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Based on the standard many-fermion field theory, we construct models describing ultracold fermions in a
one-dimensional optical lattice by implementing a mode expansion of the fermionic field operator where
modes, in addition to space localization, take into account the quantum numbers inherent in local fermion
interactions. The resulting models are generalized Hubbard Hamiltonians whose interaction parameters are
derived by a fully analytical calculation. The special interest for this derivation resides in its model-generating
capability and in the flexibility of the trapping techniques that allow the tuning of the Hamiltonian interaction
parameters over a wide range of values. While the Hubbard Hamiltonian is recovered in the very low-density
regime, in general, far more complicated Hamiltonians characterize high-density regimes, revealing a rich
scenario for both the phenomenology of interacting trapped fermions and the experimental realization of
devices for quantum-information processing. As a first example of the different situations that may arise
beyond the models well known in the literature �the unpolarized-spin fermion model and the noninteracting
spin-polarized fermion model�, we derive a rotational Hubbard Hamiltonian describing the local rotational
activity of spin-polarized fermions. Based on standard techniques we obtain the mean-field version of our
model Hamiltonian and show how different dynamical algebras characterize the cases of attractive and repul-
sive two-body potentials.
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I. INTRODUCTION

Since the Bose-Einstein condensation �BEC� of alkali-
metal atoms in magnetic traps �1,2�, a massive experimental
and theoretical effort has been dedicated to the investigation
of confined atoms in the extremely low-temperature regime
�for a review see �3–6��.

The flexibility of optical trapping techniques has sug-
gested devising different configurations �lattices �5,7–10�,
superlattices, etc. �11–16��, opening a vast scenario of re-
search. The ability to tune atomic interactions via a magnetic
field �Feshbach resonance �17��, along with the proposal of
single-atom trap loading techniques �18�, has proven to be of
capital importance for ultracold fermions physics, yielding
the possibility to study fundamental aspects of superfluidity
�the BCS-BEC crossover; see, e.g., �19–22�� and envisaging
additional perspectives in quantum-information processing
�23,24�.

The present work focuses on the theoretical investigation
of the properties of �few� fermionic ultracold atoms loaded
into a one-dimensional �1D� optical lattice, where global
confinement is ensured by a magnetic trap.

We have here considered an experimental setup with tun-
able lattice constant and barrier height �see Fig. 1�.

The description of such a physical system can be naturally
performed in terms of a generalized Hubbard Hamiltonian
�GHH� which is deduced from a general field-theoretic
Hamiltonian with two-body interaction �25�. At this stage,
particular care must be taken in the choice of the function
basis for the field operator expansion. Although the symme-
tries of the system can provide selection rules that reduce the
involvement of the GHH, the resulting coefficient structure is
very rich and, as a direct consequence, the Hamiltonian is
hardly tractable. Nevertheless, the generality of the model
gives rise to a wealth of submodels, depending upon differ-

ent approximations and regimes. The guideline to find sim-
plified Hamiltonians is given by a thorough analysis of the
GHH coefficient structure.

From this perspective the analytical knowledge of the co-
efficients is a powerful tool to establish the physical rel-
evance of different submodels in the various situations that
may be conceived in the framework of trapped-ultracold-
atom physics. Moreover, the nontrivial dependence of the
coefficient on adjustable external parameters provides the
possibility of using these parameters to control the dynamics
of the atoms trapped in the optical lattice. Thus the key as-
pect of this paper is the analytical determination of the hop-
ping and interaction coefficients as a function of experimen-
tal parameters such as magnetic trap frequency, laser

FIG. 1. Sketch of the experimental setup considered. Two laser
beams at an angle � form an interference pattern within the fermi-
onic cloud magnetically trapped with trapping frequencies �� and
�x. The lattice constant can be tuned by adjusting the angle � ac-
cording to the relation d=� / �2 sin�� /2��.
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intensity, wavelength, angle between laser sources, s-wave
scattering length etc.

We would like to stress that the procedure followed here
for the determination of the coefficients is statistics indepen-
dent: the bosonic or fermionic nature of the atoms loaded
into the trap is completely taken into account by the commu-
tators of raising and lowering operators that will be described
in the paper. For example, with the calculations performed
here it seems feasible to go beyond the approximations that
lead to the Bose-Hubbard model in the description of the
BEC dynamics in optical lattices, taking into account the
specific nature of the interaction between alkali-metal atoms
in the low-density regime. Even for a ground-state calcula-
tion it can be shown that it is necessary to include levels
beyond the single-particle ground state �see �26��.

The confinement model considered here has a direct ex-
perimental relevance �see, e.g., �27,28��. However, while in
�27,28� a number of atoms of the order of 104 is considered,
allowing thus the adoption of a semiclassical model, we fo-
cus on a low-occupation-number regime similarly to what is
done in �29,30�, yet extending to a multiband model whose
correctness is limited by the validity limit of the space-mode
approximation.

Challenging tasks for the future will include the determi-
nation of tractable yet interesting models for different aspects
for theoretical condensed matter physics and quantum me-
chanics. On the other hand the experimental realization of
systems that exhibit a behavior which can be described in the
framework of the various models here proposed would rep-
resent an important achievement for both condensed matter
experimentalist and theoreticians: the main difficulties seem
to arise from the nearly-single-atom trap loading. In this situ-
ation the usual trap losses, due to heating engendered by
laser detuning and quantum-diffractive background gas col-
lisions �31�, may play a significant role.

Throughout the paper we have tried to emphasize the gen-
erality of the procedure followed. However, we have decided
to write down and plot a few numerical values of the coef-
ficients to stress the fact that this calculation is a direct and
relatively simple tool to shape out simplified and approxi-
mate Hamiltonians for different physical situations.

In Sec. II we depict the potential configuration of the
system, moving then to the description of our field-
theoretical approach. The field operators are written in terms
of mode raising and lowering operators. Each mode corre-
sponds to a set of quantum numbers; one of them identifies
the lattice site �hence space-mode approximation� while the
others describe on-site quantum numbers �local mode��32�.
As previously stated this choice is not unique, but symmetry
constraints suggest expansions that emphasize conservation
laws and selection rules.

In Sec. III we evaluate the expression of the Hamiltonian
hopping and interaction coefficients and we try to describe
the interaction coefficient symmetry properties in some
detail.

The purpose of Sec. IV is twofold. On the one hand we
show how, with suitable approximations, the Hamiltonian of
the system reduces to known cases, such as the Hubbard
Hamiltonian or a trivial noninteracting Hamiltonian. On the
other, we introduce the rotational Hubbard Hamiltonian, as

an example of the involvement of higher-order approxima-
tions. For this case, by means of established mean-field ap-
proaches �33,34�, we suggest a possible path of research in-
volving general group-theoretical procedures �34�. It will be
shown that these procedures, even if the explicit solution for
the ground state is not given, allow us to grasp interesting
aspects of the physics of the model here discussed.

