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We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold
fermionic atoms via Raman photoassociation. The quantum fluctuations inherent to the initial atomic state
result in large fluctuations in the passage time from atoms to molecules. Assuming degeneracy of kinetic
energies of atoms in the strong coupling limit, we find that a heuristic classical stochastic model yields
qualitative agreement with the full quantum treatment in the initial stages of the dynamics. We also show that
in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of
bosonic dimers exhibits little passage time fluctuations. Finally, we explore effects due to the nondegeneracy of
atomic kinetic energies.
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I. INTRODUCTION

The coherent formation of ultracold diatomic molecules
from quantum-degenerate bosonic or fermionic atomic gases,
via either Feshbach resonances �1� or two-photon Raman
photoassociation �2�, has witnessed spectacular develop-
ments in recent years and has lead to the first realization of
molecular condensates �3�. Because, in these experiments,
the molecular field is initially in a vacuum state, it is to be
expected that quantum fluctuations play a dominant role in
the early stages of molecule formation. These fluctuations
manifest themselves in the quantum statistics of the resulting
molecular field and also in the time that it takes for the num-
ber of generated molecules to reach a specific value, the
so-called passage time statistics. This problem is closely re-
lated to other situations where quantum �or thermal� fluctua-
tions trigger a system to undergo a transition away from a
dynamically unstable state. One such example familiar from
quantum optics is superradiance �4� �or strictly speaking su-
perfluorescence�, a situation where an ensemble of two-level
systems initially in their excited electronic state and coupled
to the electromagnetic field vacuum undergoes a transition
characterized by the emission of an intense light pulse. One
important difference is that in superfluorescence experi-
ments, the atoms are normally coupled to a continuum of
modes of the radiation field, practically leading to an irre-
versible decay to their ground state, while in the problem at
hand, the molecular field is to a good approximation single
mode, leading to reversible dynamics.

One important way to characterize the dynamics of mol-
ecule formation is by way of the so-called passage time,
which is defined as the time it takes to produce a predeter-
mined number of molecules. The goal of this paper is to
study the passage time statistics resulting from the initial
quantum fluctuations of the atomic-matter wave field. We
also compare this situation with the dynamics of dissociation
of a molecular condensate into fermionic atomic pairs, show-
ing significant qualitative differences between the two cases.

The paper is organized as follows. Section II establishes
our notation, presents our model, and shows that the appli-
cation of an Anderson mapping �5� leads to the description of
photoassociation of fermions in terms of the inhomoge-
neously broadened Tavis-Cummings model of quantum op-

tics. Section III concentrates on a “homogeneously broad-
ened” version of this model that neglects the spread in
fermion energies, an approximation shown to be valid for
sufficiently small numbers of atoms. There we also discuss
an approximate stochastic classical description �6,7� that
yields a satisfactory qualitative agreement with the full quan-
tum results for short enough times. This section concludes by
comparing the passage time statistics associated with photo-
association and the reverse process of photodissociation. The
results of a numerical analysis of the full, inhomogeneously
broadened model are presented in Sec. IV. Finally, Sec. V is
a summary and outlook.

II. THE MODEL

In typical experiments that produce molecules via Fesh-
bach resonance, the magnetic field is swept across the reso-
nance. In the strong coupling regime, kFa�1 in the vicinity
of the resonance, where kF is the Fermi wave number and a
is the s-wave scattering length; the interpretation of the mo-
lecular state is subject to conceptual difficulties stemming
from the dressing of the “bare” molecular state by atom pairs
in the open channel �8,9�. Furthermore, since the binding
energy of the molecules is very small, of the order 10−11 eV,
they are larger than the interatomic separation. Another con-
sequence of the almost vanishing binding energy is that
nearly every time-dependent process becomes nonadiabatic
with respect to the time scale set by the inverse of the bind-
ing energy. To avoid these difficulties, we restrict our con-
siderations in this paper to the description of a quantum-
degenerate gas of fermionic atoms of mass mf and spin
�= ↑ ,↓, coupled coherently to bosonic molecules of mass
mb=2mf and zero momentum via photoassociation rather
than Feshbach resonance.

