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We propose that by exciting ultracold atoms from the zeroth to the first Bloch band in an optical lattice,
multiflavor bosonic Hubbard Hamiltonians can be realized in a different way. In these systems, each flavor
hops in a separate direction and on-site exchange terms allow pairwise conversion between different flavors.
Using band-structure calculations, we determine the parameters entering these Hamiltonians and derive the
mean-field ground-state phase diagram for two effective Hamiltonians �two dimensional, two flavors, and three
dimensional, three flavors�. Further, we estimate the stability of atoms in the first band using second-order
perturbation theory and find lifetimes that can be considerably �10–100 times� longer than the relevant time
scale associated with intersite hopping dynamics, suggesting that quasiequilibrium can be achieved in these
metastable states.
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I. INTRODUCTION

The possibility to trap and manipulate the atoms in a
Bose-Einstein condensate using standing-wave laser beams
�1–6� has led to a renewal of interest in basic solid state
models. In such systems, the atoms experience a periodic
potential from an optical lattice leading to formation of band
structure in the energy spectrum. These bands have been in-
vestigated in experiments �7�.

In the spectroscopy experiments in Ref. �7�, the atoms
experienced a periodic potential in only one direction, being
free to move on a much larger length scale in the other di-
rections. This implied that interactions between atoms could
be ignored. If the atoms are confined to reside on the sites of
a lattice in three dimensions, interactions become important.
As a result, it was shown theoretically �3�, and subsequently
also experimentally �5�, that a system of interacting cold at-
oms, residing in the lowest Bloch band of the periodic po-
tential, maps onto a bosonic Hubbard model. This model is
of great theoretical interest since it exhibits a quantum phase
transition �8–11� between ground states where the atoms are
localized �Mott insulator� and where they are delocalized
�superfluid� as the strength of the hopping relative to the
interatomic interaction is varied. The dynamics of particles
under the influence of changes in the Hamiltonian �such as
lattice tilts or rapid changes in the particle interaction
strength� has also proved interesting �4–6,12,13�.

Another development is an interest in the idea of mixing
bosonic atoms of different flavors in the lattice �14–19�. Sev-
eral ways of achieving multiple flavors have been suggested,
including using atoms of different species and exploiting dif-
ferent internal atomic states.

So far, experiments on strongly interacting atoms in three-
dimensional optical lattices have been restricted to atoms in
the lowest �zeroth� Bloch band. Recently Scarola and Das
Sarma considered the possibility of supersolid phases within
the first excited Bloch band of an optical lattice �20�.

In this paper, the theory of atoms in the two lowest �zeroth
and first� Bloch bands of a three-dimensional optical lattice
is considered. We show here that, due to the lack of available

phase space for the decay products, such excited states can
�in some parameter ranges� have lifetimes much longer than
the characteristic time scales for intersite hopping. Thus it
should be possible to establish quasiequilibrium within the
manifold of these metastable states.

We find that it is possible in this way to realize effective
multispecies bosonic Hubbard Hamiltonians. Depending on
the choice of lattice depths the number of degenerate bands
varies and we find effective models involving n flavors of
bosons, where n can be 1, 2, or 3. These flavors correspond
to the three different possible nodal planes in the excited-
state wave function such as the one illustrated in Fig. 1. We
will show that a characteristic of these Hamiltonians is that
�to a good approximation� each flavor can hop in only one
direction �i.e., X �nodal plane� particles can hop in only the x
direction, etc.�. Neglecting interactions we would then have
n interpenetrating one-dimensional free Bose gases, one for
each column �or row� in the lattice. Allowing intraspecies
interactions converts these one-dimensional gases into Lut-
tinger liquids �or, if the interactions are strong enough, and
the mean particle number per site is an integer, into Mott
insulators�. We show below that, besides intraspecies inter-
actions, the full interaction also includes on-site interspecies
conversion terms that allow atoms to change flavor in pairs.
Thus for example, two X particles constrained to move along
a single x column can collide, turn into Y particles, and move
away along a y column. Such processes lead to interesting
quantum dynamics for this coupled set of interpenetrating
Luttinger liquids.