We have included two Appendixes where the relatively
simple but lengthy calculations of the tunneling and interac-
tion coefficients are provided explicitly. In Appendix A
there are various plots of multilevel hopping parameters
that supply a good example of the scenario that we are mov-
ing in and may constitute a good starting point for further
investigation.

II. FERMIONS TRAPPED IN 1D OPTICAL LATTICES

A. General features

The general field-theoretic Hamiltonian �see, e.g., �25��
with two-body interaction can be written as

Ĥ =� dr �̂†�r�H1b�r��̂�r�

+� dr dr��̂†�r��̂†�r��H2b�r,r���̂�r���̂�r� , �1�

where H1b�r� represents the one-body term of the Hamil-
tonian �kinetic+external potential term� while H2b�r ,r�� is

the two-body interaction potential term, �̂�r� is the field op-

erator, and �̂†�r� is its adjoint.
As previously mentioned we will stick to neutral fermi-

onic atoms loaded into a 1D optical lattice. We have taken
into account a situation where the optical chain �laser wave-
length �=754 nm� is loaded with 40K atoms. The barrier
height in each point x is proportional to the intensity of the
laser and thus, according to the considered setup, to
sin2�2Kx� �K=� /d with d is lattice constant�. For the evalu-
ation of the multiplicative constant as a function of laser
intensity, see, e.g., �3�. Here we set the multiplicative con-
stant equal to m�2 / �2K2� where � represents the harmonic
oscillator frequency in the second-order expansion of the
term Vext. It is possible to express the barrier height in terms
of recoil energy as V0=sEr with Er=�2K2 /2m �see, e.g.,
�35��. In this arrangement there are then two control param-
eters for the tunneling coefficient, � and s. They both influ-
ence �x and the lattice constant d according to the following
equations:

d =
�

2 sin��/2�
, �x = K�2V0/m . �2�

Global confinement is ensured by a cigar-shaped magnetic
trap with principal axis along the x direction �see, e.g.,
�35��. This trap can be modeled by a 3D harmonic aniso-
tropic trap of axial and radial frequencies equal to �x and
��, respectively ��x����.
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The magneto-optical trap can be thought of as if
the constituents of the system were trapped in the cigar-
shaped potential with a “slicing” effect of the laser,
giving rise to a linear array of 3D prolate harmonic
oscillators. In addition, the radial trapping frequency has a
deep influence on the interaction among the constituents of
the system, allowing one to control the volume of each
“disk.”

With the previous assumptions H1b becomes

H1b = Ekin + Vext,

where

Ekin = −
�2�2

2m
,

Vext =
m

2
��x

2x2 +��
2 	2� +

m�2

2K2 sin2�Kx� �3�

and the second term of Vext represents the harmonic confine-
ment of the magnetic trap, while the third one corresponds to
the optical potential and 	2=y2+z2.

For future convenience, we write Eq. �3� as

H1b = Ekin + �
j

Vj + �Vext − �
j

Vj	 �4�

with

Vj =
 j�x�
m

2
��x

2j2�
2

k2 + �2xj
2 +��

2 	2	 , �5�


 j�x�=
�Kx /�− j�, where 
�x� is the rectangle function
�
�x�=1 for −1�x�1, 
�x�=0 elsewhere�, k= l�K �with
l�=�� / �m����, and xj = �x− j� /k�. Here the harmonic
axial confinement of the magnetic field has been considered
as a site-dependent—with j the site index—constant additive
term, merely shifting the local minima of the optical
potential.

From Eq. �4� with the properties of the rectangle function
we obtain

H1b = �
j


 j�x���Ekin + Vj� + �Vext − Vj�� . �6�

Hereafter the axial confinement of the magnetic trap will
be neglected �small �x�.

We are now led to consider two different terms in
Eq. �6�. The first represents a local harmonic oscillator
Hamiltonian

H j
ho =
 j�x��Ekin + Vj� =
 j�x���2�2

2m
+

m�2

2
xj

2 +
m��

2

2
	2


�7�

and a hopping one

H j
tunn =
 j�x��Vext − Vj� =
 j�x��m�2

2K2 sin2�Kx� −
m�2

2
xj

2	 .

�8�

The term Vj is the local second-order expansion of
the optical potential; thus Eq. �8� represents the discrepancy
between a harmonic potential and the true optical
potential, describing hopping of atoms between neighboring
sites.

Neutrality of the atoms, ensuring a finite-range interaction
allows us to introduce a pseudopotential approximation �see,
e.g., �36��

U�r� = �
j


 j�x�ãs�r�
�

�r
r, ãs ª

4��2as

m
, �9�

where r is the interatomic distance and as the s-wave
scattering length �as in our approximation is considered
constant�. The validity of this model is ensured by the
low energies involved in these interactions, a direct conse-
quence of both the low-temperature limit �virtually zero�
and the diluteness �low Fermi energy�. In addition, the form
of Eq. �9� shows that on-site terms only will contribute to
the interaction Hamiltonian. Thus Eq. �1� can be rewritten in
the form

Ĥ = �
j
�� dr �̂†�r��H j

ho�r� + H j
tunn�r���̂�r�

+ ãs� dr dr��̂†�r��̂†�r���r − r���̂�r���̂�r�	 .

�10�

B. The „space+local…-mode expansion

The choice of the basis for the expansion of the field
operators is crucial. As already suggested by the grouping of
terms in Eq. �7�, we will choose a basis constituted by local
harmonic oscillator eigenfunctions. In addition, because of
the symmetry of the system we have chosen central-
symmetric 2D harmonic oscillator �ho� eigenfunctions for
the 2D isotropic radial ho �37�; instead of decomposing it in
1D ho eigenfunctions, this will give us deeper insight into
conservation laws and selection rules imposed by the sym-
metries of the system. We then have

�̂�x� = �
i,nx,J,m,�

unx
�x − xi�LJ,m�	,������ĉnx,J,m,i,� �11�

with

un�x� =
1

�2nn ! ��lx

Hn�x/lx�e−x2/2lx
2
, �12�

LJ,m�	,�� =
e2im�

��l�

CJm� 	l�

	2m

LJ−m
2J �	/l�� , �13�

CJm=��J+m� ! / �J−m�!, ���� a spin function, and
lx=�� / �m�x�.
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In this decomposition un�x� is a 1D harmonic oscillator
eigenfunction �Hn represents the nth Hermite polynomial�
and LJ,m a 2D harmonic oscillator eigenfunction �37� with
LJ−m

2J �x� a generalized Laguerre polynomial.
Fermionic operators will thus have five indices: three of

them �nx ,J ,m� identify �2+1�D local harmonic oscillator
states, while i identifies the site and � the spin. While nx has
its usual interpretation of the 1D harmonic oscillator number
operator eigenvalue, J and m can be construed as angular
momentum and x-axis component of the angular momentum,
respectively.

