed in Ref. �20� for the calcu-
lation of the splitting of the quadrupole modes of collective
oscillations. The collective excitations of any many-body
system are generally probed by applying an external excita-
tion field. For excitation operators F+ and F− exciting two
quadrupole modes with opposite angular momentum, respec-
tively, the corresponding strength functions are given by
�28,29�

S±�E� = 
n

	�0	F±	n�	2��E − En� , �12�

where 	0� denotes the ground state of the system and En
−E0 is the excitation energy of the eigenstate 	n� of the
Hamiltonian H relative to the ground state energy E0. The
pth order moments of the strength function can be defined as

mp
± =� Ep�S+�E� ± S−�E��dE . �13�

These moments provide various energy weighted sum rules
which are employed to obtain the frequencies of collective
oscillations. One of the important properties of these mo-
ments is that, for a given p, some of the moments can be
expressed in terms of the commutators of the excitation op-
erators with the many-body Hamiltonian H. Some of the en-

ergy weighted sum rules which are relevant for this paper are

m0
− = �0	�F†,F�	0� ,

m1
+ = �0	�F†,�H,F��	0� ,

m2
− = �0	��F†,H�,�H,F��	0� ,

m3
+ = �0	��F†,H�,�H,�H,F���	0� , �14�

where �,� represents the commutator between the correspond-
ing operators.

These expressions can also be used to calculate the fre-
quency shifts of the quadrupole oscillations of a trapped con-
densate in reduced dimensions. For the purpose of computa-
tion we first need to choose the appropriate excitation
operators. In two dimensions the quadrupole excitation op-
erators can be written as

F± = �x ± iy�2 = r2e±2i� �15�

carrying angular momentum ±2. Using these excitation op-
erators, the moments of Eq. �10� can be evaluated and they
are given by �20,30�

m0
− = 0,

m1
+ =

8�2

m
�0	x2 + y2	0� ,

m2
− =

16�3

m2 �0	xpy − ypx	0� ,

m3
+ =

16�4

m
��0	x2 + y2	0� +

�0	px
2 + py

2	0�
m2��

2 
 , �16�

where pi is the ith component of the linear momentum vector
p. In deriving the above equations the relation F+

† =F− has
been used. It is worth noticing that the moments up to third-
order do not depend on the boson-boson coupling parameter
�two-body interaction� explicitly. This is because the ener-
gies within the LDA do not contribute to moments up to third
order for the excitation operators satisfying �2F±=0 �31�.

In order to use the above expressions for the calculation
of the shift in frequencies of quadrupole modes we now as-
sume that the moments mp

± are exhausted by a single excita-
tion with frequency �± and strength �±. Under such single-
mode approximation the strength distribution can be written
as

S±�E� = �±��E − ��±� . �17�

The vanishing of m0
− moment leads to the result �+=�−=�.

We note here that the single mode approximation is well
suited for the condensates with large number of atoms N and
positive scattering length a �20�. Using Eqs. �17� and �13� we
obtain the following expression for the difference between
the two frequencies:
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�� = ���+ − �−� =
m2

−

m1
+ . �18�

Furthermore, the individual frequencies of the quadrupole
oscillations can be determined by

�2��+ + �−

2

2

=
m3

+

m1
+ −

3

4
����2. �19�

In this paper we use Eqs. �16�, �18�, and �19� to determine
the frequency for the splitting of the two quadrupole modes
and also the frequencies of each mode separately. As men-
tioned above albeit the frequencies do not depend on the
boson-boson coupling parameter explicitly but implicit de-
pendence on the two-body interaction enter through the
ground-state wave function or the density of the condensate
which crucially depend on the nature of the boson-boson
interaction. In the next section we present the results of our
calculation showing the effect of reduced dimensionality on
the splitting of the two quadrupole modes of collective os-
cillations.