Neglecting collisions between fermions and assuming that
for short enough times the molecules can be described by a
single-mode bosonic field, this system can be described by
the boson-fermion model Hamiltonian

H = �
k

1

2
��k�ĉk↑

† ĉk↑ + ĉ−k↓
† ĉ−k↓� + ��bb̂†b̂

+ ���
k

�b̂†ĉk↑ĉ−k↓ + b̂ĉ−k↑
† ĉk↓

† � , �1�
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where b̂† , b̂ are molecular bosonic creation and annihilation
operators and ĉk�

† , ĉk� are fermionic creation and annihilation
operators describing atoms of momentum �k and spin �. The
first and second terms in Eq. �1� describe the energy, �k
=�2k2 /mf, of the atoms, and the detuning energy of the mol-
ecules, respectively, and the third term describes the photo-
association of pairs of atoms of opposite momentum into
molecules.

Introducing the pseudospin operators �5�

�̂k
z =

1

2
�ĉk↑

† ĉk↑ + ĉ−k↓
† ĉ−k↓ − 1� ,

�̂k
+ = ��̂k

−�† = ĉ−k↓
† ĉk↑

† , �2�

which are easily seen to obey the SU�2� commutation rela-
tions

��̂k
+,�̂k�

− � = 2�kk��̂k
z �3�

��̂k
z,�̂k�

± � = ± �kk��̂k
±, �4�

where �kk� is the Kronecker delta function, the Hamiltonian
�1� becomes, within an unimportant constant �10,11�,

H = �
k

��k�̂k
z + ��bb̂†b̂ + ���

k

�b̂†�̂k
− + b̂�̂k

+� . �5�

This Hamiltonian is known in quantum optics as the inho-
mogeneously broadened �or nondegenerate� Tavis-
Cummings model �12�. It describes the coupling of an en-
semble of two-level atoms to a single-mode electromagnetic
field. Hence the mapping �2� establishes the formal analogy
between the problem at hand and Dicke superradiance, with
the caveat already mentioned that we are dealing with a
single bosonic mode �10,11,13–16�. Instead of real two-level
atoms, pairs of fermionic atoms are now described as effec-
tive two-level systems whose ground state corresponds to the
absence of a pair, �gk�= �0k↑ ,0−k↓� and the excited state to a
pair of atoms of opposite momenta, �ek�= �1k↑ ,1−k↓�.

The initial condition of the superradiance problem is a
sample of inverted two-level atoms. It corresponds in the
present case to the initial atomic state

�F� = �
k

�̂k
+�0� , �6�

where the product is taken up to the Fermi surface for T=0,
while the molecular field is in the vacuum state �0�. We con-
centrate in the following on times short enough that the
atomic sample remains essentially undepleted and it is suffi-
cient to consider only fermionic levels up to the Fermi sur-
face in Eq. �5�.

III. DEGENERATE MODEL

We consider first the simplified situation of a degenerate
model in which the inhomogeneous broadening due to the
spread in atomic kinetic energies is ignored. This is justified
provided that these energies are small compared to the atom-
molecule coupling energy, �=	F / ����
1, where 	F is the

Fermi energy. This approximation is the analog of the homo-
geneous broadening limit of quantum optics and of the
Raman-Nath approximation in atomic diffraction. As we will
find, it is valid only for relatively small �	102–103� particle
numbers, but the model exhibits the essential physics.