As will be seen, the anisotropic nature of the hopping in
conjunction with the pairwise conversion leads to Hamilto-
nians with an infinite but subextensive set of Z2-gauge sym-
metries intermediate between local and global. Such infinite
symmetries have been found in certain frustrated spin mod-
els �21–24� and in a “Bose metal” model �25� and are known
to cause dimensional reduction in some cases �21,22,24�. We
will see below how this dimensional reduction appears in a
simple way in this system.

A related global Z2 symmetry and associated Ising order
parameter appear in problems involving boson pairing due to
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attractive interactions mediated by Feshbach resonances. In
that case the symmetry appears due to a conversion term that
connects pairs of bosons with a distinct molecular field. This
can lead to exotic states in which pairs of bosons are con-
densed but single bosons are not and in which half vortices
are permitted �26,27�.

Further, due to strong interatomic repulsion, the ground
state in three dimensions �3D� �three flavors� breaks a kind of
chiral symmetry and displays an additional accidental
ground-state degeneracy at the mean-field level. A similar
situation occurs for special parameter values in frustrated XY
models, where parallel zero-energy domain walls can be in-
serted �28�. The outline of this paper is as follows. In Sec. II
the appropriate generalization of the bosonic Hubbard model
is introduced along with numerical values of the parameters
entering the Hamiltonians obtained from band-structure cal-
culations for various lattice depths. Then, in Sec. III, the
aforementioned effective Hamiltonians for atoms in the first
band are derived for three particular choices of relative lat-
tice depths in the xyz directions. Using simple mean-field
theory we sketch the ground-state phase diagrams in Sec. IV
and in Sec. V we discuss how the superfluid phases are re-
flected in the interference pattern in an experimental situa-
tion. Finally, in Sec. VI, treating the interaction perturba-
tively to second order, we estimate the lifetime of a
population-inverted state �all atoms residing entirely in the
first excited band�.

II. GENERAL LATTICE HAMILTONIAN

The starting point is the Hamiltonian for weakly interact-
ing bosons of mass m in an external potential �29�,

Ĥ =� d3x �̂†�x��−
�2

2m
�2 + VO�x� + VT�x���̂�x�

+
1

2

4�as�
2

m
� d3x �̂†�x��̂†�x��̂�x��̂�x� , �1�

where as is the s-wave scattering length. The external poten-
tial has two contributions VO and VT corresponding to the
lattice potential and the magnetic trapping potential. Denot-
ing the wavelength of the lasers by ��2a , a being the lat-
tice spacing, the former can be written

VO�x� = 	
i=x,y,z

V0i sin2�2�

�
xi�, 
xi�i=x,y,z = �x,y,z� .

The positional dependence of the magnetic trapping potential
VT= 1

2m	i=x,y,z�i
2xi

2 is much weaker than that of the lattice,
i.e., �i� �2� /����2V0i /m� and will be ignored in the re-
mainder of this paper. One should be aware though that this
term has been shown to influence, for instance, the phase
diagram of the single-flavor bosonic Hubbard model
�30–37�.

For the cubic lattices considered here, the Wannier func-
tions corresponding to the noninteracting part of the Hamil-
tonian in Eq. �1� can be written

�n�x − Rm� = 

i=x,y,z

�ni

�i��xi − mia� .

Here the boldface vectors n and m are integer triplets
�nx ,ny ,nz� and �mx ,my ,mz� which represent band indices and
lattice sites, respectively, i.e.,

Rm = mxax̂ + myaŷ + mzaẑ .

These functions are to a good approximation described by
localized harmonic oscillator wave functions sketched in Fig.
1. The completeness of the Wannier functions allows the
field operators to be expanded as

�̂�x� = 	
m

	
n

d̂n�m��n�x − Rm� .