This decomposition can be thought of as a generalized
space-mode approximation, with additional local modes
that, in the present case, correspond to the local �2+1�D
harmonic oscillator quantum numbers. If not explicitly re-
quired, we will use ��=un�

�x−xi�
�LJ�,m�

�	 ,�������, with
�= �n� ,J� ,m� , i� ,��� to simplify the index notation. We
wish to stress that decomposition �11� is an approximation of

the field �̂�x�: there is a non-nil overlapping between wave
functions belonging to different sites, and thus orthogonality
is not satisfied. Nevertheless, these overlapping integrals are
supposed to be small, thus ensuring the consistency of this
choice �10�.

In the forthcoming calculation of the interaction term, Eq.
�12� allows us to easily recognize that m is a conserved quan-
tity. If we come back to Eq. �1� with the decomposition �11�
we obtain

Ĥ = �
j

�
�,�

�� dr ��
*�r�H j

ho���r�ĉ�
† ĉ�

+� dr ��
*�r�H j

tunn���r�ĉ�
† ĉ�

+ ãs�
�,
� dr dr���

*�r���
*�r���r

− r�����r���r��ĉ�
† ĉ�

† ĉĉ�	 . �14�

III. HAMILTONIAN COEFFICIENTS

We are now in the position to calculate all the coefficients
in Hamiltonian �14�. The first term becomes

Ĥho = �
j,�,�

���
−�

�

dr 
 j�x���
*�r����r�ĉ�

† ĉ�, �15�

where �� is the �2+1�D harmonic oscillator eigenvalue

�n�,J�,m�,i�,��
= ��x�n� +

1

2
	 + ��2J� + 1�
 . �16�

Equation �15� can be written as

�
j,�,�

���,�i�,jĉ�
† ĉ� = �

�

��n̂�, �17�

where the second Kronecker  is a consequence of the space-
mode approximation, i.e., we consider only superpositions of

wave functions among which at least one is a local harmonic
oscillator eigenfunction, while the first one stems from the
orthogonality of the ���x� functions.

We move now to the evaluation of the integral in the
second term of Eq. �14�, namely,

Ĥtunn = �
j,�,�

� dr ��
*�r�
 j�x�H j

tunn�x����r� �18�

where H j
tunn�x� is independent of radial and spin degrees of

freedom; we can rewrite Eq. �18� as

Ĥtunn = �
j,�,�

J�,J�
m�,m�

��,��
i�,j

�� dx un�,i�
* �x�H j

tunn�x�un�,i�
�x�ĉ�

† ĉ�. �19�

With the same assumptions of the local harmonic oscillator
case the integral in Eq. �19� becomes

Kn�,n�
��x� dy e−�y − ��2/2Hn�

�y − ��H j
tunn�y�e−y2/2Hn�

�y� ,

�20�

where Kn�,n�
= �2n�+n�n� !n� !��−1/2 and we have put

y= �x− i�d� / lx �where d=� /k�, �= �i�− i��, and �=Klx. By
substituting the expression of H j

tunn�y� from Eq. �8� we
obtain

Kn�,n�
��x� dy e−��y − ��2+y2�/2Hn�

�y − ��Hn�
�y�

��1 − cos�2�y�
4�2 −

y2

2
	ĉ�

† ĉ�. �21�

If we define

T�,� =
Kn�,n�

2
J�,J�

m�,m�
��,��

��x� dy e−��y − ��2+y2�/2

� Hn�
�y�Hn�

�y − ��� y2

2
−

1 − cos�2�y�
4�2 	 , �22�

Eq. �19� becomes

Ĥtunn = − �
�,�

T�,�ĉ�
† ĉ�. �23�

Then the term T�,�ĉ�
† ĉ� can be incorporated into the Ĥho

term, giving

�� = �� − T�,�. �24�

We will here skip the explicit solution of the integral
in Eq. �22�, along with the analytic expression of T, which
can be found in Appendix A. These calculations allow us to
write

T�,� = J�,J�
m�,m�

��,��
Tn�,n�,i�,i�

. �25�

In Fig. 2 we have plotted the coefficient Tn�,n�,i�,i�
as a

function of the ratio between distance and the period of the
optical lattice, for n�, n�=0, 1. The points corresponding to

F. MASSEL AND V. PENNA PHYSICAL REVIEW A 72, 053619 �2005�

053619-4



discrete values of the ratio x /d, i.e., the points with a relevant
physical meaning have been marked in each plot. The values
of T plotted throughout the paper are in angular
frequency units �e.g., �=E /��; moreover �=� and s=1 un-
less otherwise specified. Even if the correctness of the
above procedure seems undoubted, it must be remembered
that it is entirely based on the space-mode approximation,
whose validity depends on the overlapping of wave functions
belonging to different sites and thus might be violated.

These plots show how the tunneling amplitude varies with
the distance. In particular it is clear how, for long-distance
tunneling, there is a negative exponential dependence. Nev-
ertheless, if the experimental conditions are properly chosen
�i.e., angle between counterpropagating laser beams and their
power�, it is possible to obtain conditions where, for in-
stance, nearest-neighbor and next-to-nearest-neighbor tun-
neling coefficients have opposite signs �see, e.g., Fig. 3,
T0,0,i�,i�

�, and thus the model, in that case, might exhibit frus-
tration.

We will now move to the determination of the interaction
term, namely, the last term of Eq. �14�. As a first step, we can
write the integral in cylindrical coordinates,

ãs� dr dr���
*�r���

*�r���r − r�����r���r��

= ãs� dx dx�un�
* �x − xi�

�un�
* �x� − xi�

��x − x��un�
�x

− xi�
�un

�x� − xi
�

�� d	̃ d	̃�
	̃

�
� d� d��LJ�,m�

* �	̃,��LJ�,m�
* �	̃�,����	

− 	���� − ���LJ�,m�
�	̃,��LJ,m

�	̃�,��� �26�

with 	̃=	 / l	 and the identity

�r� =
�	����
�	

.

As we are dealing with a short-range interaction modeled
by a �r−r�� function, we will consider on-site interaction
only �x̃i�

= x̃i�
= x̃i

= x̃i�
�.