The atom-molecule coupling has been estimated �17,18�
for the case of 87Rb to be �
V�7.6�10−7 m3/2 s−1, so that
�=	F /���10−2N7/12. In the last term, we have related the
Fermi energy and volume to the oscillator frequency �ho of a
spherically symmetric harmonic trap via 	F�N1/3��ho and
V�N1/2aosc

3 , where aosc=
� /m�ho is the oscillator length.
Typical experiments use traps with �ho�100 Hz. In the case
of 87Rb, the trap should contain at most 	102–103 atom
pairs to be in this regime, i.e., to have ��1. For larger
samples, it is necessary to account for the inhomogeneous
broadening of the sample, a situation that we consider in Sec.
IV. For any atom numbers, the characteristic time scale is
given p=1/�
N�5.8�10−3N−1/4 s for parameters used in
this paper.

A. Quantum description

Limiting for now our considerations to small atomic
samples, we approximate all �k’s by �F and introduce the
collective pseudospin operators

Ŝz = �
k

�̂k
z ,

Ŝ± = �
k

�̂k
±, �7�

which again obey SU�2� commutation relations, yielding the
standard Tavis-Cummings Hamiltonian �12,16�

H = ��FŜz + ��bb̂†b̂ + ���b̂Ŝ+ + b̂†Ŝ−� . �8�

This Hamiltonian conserves the total spin operator Ŝ2, which,
by using the pseudospin commutation relations, can be ex-
pressed as

Ŝ2 = Ŝ+Ŝ− + Ŝz�Ŝz − 1� �9�

with

Ŝ2�F� = S�S + 1��F� =
N

2
N

2
+ 1��F� , �10�

so that S=N /2. Here,

N = b̂†b̂ + �
k

�ĉk↑
† ĉk↑ + ĉ−k↓

† ĉ−k↓�/2 = n̂b + n̂p �11�

is the total number of molecules and atomic pairs, which is
conserved by the Hamiltonian �1�. From the definition of Sz,
we also have that

Ŝz =
1

2
�2n̂p − N� =

N

2
− n̂b =

1

2
�n̂p − n̂b� , �12�

hence Ŝz measures the difference in the numbers of atom
pairs and molecules.
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Introducing, for convenience, the joint coherence opera-
tors

Ĵx = �b̂Ŝ+ + b̂†Ŝ−�/2,

Ĵy = �b̂Ŝ+ − b̂†Ŝ−�/2i , �13�

yields the Heisenberg equations of motion

ṅ̂b = − 2�Ĵy , �14�

Ĵ
˙

x = �Ĵy �15�

Ĵ
˙

y = − �Ĵx − ��2Ŝzn̂b + Ŝ+Ŝ−� , �16�

where �=�b−�F, so that 2�Ĵx+�n̂b is a constant of motion.
In the following, we confine our discussion to the case of

�=0 for simplicity. We thus neglect the contribution of Ĵx in
Eq. �16�. In order to obtain an analytical solution valid for
short times for �n̂b�, where � � indicates the expectation value,
and assuming the initial state �F�, we keep only terms of
order n̂b on the right in Eq. �16�. Using Eqs. �9� and �12�, we

reexpress Ŝ+Ŝ− as

Ŝ+Ŝ− = − n̂b
2 + �2S − 1�n̂b + �̂ +�̂ −, �17�

where we have introduced, for convenience, the operator

�̂ +�̂ − = Ŝ2 − S�S − 1� . �18�

Substituting then Eq. �17� into Eq. �16� and dropping the
term proportional to n̂b

2, we have for the early stages of mol-
ecule formation

Ĵ
˙

y � − 2�Nn̂b − ��̂ +�̂ −. �19�

Differentiating Eq. �14�, taking its expectation value, and
substituting Eq. �19� into the resulting form yields

n̈̂b � �2�4Nn̂b + 2�̂ +�̂ −� . �20�

For the initial state �F�, this has the solution

�n̂b�t�� � ���̂ +�̂ −�/N�sinh2��
Nt� . �21�

Similarly, the variance of the molecule number distribution is
found to be

�nb
2�t� = �n̂b

2�t�� − �n̂b�t��2 � ���̂ +�̂ −�/8N��cosh�4�
Nt� − 1� .