III. RESULTS AND DISCUSSION

To study the effect of the reduced dimensionality on the
splitting of the two quadrupole modes first we need to cal-
culate the three moments m1

+ ,m2
−, and m3

+. To this end we
calculate the wave functions �or densities� of the Q3D, Q2D
and the 2D condensates by solving Eq. �6� within the
Thomas-Fermi �TF� approximation. Furthermore, for Q2D
and 2D cases the TF ground-state densities are obtained by
neglecting the spatial dependence of the coupling constant.
This is achieved by using the results of the homogenous
bosonic system to relate the density to the chemical poten-
tial. It has been shown in Refs. �9,10� that for large N the TF
approximation and the spatially independent form of the cou-
pling constant yield sufficiently accurate results. We note
here that in this paper the number of bosons N in the con-
densate is chosen such that both the single-mode and the TF
approximations are well satisfied by the condensate. Within
the TF approximation we obtain the following expressions
for the splitting of frequencies �in units of ��� of the quad-
rupole modes excited by the operator F+ and F− in different
scattering regimes:

�2D =
12
N

ln� �̃2Dã2

4�

�̃2D

3

,

�Q2D =
12
N

��2ã −1 + ln� �

2�̃Q2D

��̃Q2D

3

,

�Q3D =
12
Nã

�2�̃Q3D
3

, �20�

where N is the total number of particles in the condensate, 

represents the quantized angular momentum per particle

which can assume values 
=1, 2, 3 …, �̃i �i=2D, Q2D, and
Q3D� denotes the chemical potential of the respective con-
densate in units of ��� and the dimensionless parameter ã
=a /az. The chemical potential �̃ is determined by normaliz-
ing the corresponding TF density to the total number of par-
ticles N. In obtaining Eq. �20� we have neglected the terms of
the order O�1/ �2�̃�2� which arise due to the centrifugal term
in Eq. �6�. For large N corrections introduced by these terms
are negligible. Next, using Eqs. �19� and �16� the expression
for the individual frequencies within the TF approximation
can be written as

�± = �2�� ± � . �21�

The above two equations �Eqs. �20� and �21�� constitute the
main results of this paper and in the following we discuss
these results. Before proceeding with the discussion of our
results we compare the result of the frequency shift for the
Q3D model with the corresponding result for the 3D case.
The 3D expression for the frequency shift within the TF
approximation is given by �20�

�3D =
7


�1/5 �15Nã�−2/5. �22�

By substituting the TF result for the �̃Q3D given by

�̃Q3D = ��8/Nã�1/2 �23�

in the expression for �Q3D we get

�Q3D =
12


�2�8/�3/4
�Nã�−1/2. �24�

The above two equations �Eqs. �22� and �24�� show that �3D
exhibits different scaling with respect to Nã as compared to
�Q3D and the multiplicative factors are also different. The
differences between �3D and �Q3D arise due to reduced di-
mensionality in the Q3D case. We now discuss the results for
a pancake shaped condensate similar to the one achieved in
the experiment of Görlitz et al. �17� with 23Na atoms. In
accordance with the experiment these parameters are N
=105, �=26.33, and ã=3.8�10−3. We note here that this
value of N is in conformity with the TF approximation.
These parameters indicate that the condensate produced in
the above experiment falls within the Q3D regime. From Eq.
�20� with above parameters and for one quantum circulation
�
=1� we obtain �2D=1.625�10−2, �Q2D=0.1217 and �Q3D

=0.1218 in units of ��. These results clearly show that for
the condensates achieved in the experiment of Görlitz et al.,
the 2D model underestimates the frequency of splitting be-
tween the two quadrupole modes quite significantly in com-
parison to the corresponding values for Q3D and Q2D mod-
els. On the other hand, both Q3D and Q2D models give the
same numbers for the splitting. This is consistent with the
fact that for the above-mentioned parameters, the system un-
dergoes collisions in 3D but has two-dimensional character-
istic with respect to the confinement effects. Now to study
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the effect of different models of the coupling constant and
their applicability we choose three different values of the
parameter ã, ã=3.8�10−3, 0.33, and 2.68. These values are
chosen such that the first, second, and third values of ã fall in
the Q3D, Q2D, and the 2D regimes, respectively. In addition
to this we also choose �=2�105 so that the condensate has
negligible extension in the z-direction and the motion along
this axis is completely frozen. The results with these param-
eters are presented in Table I. Again, we can observe from
Table I that for ã=3.8�10−3 the values predicted by the
Q3D and the Q2D models are the same and the correspond-
ing result from the 2D model is quite lower than these two
values. For ã=0.33 the numbers obtained by both Q2D and
2D models are very close to each other but markedly differ-
ent from the result of the Q3D model. As discussed above,
for ã=0.33 along with the large value of � the scattering
properties start to get influenced by the confinement. In this
situation it is anticipated that both Q2D and 2D models will
give significantly different values in comparison to the cor-
responding Q3D results. In the light of our earlier discussion
we expect that for ã=0.33 the coupling constant is better
described by the Q2D model. As the interaction parameter ã
is further increased to a value ã=2.68 the scattering proper-
ties become truly two dimensional, consequently for this
value of ã the 2D model should be more appropriate for the
description of the condensate. In contrast to the case of ã
=0.33, for ã=2.68 the value of the splitting obtained by the
2D model is higher than the corresponding number from the
Q2D model.