This choice is completely justified because the interaction
term is modeled by a pseudopotential term for which nearest-
neighbor interactions become negligible. In this case the first

FIG. 2. Plots of the tunneling coefficients from T00 to T11. A detailed discussion of the analytic expression of the hopping parameter will
be given in Appendix A. See also Fig. 8 below.
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integral on the left-hand side of Eq. �26� reduces to

Ux =
1

�lx

� 2−�n�+n�+n�+n�

n� ! n� ! n� ! n!

�� dx̃ Hn�
�x̃�Hn�

�x̃�Hn�
�x̃�Hn

�x̃�e−2x̃2
�27�

with x̃=x / lx, whose explicit calculation is given in Appendix
B. Here we just give the final result,

Ux =
�n̄�,2N

�lx
�

s̄

n̄
��s̄�

�2�s̄�+3
�� ��n̄� − �s̄��

2
+ 1	 �28�

with

��s̄� = �0 if s� odd,

�
�

1

n�!
�n�

s�
	Hs�

�0� if s� even. � . �29�

The summation is to be intended as four separate summa-
tions over the components of a vector s̄= �s� ,s� ,s� ,s� from
�0, 0, 0, 0� to n̄= �n� ,n� ,n� ,n�. The norm �x̄� is a one-norm
��x̄�=���x��, �=�, �, �, � and the  in Eq. �27� represents
the parity selection rule, obtained from the explicit calcula-
tion of the integral.

The radial part of the integral can be explicitly written as

U	 =� � d	 d�
	

�
LJ�,m�

* �	,��LJ�,m�
* �	,��LJ�,m�

�	,��

�LJ,m
�	,�� . �30�

With the definition given by Eq. �12�, we can easily perform
the angular integration and we obtain

U	 =
2m�+m�,m�+m

�2 �
0

�

d	 	RJ�,m�
* �	�RJ�,m�

* �	�

�RJ�,m�
�	�RJ,m

�	� . �31�

The reader is again addressed to Appendix B for the
explicit evaluation of the integral in Eq. �31�. The result is
given by

U	 =
m�+m�,m�+m

�2l�
2 �

q̄=�m̄�

J̄

��J̄,m̄, q̄�
���q̄� + 3/2�

2�q̄�+3/2 �32�

with

��J̄,m̄, q̄� = �
�=�,�,�,

�− 1�J�−q���J� + m�� ! �J� − m��!
�J� − q�� ! �q� + m�� ! �q� − m��!

�33�

and, following previous notation, q̄= �q� ,q� ,q� ,q�,
J̄= �J� ,J� ,J� ,J�, and �m�= ��m�� , �m�� , �m�� , �m��. The over-
all interaction coefficient can then be written as the product
of Eqs. �32� and �28�,

U�,�,�, = �n̄�,2Nm�+m�,m�+m

ãs

4lx�
3l�

2 �
q̄=�m�

J̄

�
s̄

n̄
��J̄,m̄, q̄���s̄�

�2�s̄�+2�q̄�

� ���q̄� +
3

2
	�� ��n̄� − �s̄� + 1�

2
	 . �34�

We are thus enabled to rewrite Hamiltonian �14� in terms of
the calculated coefficients, obtaining

Ĥ = �
j
��
�

��n̂�
† + �

�,�
T�,�ĉ�

† ĉ� + �
�,�,�,

U�,�,�,ĉ�
† ĉ�

† ĉĉ�	 .

�35�

We will refer to Eq. �35� as the generalized Hubbard Hamil-
tonian. For sake of simplicity, in Eq. �35� we have not writ-
ten down explicitly the selection rules imposed by symmetry
constraints �see below�.

A. Symmetry properties of the interaction term

In addition to global symmetry properties, such as �1�
rotational symmetry along the x axis and �2� left-right sym-
metry, reflected by momentum x-component conservation
and parity conservation for the 1D harmonic oscillators
along the x axis, it is clear from Eq. �34� that the coefficient
U�,�,�, has some symmetry properties: �a� U does not de-
pend on the sign of m� with �=�, �, �, , provided m is
conserved during the interaction �m�+m�=m�+m�; �b� U
possesses a permutational symmetry, namely,

U�,�,�, = U�,�,�, = U�,�,,� = U�,�,,�. �36�

We would like to draw the reader’s attention to the two 
functions in Eq. �34� which make explicit the conservation
laws that might have been expected by simply considering
the symmetry of the problem. The first one represents parity
conservation, and the second conservation of the x compo-
nent of the angular momentum. In Table I, we give the ana-
lytical value of U for interaction between particles belonging
to the first three shells of the 2D radial harmonic oscillator
and to the first level for the axial harmonic oscillator. These
symmetry constraints allow us to class the possible quantum
numbers of the interacting particles according to the value of
the corresponding U. For example, for

� = �0,1,0,i,��, � = �0,0,0,i,��� ,

 = �0,0,0,i,��, � = �0,0,0,i,��� ,

and

� = �0,0,0,i,��, � = �0,0,0,i,��� ,

 = �0,1,0,i,��, � = �0,0,0,i,��� ,

we have the same value of U, henceforth the class definition
of Table I. We would like to point out two aspects of this
example. First of all it may be noticed that the angular mo-
mentum J is not conserved throughout the interaction: this is
a general feature of the system considered; there is no global
rotational symmetry but only in the plane orthogonal to the
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1D optical lattice. Moreover, in this particular interaction the
value for the coefficient U is negative; this appears to be a
rare �but not unique� situation. The implications of this con-
dition will be pointed out in Sec. IV

IV. SPECIAL CASES

In this section we derive three model Hamiltonians for
fermions in optical lattices. We consider, for all cases, only
the lowest-state axial quantum number �i.e., n�=n�=0�.
Hence T�,� can be written as

T�,� = J�,J�
m�,m�

��,��
T0,0,i�,i�

. �37�

As far as an ultracold gas is considered, it seems
feasible to restrict our analysis to the first few levels above
the ground state �i.e., J�=0, 1 /2,…�. This regime can
be attained experimentally, considering a situation where
��x�����kBT, and thus for a low number of atoms radial
states only can be populated. As a first example, we consider
the case having J�=0 as the only radial level allowed.
This approximation might be suitable for mean site occupa-
tion numbers Ni�2 and for ����kBT. Taking into account
spin degeneracy, it seems feasible to assume that the dynam-
ics is confined to the single-site ground-state energy
levels, in strict analogy to what is done for a confined Bose
gas �5�. From Eq. �34�, along with the previous assumptions,
we obtain �38�

Ĥ = �
i,�
�in̂i,� − T�

i,�
�ĉi,�

† ĉi+1,� + ĉi+1,�
† ĉi,�� + U �

i,�,��

n̂i,�n̂i,��

�38�

with T=T0,0,i�,i�+1 which is easily recognized as the Hubbard
Hamiltonian, whose role in the ultracold-atom physics has
been pointed out elsewhere �5,29�. Note that in this example
we have made the assumption that the tunneling coefficient

is significantly different from zero only for nearest-
neighboring sites. Nevertheless, more involved situations
may arise, suggesting interesting physical features, as is
shown in Appendix A �Fig. 8�.