�22�

Figure 1 compares the average molecule number �n̂b� and
Fig. 2 the normalized variance �nb

2 / �n̂b� from Eqs. �21� and
�22�, respectively, with the full quantum solution obtained by
direct diagonalization of the Hamiltonian �8�. Both ap-
proaches agree within 5% until about 20% of the population
of atom pairs has been converted into molecules. Note that

lim
�
Nt→0

�nb
2/�n̂b� = 1. �23�

This is indicative of the fact that for short times, the mol-
ecule field is thermal in character, see, for example, Ref. �11�

and references therein. This is further confirmed by a com-
parison of the molecular number statistics to a thermal dis-
tribution, as illustrated in Fig. 3.

B. Classical stochastic description

Equation �19� shows that for the initial state �F�, the

source of the molecular field is the operator �̂ +�̂ −. This is the

nonvanishing part of the second-order moment �Ŝ+Ŝ−�, which
is a measure of fluctuations of the atomic field. Since the
molecular field is initially in a vacuum, its growth is, there-
fore, triggered solely by these quantum fluctuations.

It is oftentimes possible to simulate the effects of quantum
fluctuations by averaging over a large number of classical
trajectories triggered by random noise. To implement such an
approach, we first observe that for N�1 the higher-order

moments of the pseudospin operators Ŝ± factorize approxi-

FIG. 1. Short-time dynamics of �n̂b�. From left to right, the
curves give the linearized solution �21� and the full quantum results
for N=500, N=250, and N=100, respectively.

FIG. 2. Short-time dynamics for �nb
2 / �n̂b�. From left to right,

the four curves give the linearized solution �22� and the full quan-
tum results for N=500, N=250, and N=100, respectively.
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mately into a sum of products of second-order moments
�19,20�, e.g.,

�Ŝ+Ŝ+Ŝ−Ŝ−� = 2�Ŝ+Ŝ−��Ŝ+Ŝ−� + O�S−1� . �24�

This factorization allows us to proceed by replacing the

quantum operator Ŝ+ by a stochastic classical variable s+ and
assume that its fluctuations obey random Gaussian statistics,
the probability distribution of s+ being given by

p�s+� =
1


2��Ŝ+
exp�− �s+�2/2��Ŝ+�2� , �25�

where the variance ��Ŝ+�2 is adjusted to its quantum value

��Ŝ+�2 = ��Ŝ+�2� − �Ŝ+�2 = N �26�

for the initial state �F�.
The resulting passage time statistics ��� can be deter-

mined numerically by first obtaining classical trajectories for
�n̂b�t�� using Eq. �21� and assuming that the initial values of
s+ follow the distribution �25�. Taking into account that each
choice of �s+�2 within a differential element ds+ maps �n̂b�t��
in such a way that it reaches a fixed reference value nb

ref after
a uniquely determined passage time  within the differential
element d, it follows that the probability of a particular
value of s+ is equal to the probability of measuring �n̂b�
=nb

ref at that time 

�p�s+��ds+�,nb
ref� = ���d = �p�s+���f�,nb

ref��d , �27�

the differential elements ds+ and d being related by

f�,nb
ref� = �ds+�,nb

ref�/d� . �28�

By fixing �n̂b���=nb
ref, one can invert Eq. �21�, which upon

differentiation with respect to  gives

f�,nb
ref� = �N
nb

ref cosh��
N�
sinh2��
N�

. �29�

We thus obtain an analytical expression for the passage time
distribution ��� as

��� = �
2nb
refN

�
� cosh��
N�

sinh2��
N�
� exp−

nb
ref

2 sinh2��
N�
� .

�30�

The dashed line in Fig. 4, obtained from Eq. �30�, shows
the distribution of passage times required to produce a nor-
malized molecule number nb

ref /N=0.05 from a sample ini-
tially containing N=500 pairs of atomic fermions. It should
be compared to the solid line, which is the result of the full
quantum dynamics. The classical result reproduces qualita-
tively the broad and asymmetric distribution of the quantum
solution. However, it does not reproduce well the leading and
trailing edges of the distribution, which depend on the higher
order moments of the classical field s+ and are poorly treated
by the assumption of Gaussian noise. In addition, the con-
tinuous distribution of the classical model fails to properly
describe the dynamics of the system at very low the mol-
ecule numbers when the discrete nature of the molecule
number is more important.