Finally, to illustrate the importance of scattering mecha-
nisms in various regimes, we plot in Fig. 1 the splitting of
the quadrupole modes obtained with three different models
as a function of the interaction parameter ã. The curves are
drawn with the anisotropy parameter �=2�105 and the
number of atoms N=105. It can be clearly seen from Fig. 1
that the amount of splitting of the quadrupole modes ob-
tained with the three models of the coupling constant exhibit
distinctly different trends with increasing interaction param-
eter ã. As mentioned before it is only for ã�1 the values of
splitting obtained by the Q3D and the Q2D models are
nearly the same but in the same regime 2D model gives quite
different values. On the other hand, when ã exceeds the
value 0.1, the effects of reduced dimensionality start influ-
encing the scattering properties and both Q2D and 2D mod-
els give different results as compared to the Q3D numbers.
Therefore, we conclude from our results that the splitting of
the frequencies of two quadrupole modes carrying opposite

angular momentum can be used to identify the dimensional-
ity of the systems as the system evolves from Q3D to a
strictly 2D regime. These results can also be used to test the
validity of different models of the coupling constant by com-
paring them with the experimental values.

IV. CONCLUSION

We have calculated the frequency splitting the quadrupole
modes of collective oscillations carrying opposite angular
momentum of a condensate confined in a highly anisotropic
trap due to the presence of a quantized vortex. The conden-
sate is tightly trapped along the z-axis such that the motion
along this axis is frozen. For such a condensate depending on
the value of the ratio between the size of the condensate
along the z-direction and the s-wave scattering length, three
different regimes can be identified. These three different re-
gimes are described by three different models for the boson-
boson interactions. We have calculated the frequency split-
ting of the quadrupole oscillations and studied its
dependence on the boson-boson coupling model. For this
purpose we have used the sum-rule approach of many-body
response theory along with the ground-state density obtained
within the TF approximation. The main result of this paper is
that the different models for the coupling constant affect

TABLE I. Frequency splitting of the two quadrupole modes car-
rying opposite angular momentum due to the presence of a single
quantized vortex with 
=1 in units of �� for three different values
of the dimensionless interaction parameter ã=a /az calculated using
Eq. �20� for N=105 and �=2�105.

ã �Q3D �Q2D �2D

3.8�10−3 0.122 0.122 2.17�10−2

0.33 1.31�10−2 1.70�10−2 1.63�10−2

2.68 4.59�10−2 1.14�10−2 1.28�10−2

FIG. 1. Frequency splitting � �in units of ��� of the quadrupole
modes of 105 23Na atoms confined in a highly deformed trap with
�=2�105 with a single quantized vortex for 
=1 as a function of
the interaction parameter ã=a /az. The solid line represents results
for the Q2D �geometric confinement, 2D scattering� case while the
corresponding 2D results are shown by the dashed line and the Q3D
�geometric confinement, 3D scattering� results are displayed by the
dotted line.
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splitting frequency in a significant way. The effect of modi-
fication of the collisional properties in two dimensions start
altering the value of frequency splitting when the parameter
ã becomes more than 0.1. It would be interesting to have
systematic experiments in the parameter regime considered
in this work.
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