If we now consider a spin-polarized gas �for the experi-
mental feasibility of this regime, see, e.g., �39�� in a �radial�
multilevel system we obtain �38�

Ĥ = �
n̄,i

�n̄,in̂n̄,i − T�
n̄,i

�ĉn̄,i
† ĉn̄,i+1 + ĉn̄,i+1

† ĉn̄,i� , �39�

where n̄= �n� ,J� ,m� ,���, and the absence of the interaction
term is related to the symmetry properties of the coefficient
U���. We would like to point out that, in this case, the
particle number limit is given only by the prescription n�
=0.

The Hamiltonian �39� is readily diagonalized to yield

Ĥ = �
n̄

Ĥn̄ = �
n̄,k,�

��n̄ − 2T cos�k��n̂n̄,k,� �40�

with the same procedure followed in the strong-coupling
limit in the Hubbard Hamiltonian.

A. Rotational Hubbard Hamiltonian

As a last example, we derive a third Hamiltonian that
may give the reader some insight into the increasing com-
plexity if higher single-particle levels are taken into account.
Here we consider a situation where we allow J�=0,
1 /2, partly relaxing then the conditions on particle numbers
and temperature that led us to the Hubbard model. Even in
this situation we keep n�=0, and thus Tn�,i�,n�,i�+1

=T as
already pointed out:

TABLE I. Values of Ũ�,�,�,= ��2as / �mlx�
2l�

2 ��−1U�,�,�, for �n� ,n� ,n� ,n�= �0,0 ,0 ,0�, i�= i�, and � and
�� satisfy symmetry constraints. The value m� represents the equivalence class described in the text.

J� J� J� J m�
* m�

* m�
* m

* Ũ�,�,�,

0 0 0 0 0 0 0 0 � /24

1 /2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 15� /28

1 1 1 1 1 1 1 1 945� /214

1 1/2 1/2 1 1 1/2 1/2 1 105� /211

1 1 1 1 0 0 0 0 193� /212

1 /2 0 1/2 0 1/2 0 1/2 0 3� /26

1 1 1 1 1 0 1 0 345� /213

1 1/2 1/2 1 0 1/2 1/2 0 33� /210

1 1/2 1/2 1 0 1/2 −1/2 1 45� /210�2

1 0 1 0 1 0 1 0 15� /29

1 1 0 0 0 0 0 0 7� /28

1 1 1 0 1 −1 0 0 45� /210

1 1/2 1/2 0 0 1/2 1/2 0 3� /28

1 0 0 0 0 0 0 0 −� /26
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H2 level = �
i,�

�
a=−1

1

��ani,a,� − T�ci,a,�
† ci+1,a,� + ci+1,a,�

† ci,a,���

+ �
i

�
a,b,c,d

Ua,b,c,d �
�,��

ci,a,�
† ci,b,��

† ci,d,��ci,c,�, �41�

where Ua,b,c,d=Ua,i�;b,i�;c,i�;d,i
. The label a �as well as b, c,

and d� has been introduced to represent the triplet of har-
monic oscillator numbers �n� ,J� ,m��; hence �= �a , i� ,���.
One should recall that originally �= �n� ,J� ,m� , i� ,���.
Here, however, it is convenient to write in an explicit way
both spin indices �� and site indices i�.

The triplet a= �n� ,J� ,m�� is such that the value a=0 cor-
responds to �0, 0, 0�, a=1→ �0,1 /2 , +1/2�, and
a=−1→ �0,1 /2 ,−1/2�. The axial quantum number nx has
been “frozen” to 0 due to the disk-shaped potential form �i.e.,
�x���� while the radial quantum number J has been lim-
ited to the values �0, 1 /2� as a first approximation beyond
J=0 �Hubbard Hamiltonian, see Eq. �38��. The present
model thus enriches the dynamical scenario by introducing
modes that takes into account the simplest possible rotational
processes for fermions confined in a well, describing situa-
tions with higher number of fermions per site.

The wealth of the scenario depicted in Eq. �41� arises
from the level dependence of the interaction coefficient
Ua,b,c,d. In fact Ua,b,c,d, as a function of the energy levels may
provide a useful tool to simplify Eq. �41� hinting at the best
strategy for both numerical and analytical analysis of this
model. Two main aspects concerning these coefficients are
worth repeating here: �a� the m�-conserving nature of the
interaction, related to the symmetry properties of the confin-
ing potential and of the interaction coefficient �see Sec.
III A�, reduces the number of possible processes; �b� the
symmetry properties of U�,�,�, �see Eq. �36�� allow the
grouping of interaction terms, according to what has been
done in Table I.

From a general point of view, in Hamiltonian �41� the
hopping factor may be construed as a multichannel tunneling
coefficient, where the radial quantum numbers identify the
channel label, in the same spirit of Hamiltonian �40�. Inci-
dentally, this is true if axial degrees of freedom are frozen to
n�=n�=0; otherwise there is tunneling among levels with
n��n�, for some � and �.

Hamiltonian �41� can represent a situation where single
traps are loaded with a small number of atoms, so as to
fill the first two radial levels of the local harmonic oscillator.
To experimentally obtain one of the different simplified
Hamiltonians—like �41�—it is necessary to have control
of four experimental parameters: laser intensity, angle be-
tween counterpropagating lasers, axial magnetic trapping
frequency, scattering length. With these parameters it is
possible to gain full knowledge of the “lattice constant,”
interaction parameter, shape, and depth of the 3D harmonic
traps. The most critical point seems the few-atom loading
of the trap but a technique involving a 3D anisotropic
array—a sort of 2D array of 1D arrays—might overcome the
problem.

In this picture, the interaction coefficient U can then be
used as a source of entanglement between different channels.
Moreover, the possibility of experimental control of the scat-
tering length, and thus of the interaction term, via an applied
magnetic field may provide a useful tool of external manipu-
lation of the state of the system in the rich scenario here
depicted.

To outline future paths of research, we will here sketch a
way to set up a mean-field procedure for the rotational Hub-
bard Hamiltonian �RHH�. The main interest of this approach
resides in the possibility of a general discussion of some
features of the model which have a direct experimental rel-
evance. For example, it is possible to state that, according to
what is usually affirmed in the literature �33�, no BCS-like
ground state is possible for repulsive interaction, while for an
attractive two-body potential a paired ground state is pos-
sible. The flexibility of experimental techniques involved in
the study of ultracold-atom physics allows us to envisage
experimental conditions where these two different regimes
are attained. For example, exploiting a Feshbach resonance it
is possible to drive the scattering length as from positive to
negative values, leading thus the system through a quantum
phase transition.