C. Photodissociation

The passage time distribution for the photoassociation of
fermionic atoms into molecules differs sharply from its coun-
terpart for the reverse process of photodissociation from a
molecular condensate into fermionic atom pairs, which is
plotted as the dot-dashed line in Fig. 4. In contrast to photo-
association, this latter process suffers significantly reduced
fluctuations. One can gain an intuitive understanding of this
difference by treating the short-time molecular population
classically, �n̂b�→nb. Within this approximation, the Heisen-

FIG. 3. Molecule number statistics at �
Nt=1.0: solid line—full
quantum result, triangles—thermal distribution, and �
Nt=2.0:
dashed line—full quantum result, circles—thermal distribution, for
N=500.

FIG. 4. Passage time distribution for converting 5% of the initial
population consisting of only atoms �molecules� into molecules �at-
oms� for N=500. For initially all atoms: solid line—full quantum
description; dashed line—classical stochastic model. For initially all
molecules: dot-dashed line—full quantum result.
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berg equations of motion �14� and �15� can be recast in the
form of a Newton equation �16�

d2nb

dt2 = −
dU�nb�

dnb
, �31�

where the effective potential U�nb� is given by

U�nb� =
1

4
N2�N + 3� − 2Nnb − �2N − 1�nb

2 + 2nb
3 �32�

and is cubic in nb, see Fig. 5.
In case the system is initially composed solely of fermi-

onic atoms, nb�0�=0, the initial state is dynamically unstable,
with fluctuations having a large impact in the buildup of nb.
In contrast, when it consists initially solely of molecules,
nb=N, the initial state is far from the point of unstable equi-
librium, and nb simply “rolls down” the potential in a manner
largely insensitive to quantum fluctuations. This is a conse-
quence of the fact that the bosonic initial state provides a
mean field that is more amenable to a classical description.

IV. NONDEGENERATE MODEL

Although the degenerate model offers the benefit of al-
lowing analytical solutions and an intuitive physical interpre-
tation in the short-time limit, we have seen that it is only
valid for relatively modest values of N. Current experiments,
however, generally trap 	105–106 atoms, in which case it is
important to properly account for the atomic kinetic energies
within the Fermi sea.

From the Hamiltonian �5�, we readily obtain the Heisen-
berg equations of motion

dn̂b

dt
= − 2��

k

ĵk
y , �33�

dĵk
x

dt
= �k ĵk

y , �34�

dĵk
y

dt
= − �k ĵk

x − 2�n̂b�̂k
z −

1

2
��

k�

��̂k
+�̂k�

− + �̂k�
+

�̂k
−�

� − �k ĵk
x − 2�n̂b�̂k

z − ��̂k
+�̂k

−, �35�

where we have defined

ĵk
x =

b̂�̂k
+ + b̂†�̂k

−

2
, �36�

ĵk
y =

b̂�̂k
+ − b̂†�̂k

−

2i
, �37�

and �k=�b−�k
f . In Eq. �35�, we have also made the approxi-

mation

�̂k�
+

�̂k
− � �kk��̂k�

+
�̂k

−, �38�

which is valid for short times when starting from the initial
state �F�. In order to develop a classical model in analogy
with the degenerate case, we define

n̂k
b = 1 −

1

2
�ĉk

†ĉk + ĉ−k
† ĉ−k� . �39�

Since �k�n̂k
b�= �n̂b�, where the sum runs over momenta inside

the Fermi sea, the expectation value of this operator can be
interpreted as that fraction of the initial pair of atoms of
momenta �−k ,k� that has been converted into a molecule.
Note that