The operators d̂n
†�m� and d̂n�m�, which are the creation and

annihilation operators of bosons at site m and with band
index n, obey the Bose commutation relations

�d̂n�m� , d̂n�
† �m���=�n,n��m,m�. Ignoring all hopping other

than nearest-neighbor hopping and all interactions other than
on-site interactions, the Hamiltonian in Eq. �1� can be written

Ĥ � 	
m

	
n

En�m�d̂n
†�m�d̂n�m�

− 	
i=x,y,z

	
n

tn
�i� 	

�m,m��i

�d̂n
†�m�d̂n�m�� + d̂n

†�m��d̂n�m��

+
1

2 	
n1,n2,n3,n4

	
m

U�n1,n2,n3,n4�

	�d̂n1

† �m�d̂n2

† �m�d̂n3
�m�d̂n4

�m�� . �2�

Here, the on-site interaction energies are defined as

FIG. 1. �Color online� On-site Wannier wave functions in the
harmonic oscillator approximation. The localized wave functions
are to a good approximation described by harmonic oscillator wave
functions localized in each well. Above is drawn the wave functions
��0,0,0��r� �plotted in the plane z=0� formed by the zeroth-band
Bloch functions and the wave function ��1,0,0��r� formed by the
zeroth-band Bloch functions in the y and z directions and the Bloch
functions from the first band in the x direction. These are approxi-
mately harmonic oscillator states, ��0,0,0��r��exp�−
�x2+y2+z2��
and ��1,0,0��r��x exp�−
�x2+y2+z2��, where the parameter 
 is
determined by the curvature of the optical lattice potential near
its minimum. Similarly ��0,1,0��r��y��0,0,0��r� and ��0,0,1��r�
�z��0,0,0��r�.
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U�n1,n2,n3,n4� �
4�as�

2

m
� d3x �n1

* �x��n2

* �x��n3
�x��n4

�x� ,

�3�

while the energies En�m� and the hopping energies tn
�i� are

given by

En�m� � � d3x �n
*�x��−

�2

2m
�2 + VO�x���n�x� , �4�

tn
�i� � � dxi �ni

�i�*�xi��−
�2

2m

�2

�xi
2 + V0i�xi���ni

�i��xi + a� . �5�

Note that the energies tn
�i� for hopping in the xi direction

depend only on the lattice depth V0i in the corresponding
direction and the ith component ni of the band index n. The
notation �m ,m��i in Eq. �2� indicates that the sum should be
carried out over nearest-neighbor sites m and m� in the xi
direction. One could for instance write

	
�m,m��y

� 	
m

	
m�

�mx,mx�
�mz,mz�

�my,my�+1.

It is straightforward to numerically solve the noninteract-
ing Schrödinger equation and find the energies in expressions
�3�–�5� above. In doing so, it is convenient to first switch to
dimensionless units. Thus, we measure length in units of the
inverse wave vector and potential depth in units of the recoil
energy ER, i.e., �i��2� /��xi and v0i�V0i /ER, with ER

���2 /2m��2� /��2.
The hopping energies for the two lowest bands, obtained

from band-structure calculations, are shown in Fig. 2 as

functions of lattice depth. To get the on-site interaction �Eq.
�3�� in a suitable form to use later on in the paper we define
dimensionless overlap integrals

Onn��v� � �2�� d���̃n�v;���2��̃n��v;���2, �6�

where dimensionless Wannier wave functions

�̃n�v,�� �� �

2�
�n�vER;��/2��

have been introduced. The dependence on v in these func-
tions is parametric, i.e., �n�vER ;�� /2�� is the Wannier func-
tion corresponding to the one-dimensional noninteracting
problem with potential depth vER. The variable n denotes the
band index.