The analytic procedure adopted hereafter deeply relies on
the concept of a quasifree state �33�. In our situation the
following definition of a quasifree state can be adopted: �I�
all correlation functions can be computed from Wick’s theo-
rem; �II� four-fermionic expectation values over the quasi-
free state have the form

���e1e2e3e4��� = ���e1e2������e3e4��� − ���e1e3���

����e2e4��� + ���e1e4������e2e3���

with ei=ci, ci
†. In particular we would like to point out how

the three terms on the right-hand side will lead to the direct,
the exchange, and the pairing energy terms of a Hartree-
Fock-Bogoliubov mean-field Hamiltonian, which, for our
RHH becomes

Ĥ2 level
HFB = Ĥ0 + �

i,a,b,c,d,

����

Ua,b,c,d��i,a,�,d,�ĉi,b,��
† ĉi,c,��

+ �i,c,��,b,��ĉi,a,�
† ĉi,d,� − �i,d,�,b,��ĉi,a,�

† ĉi,c,��

− �i,c,��,a,�ĉi,b,��
† ĉi,d,� + �i,b,��,a,�

* ĉi,c,��ĉi,d,�

+ �i,d,�,c,��ĉi,a,�
† ĉi,b,��

† �

with

Ĥ0 = �
i,a,�

��an̂i,a,� + T�ĉi+1,a,�
† ĉi,a,� + H.c.�� ,

�i,a,�,b,�� = ��HFB�ĉi,a,�
† ĉi,b,����HFB� ,

�i,a,�,b,�� = ��HFB�ĉi,a,�ĉi,b,����HFB� .

The set of generators �ĉ�
† ĉ�− 1

2���1����
�r� , ĉ�ĉ� , ĉ�

† ĉ�
†�1�����r�� obeys the following commu-

tation relations:
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ĉi
†ĉj −

1

2
ij, ĉk

†ĉl −
1

2
kl
 =  jk�ĉi

†ĉl −
1

2
il	 ,

ĉi
†ĉj −

1

2
ij, ĉk

†ĉl
†
 =  jkĉi

†ĉl
† −  jlĉi

†ĉk
†,

�ĉiĉ j, ĉk
†ĉl

†� = ik�ĉl
†ĉj −

1

2
lj	 + lj�ĉk

†ĉi − 1/2ki� − li�ĉk
†ĉj

− 1/2kj� − kj�ĉl
†ĉi − 1/2li� , �42�

allowing us to state that the dynamical algebra of this new
Hamiltonian, which is now quadratic in terms of ĉi, ĉi

†, can
be easily recognized to be so�2r� �34� �where r is the number
of single-particle states�.

Having determined the dynamical algebra of the model
Hamiltonian, this enables us—at least in principle—to find
the ground state of the system with a straightforward proce-
dure. As will be clear from the subsequent discussion, the
main difficulties arise as the number of generators of the
so�2r� algebra grows with r�2r−1�. For instance for the two-
site, J=0, 1 /2 model �i.e., r=12�, the Hamiltonian dynamical
algebra will have 276 generators.

In spite of the technical difficulties �both analytical and
numerical�, it is appropriate to apply algebraic techniques to

diagonalize Ĥ2−level
HFB . As stated before, this general approach

will give some insight into the ground-state properties of the
system. If we consider a unitary transformation g�SO�2r�
we can write

Ĥd = gĤ2 level
HFB g−1, �43�

where Ĥd is diagonal. As a direct consequence the ground

state ��HFB� of Ĥ2 level
HFB can be written as

��HFB� = g�0,0,0,…,0,0� = g�0� , �44�

where �0� can be defined as the Bogoliubov particle vacuum

�ground state of Ĥd�. Following �34�, �0� represents a pos-
sible choice for the extremal state for the SO�2r� group with

U�r� as the corresponding maximum stability subgroup �h
�U�r��. This entails

g�0� =�h�0� =��0�ei��h�, �45�

where

� = exp �
1�����r

���,�ĉ�
† ĉ�

† − H.c.� �
SO�2r�

U�r�
. �46�

The phase appearing in Eq. �45� has no relevance for our
purposes, as we are interested in the evaluation of observable
expectation values.

The problem mentioned above about the size of the dy-
namical algebra appears here with all its implications. It is
necessary to exponentiate the operator �1�����r���,�ĉ�

† ĉ�
†

−H.c . � which is a 2r�2r matrix in the faithful matrix rep-
resentation.

Nevertheless, for a repulsive two-body potential, the pair-
ing term can be neglected �33�; thus the dynamical algebra of
the system becomes U�r�. Following �34�, we can express
the Hamiltonian ground state as

��HFB� = exp �
k+1���r

1�j�k

���,�ĉ�
† ĉ� − H.c.��0� , �47�

where

�0� = �0,…,0� , �48�

which is, in fact, the ground state of the noninteracting
Hamiltonian. It is worth noticing that this general procedure
can be greatly simplified if further constraints, related to
symmetries of the problem, are imposed onto the coefficients
��,�. For example, if we consider the two-site �A,B�, J=0,
1 /2 case, due to Eq. �37� the matrix �̄ with elements ��,�
will have the form

�̄ =�
0 �1,2 �1,3 �1,4 �1,5 �1,6 �1,7 0 0 0 0 0

− �1,2 0 �2,3 �2,4 �2,5 �2,6 0 �2,8 0 0 0 0

− �1,3 − �2,3 0 �3,4 �3,5 �3,6 0 0 �3,9 0 0 0

− �1,4 − �2,4 − �3,4 0 �4,5 �4,6 0 0 0 �4,10 0 0

− �1,5 − �2,5 − �3,5 − �4,5 0 �5,6 0 0 0 0 �5,11 0

− �1,6 − �2,6 − �3,6 − �4,6 − �5,6 0 0 0 0 0 0 �6,12

− �1,7 0 0 0 0 0 0 0 0 0 0 0

0 − �2,8 0 0 0 0 0 0 0 0 0 0

0 0 − �3,9 0 0 0 0 0 0 0 0 0

0 0 0 − �4,10 0 0 0 0 0 0 0 0

0 0 0 0 − �5,11 0 0 0 0 0 0 0

0 0 0 0 0 − �6,12 0 0 0 0 0 0

� , �49�
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thus impressively reducing the computational effort needed
to evaluate the exponential in Eq. �46�. In Eq. �49� we have
assumed the following convention:

�n� = 0,J� = 0,m� = 0,i� = A,�� = ↑� → 1,

�n� = 0,J� = 0,m� = 0,i� = A,�� = ↓� → 2,

]

�n� = 0,J� = 0,m� = 0,i� = B,�� = ↑� → 7,

�n� = 0,J� = 0,m� = 0,i� = B,�� = ↓� → 8,

] .