�̂k
2 = �̂k

+�̂k
− + �̂k

z��̂k
z − 1� �40�

with �̂k
2�F�= 1

2
� 1

2 +1��F� and

�̂k
z =

1

2
− n̂k

b, �41�

so

�̂k
+�̂k

− = �̂k
2 − �̂k

z��̂k
z − 1� = − �n̂k

b�2 + �̂k
+�̂k

−, �42�

where we have defined

�̂ k
+�̂ k

− = �̂k
2 −

1

2
1

2
− 1� . �43�

Finally, by substituting Eqs. �42� and �41� into Eq. �33�, we
obtain

dĵk
y

dt
� − �k ĵk

x − �n̂b − ��̂ k
+�̂ k

−. �44�

Short-time results were obtained by integrating Eqs. �33�,
�34�, and �44� numerically using a fourth-order Runge-Kutta
procedure. Those numerical simulations should reproduce
the degenerate model in the limit �
1. Note, however, that
the short-time approximation �38� is slightly different from
that made in order to obtain Eq. �19�. In particular, Eq. �38�
ignores a contribution linear in n̂b and as a consequence �n̂b�
increases more slowly in the approximate nondegenerate
simulation so that for small � it agrees only within 	10%

FIG. 5. Effective potential for a system with N�1. The circle
�square� corresponds to an initial state with all fermionic atoms
�molecules�. The part of the potential for nb�0 is unphysical.
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with the degenerate model once 5% of the initial population
of atom pairs has been converted into molecules. This is
illustrated in Fig. 6, which plots the average molecule num-
ber as a function of time.

Although calculations with larger particle number are
computationally tractable in the degenerate model, we have
restricted our calculations to 18 atom pairs in order to allow
an exact numerical treatment of the full quantum nondegen-
erate model. Figure 6 shows from left to right the degenerate
analytical solution �21�, the full quantum result with �=0.1,
the short-time result with �=0.1, short-time result with �
=10, and the full quantum result for �=10, respectively. The
full quantum result with �=0.1 is indistinguishable from the
full quantum treatment in the degenerate model, as expected.
These simulations illustrate, in particular, that the formation

of molecules is suppressed for increased �. This is a conse-
quence of the fact that a significant fraction of the atom pairs
are detuned from resonance and, therefore, converted more
slowly and incompletely into molecules.

V. SUMMARY AND OUTLOOK

We have shown that the early stages of molecular dimer
formation from fermionic atoms are characterized by large
fluctuations that reflect the quantum fluctuations in the initial
atomic state. In contrast, the reverse process of dissociation
of a condensate of molecular dimers is largely deterministic.
The reason for this asymmetry can be traced to the fact that
in contrast to a quantum-degenerate fermionic system, the
initial state of the molecular condensate is well described by
a mean-field theory, that is, it is largely classical and rela-
tively devoid of quantum fluctuations.

As long as the atom-molecule coupling is dominant, �

1, the kinetic energies are unimportant and a degenerate
model can accurately describe the molecule formation. This
is confirmed by our numerical simulations which show that
the results of the degenerate model and the full quantum
results are indistinguishable for ��0.1. Small deviations ap-
pear for ��1, and the creation of molecules is dramatically
suppressed for higher ratios.

Future work will extend these considerations to a more
realistic multimode description of the association process as
well as a more detailed description of the two-body physics,
which should in particular include the dressing of molecules
by the open channel atomic pairs that is important in Fesh-
bach sweeps. We will also extend our model to the case of
fermionic molecules.

This work is supported in part by the U.S. Office of Naval
Research, the NSF, the U.S. Army Research Office, NASA,
and the Joint Services Optics Program.
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FIG. 6. Average molecule number as a function of time for
various values of the coupling strength. From left to right: degen-
erate analytical, full quantum treatment for �=0.1, short-time treat-
ment for �=0.1, short-time treatment for �=10, full quantum treat-
ment for �=10. In this example, we used N=18.
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