V. CONCLUSIONS

In this paper we have investigated the complex
structure of fermion interactions for a fermion gas
distributed in a linear periodic array of potential wells.
Based on the standard many-fermion quantum field theory
endowed with a potential distribution mimicking a realistic
experimental setup, we have calculated analytically the
hopping and interaction coefficients that describe the inter-
actions of fermions within a generalized multimode
Hubbard Hamiltonian. Their dependence on the external
adjustable parameters �such as laser intensity, magnetic
trap frequency, wavelength, and scattering length� has been
determined.

Our analysis shows that, except for two particularly
simple cases �the gas of spin-unpolarized fermions and
the gas of noninteracting spin-polarized fermions�, models
with different degrees of complexity can be derived depend-
ing on the interaction processes one decides to account
for or to neglect �consider, e.g., that, in principle, one
might introduce an unlimited number of �local� rotational
levels�. In this respect, our simplest nontrivial model �41�,
which is able to account for the �local� rotational activity of
fermions, appears to be far more complex than the Hubbard
model or the spin-polarized noninteracting model derived in
Sec. IV.

Therefore, the first objective of our future work is to
perform a systematic study of model �41�. Based on
the present analysis and exploiting the interaction-parameter
scenario here depicted, the second objective is to
recognize the significant regimes characterizing the confined
fermion gas and to derive the relevant models from
Eq. �35�.

We would like to stress once again how the analytical
knowledge of the coefficients in principle allows us to tailor
Hamiltonians performing specific tasks.

An aspect that certainly deserves attention is the study of
the zero-temperature phase diagram of model �41� �and,
more in general, of sufficiently simple—and thus tractable—
models derived from the GHH� and of the relevant phenom-
enology aimed at suggesting new possible experiments.
To achieve a reliable description of these systems, several
established analytical and numerical approaches �see,
e.g., �40–44�, respectively� can be implemented in analogy
to what has been done for bosons �43,44�. Moreover, in
the recent past several authors �see, e.g., �45,46�� have

proposed to use entanglement measures as a quantum phase
transition marker. We think that our model can represent a
good test field for this approach to quantum phase
transitions.

APPENDIX A: TUNNELING COEFFICIENT
CALCULATION

In the following calculation we will fix n��n�, without
loss of generality, as can be easily verified.

The integral in Eq. �22� can be decomposed into the sum
of three terms

 1
n�,n� + 2

n�,n� + 3
n�,n� =� dy e−�y − ��2/2Hn�

�y

− ��f�y�e−y2/2Hn�
�y� �A1�

with

f�y� = � y2

2
−

1 − cos�2�y�
4�2 	 .

Integral �A1� is such that

 1
n�,n� = −� dy

4�2e−�y2+�y − ��2�/2Hn�
�y − ��Hn�

�y� , �A2�

 2
n�,n� =� dy

4�2e−�y2+�y − ��2�/2cos�2�y�Hn�
�y�Hn�

�y − �� ,

�A3�

 3
n�,n� =

1

2
� dy y2e−�y2+�y − ��2�/2Hn�

�y�Hn�
�y − �� .

�A4�

The substitution !=y−� /2 yields

 1
n�,n� = − C�

� � d! e−!2
Hn��! +

�

2
	Hn��! −

�

2
	 , �A5�

where C�
� =e−�2/4 / �4�2�. We then use the Hermite polyno-

mial identity

Hn�x + y� = �
k=0

n �n

k
	Hk�x��2y�n−k �A6�

to obtain

 1
n�,n� = −

e−�2/4

4�2 � d! e−!2 �
l,k=0

n�,n� �n�
l
	�n�

k
	�n�+n�−�l+k�

��− 1�n�−kHk�!�Hl�!� . �A7�

With the orthogonality of Hermite polynomials
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�
−�

�

dx Hn�x�Hm�x�e−x2
= n,m2nn ! �� �A8�

we are able to perform the ! integration obtaining

 1
n�,n� = −

��
4�2e−�2/4�− 1�n��

l=0

n� �n�
l
	�n�

l
	�n�+n�−2l�− 2�ll ! .

�A9�

It is worth noting that the summation extends to n�, that is,

�a

b �=0 if a�b. From �37� it can be verified that the last

summation is related to generalized Laguerre polynomials,
giving

 1
n�,n� = −

��n� ! 2n�

4�2�− ��n�−n�
e−�2/4Ln�

n�−n�� �2

2
	 . �A10�

We move now to the calculation of  2
n�,n� which is given

by

 2
n�,n� =

1

4�2 � dy exp�−
y2

2
	Hn�

�y�exp�−
�y − ��2

2
	Hn�

�y

− ��cos�2�y� . �A11�

FIG. 3. Plot of Tn�,n�,i�,i�
from T0,0,i�,i�

to T0,2,i�,i�
. The solid line

represents the case of ground-state tunneling. In this case the hop-
ping parameter T0,0,i�,i�

is always positive. However, interlevel tun-
neling already shows sign changes.

FIG. 4. Plot of Tn�,n�,i�,i�
from T1,0,i�,i�

to T1,2,i�,i�
. In this situ-

ation the intralevel tunneling term T1,1,i�,i�
is always negative, but if

a different external parameter choice is considered, the sign change
can be placed between i�− i�=1 and i�− i�=2.

FIG. 5. Plot of Tn�,n�,i�,i�
from T2,0,i�,i�

to T2,2,i�,i�
.

FIG. 6. Plot of T0,0,i�,i�+1 as a function of � and s,
respectively.
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Equation �A11�, with the substitution !=y−� /2, can be
written as

 2
n�,n� =

1

4�2exp�− �2/4� � d! e−!2
Hn��! +

�

2
	Hn��!

+
�

2
	cos�2�!� . �A12�

Again, using Eq. �A6� gives

 2
n�,n� =

e−�2/4

4�2 �
l,k=0

n�,n� �n�
l
	�n�

k
	�n�+n�−�l+k�

��− 1�n�−k� d! e−!2
Hk�!�Hl�!�cos�2�!� .

�A13�

The integral in Eq. �A13� can be interpreted as the real
Fourier transform of the function

e−!2
Hk�!�Hl�!� .

Recalling that

F�f�x�g�x�� = F�f�x�� * F�g�x�� ,

where F�·� indicates the Fourier transform and * the convo-
lution product, we obtain

 2
n�,n� =

e−�2/4

4�2 �
l,k=0

n�,n� �n�
l
	�n�

k
	�n�+n�−l−k

��− 1�n�−kRe�F�e−!2/2Hk�!�� * F�e−!2/2Hl�!���

�A14�

giving

 2
n�,n� =

e−�2/4

4�2 �
l,k=0

n�,n� �n�
l
	�n�

k
	�n�+n�−�l+k��− 1�n�−k+l

� Re�ik+l� d" e−�"2+�" − 2��2�/2Hk�"�Hl�" − 2��	 .

�A15�

The integral on the right-hand side of Eq. �A15� can be
solved following the same procedure used for  1

n�,n�:

� d" e−"2/2Hk�"�e−�" − 2��2/2Hl�" − 2��

= �− 1�k−l��e−��2��k−ll ! 2lLl
k−l�4�2� . �A16�

Introducing Eq. �A16� in Eq. �A15� gives

 2
n�,n� =

e−�2/4

4�2 �
l,k=0

n�,n� �n�
l
	�n�

k
	�n�+n�−�l+k��− 1�n�

� 2ll ! Re�ik+l�
��

�2��l−kLl
k−l�2�2�e−�2

. �A17�

The calculation of  3
n�,n� is quite straightforward. Apply-

ing twice the identity

FIG. 7. Plot of T2,2,i�,i�+1 as a function of � and s, respectively.
It is worth noticing the region where T2,2,i�,i�+1 becomes negative.

FIG. 8. Plot of T0,0,i�,i�
for s=0.1. Next-to-nearest-neighbor

hopping parameter differs significantly from zero.
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xHn�x� =
1

2
Hn+1�x� + nHn−1�x� �A18�

we can write  3
n�,n� as

 3
n�,n� =

e−�2/4

2
� d! e−!21

4
Hn�+2�! +

�

2
	 +

2n� + 1

2
Hn��!

+
�

2
	 + n��n� − 1�
Hn�−2�! +

�

2
	
Hn��! −

�

2
	 .

�A19�

With the same procedure used for  1
n�,n�,  3

n�,n� is given
by

 3
n�,n� =

�− 1�n�−n�

2
��2�

nn� ! �n�−n�e−�2/4 �n� + 1��n� + 2�
�2

�Ln�+2
n�−n�−2��2/2�
+ �2

4
Ln�−2

n�−n�+2� �2

2
	

+
2n� + 1

2
Ln�

n�−n�� �2

2
	
 . �A20�

Hence T�,� becomes

T�,� =
��xJ�,J�

m�,m�
��,��

�2n�+n�+2n� ! n� ! �
� 1

n�,n� + 2
n�,n� + 3

n�,n��

�A21�

with  1
n�,n�,  2

n�,n�, and  3
n�,n� given by formulas �A10�,

�A17�, and �A20�, respectively.
In Figs. 3–5 we plot Tn�,n�,i�,i�

as a function of the differ-
ence i�− i� for values of n� and n� ranging from 0 to 2.

The long-distance exponential decay is common to all
tunneling coefficients, regardless of the energy level. On the
other hand its detailed shape has deep relevance for nearest
neighbors and possibly next-to-nearest neighbors �i.e., there
may be sign changes passing from Tn,m,i,i+1 and Tn,m,i,i+2� as
shown in Figs. 3–8. Another interesting feature is that an
extra term, due to “on-site” tunneling coefficients, must be
added to the harmonic oscillator energy term.

APPENDIX B: INTERACTION COEFFICIENTS

We provide here the detailed calculation for the
interaction-term matrix elements. To solve integral �27�

Ux =
1

�lx

� 2−�n�+n�+n�+n�

n� ! n� ! n� ! n!

�� dx Hn�
�x�Hn�

�x�Hn�
�x�Hn

�x�e−2x2
,

we exploit again Eq. �A6�, obtaining

Ux =
1

�lx

� 2−�n�+n�+n�+n�

n� ! n� ! n� ! n!
��n�

i�
	�n�

i�
	�n�

i�
	

��n
i
	Hi�

�0�Hi�
�0�Hi�

�0�Hi
�0�

�� d!�2!�n�+n�+n�+n−�i�+i�+i�+i�e−2!2
. �B1�

In the previous equation the summation must be intended
over four independent values of s�=0,… ,n� with �=�, �, �,
. With the substitution

� d!�2!��e−2!2
= �,2N

�2�−3���� + 1�/2� �B2�

��,2N indicates that � must be an even number� Eq. �B1�
becomes

Ux =
1

�lx
�

s̄

n̄
��s̄�

�2�s̄�+3
�� �n̄� − �s̄� + 1

2
	�n�,2N �B3�

with

ā = �a�,a�,a�,a� �1 − norm �ā� = �
�

a�	 �B4�

and

��s̄� = �
�

1
�n�!

�n�
s�
	Hs�

�0� , �B5�

where ��s̄�=0 for odd i�. The  function in Eq. �B3� should
be written as ��n̄�−�s̄�,2N. However, the condition �i��=even
already implies �s̄�=even. We are then allowed to write
�n̄�−�s̄�,2N=�n̄�,2N in Eq. �B3�.

We solve now the radial part of the interaction-term inte-
gral written in Eq. �30�,

U	 =� � d2�

�
LJ�,m�

* ���LJ�,m�
* ���LJ�,m�

���LJ,m
��� ,

where �= �	 ,�� and d2�=	 d	 d�. Following �37�, we ex-
press LJ�,m�

�	 ,�� in terms of a finite sum

LJ�,m�
�	,�� = e2im��e−	2/l�

2 ��J� + m�� ! �J� − m��!

�
1

�
�

q�=�m��

J� �− 1�J�−q��	/l��2q�

�J� − q�� ! �q� + m�� ! �q� − m��!
.

�B6�

Hence the radial part of LJ�,m�
�	̃ ,�� can be written as

RJ�,m�
�	̃� =

e−�	̃/l��2/2

l�
�

q�=�m��

J�

���	̃/l��2q�, �B7�

where

�� =
�− 1�J�−q���J� + m�� ! �J� − m��!
�J� − q�� ! �q� + m�� ! �q� − m��!

. �B8�

Substituting Eq. �B7� into Eq. �30� we have
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U	 =
2m�+m�,m�+m

�l�
4 �

q�=�m��

J�

�
q�=�m��

J�

�
q�=�m��

J�

�
q=�m�

J

� ��������
0

�

d	
	

�l�
2 � 	l�

	2�q̄�

e−2	̃2
�B9�

which, with the same notation of Eq. �B3�, becomes

U	 =
m�+m�,m�+m

�l�
2 �

q̄=�m�

J̄

��J̄,m̄, q̄�
���q̄� + 3/2�

2�q̄�+3/2 �B10�

with

��J̄,m̄, q̄� = �
�=�,�,�,

��. �B11�
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