Approximating the Wannier functions with harmonic os-
cillator wave functions corresponding to the curvature at the
bottom of each well, one finds approximate values for the
overlap integrals,

Onn�
ho �v� =

3nn�

2n+n�
v1/4. �7�

A comparison between these values for the overlap integrals
and those obtained from band-structure calculations is shown
in Fig. 3.

In writing the Hamiltonian in Eq. �2� we have omitted
interaction terms resulting from nearest-neighbor interac-
tions, both for atoms in the same band and for atoms in

FIG. 2. �Color online� Hopping energies t1
�i� and t0

�i� in units of
the recoil energy as functions of lattice depth V0i in the hopping
direction. The upper line is the hopping energy t1

�i� for atoms in the
first Bloch band hopping between nearest-neighbor wells while the
lower line t0

�i� corresponds to atoms in the zeroth band.
FIG. 3. �Color online� Overlap integrals Onn��v� defined in Eq.

�6�. Solid lines, from top to bottom, O00,O01,O11, obtained from
numerical calculations. The dashed lines correspond to the values in
Eq. �7� obtained by using harmonic oscillator wave functions deter-
mined from the curvature of the potential at the well bottom. For
comparison V11, the largest of the nearest-neighbor overlap inte-
grals, is also shown.
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different bands. Such terms can have a dramatic impact on
the physics as shown in Ref. �20�. In what follows we will,
however, only consider atoms in the zeroth and first bands.
In this case, for lattice strengths V0�30ER which are physi-
cally relevant here, we have found �numerically calculating
the nearest-neighbor overlaps, using the Wannier functions
obtained from band-structure calculations� that the largest of
these terms, the nearest-neighbor interaction of two atoms in
the same excited band, are �for V0�30ER� always at least a
factor 10−2 smaller than the hopping energies t and can thus
safely be neglected. The corresponding dimensionless over-
lap integral

V11�v� � 2�2�� d���̃1�v;���2��̃1�v;� + ���2 �8�

is shown for comparison in Fig. 3. For more highly occupied
bands and lower lattice heights the Wannier functions will be
more delocalized and such terms cannot be neglected leading
to interesting effects including, for instance, conditional hop-
ping terms �20�.

III. EFFECTIVE HAMILTONIANS FOR ATOMS
IN THE FIRST EXCITED BAND

In this section we will focus on the metastable situation
having all atoms in the first Bloch band�s� of the lattice. It is
quite easy to achieve such a situation, i.e., consider an initial
moment of time when the optical lattice has been loaded
with atoms in the lowest Bloch band, n= �0,0 ,0�. The anhar-
monicity of the lattice well potential allows one to treat the
vibrational degree of freedom as a two-level system. If one
singles out, say, the x direction, then, by applying an appro-
priate vibrational � pulse, i.e., “shaking” the lattice in this
direction with a frequency on resonance with the transition
�
=E�1,0,0�−E�0,0,0�, the state can be inverted and the atoms
excited to states with band index n= �1,0 ,0�. It is well
known from NMR physics that for such a � pulse to be able
to efficiently invert the entire population it has to be strong,
i.e., the duration needs to be short compared to both hopping
and interaction time scales, such that the pulse “covers” the
entire inhomogeneously broadened line shape.

The simplest starting state would be the Mott insulator
state with one boson per site in the lowest band. In a typical
experimental setup, the parabolic confining potential will
cause the population of each well to vary and the system will
be in a state with regions of Mott insulators with different
filling factors. It is, however, easy to confirm �by direct simu-
lation� that even in this case, taking interactions into account,
a pulse shape can be tailored that will invert the population
simultaneously for regions with different filling factors pro-
vided a deep enough lattice is used.

Another way of preparing the initial state is to use the
method recently demonstrated by Browaeys et al. �38�. By
loading a condensate into a moving 1D lattice and applying a
subsequent acceleration the condensate can be prepared in
the lowest-energy state �quasimomentum k=� /a� in the first
Bloch band. The situation desired in this paper can then be
obtained by ramping up the lattice in the two remaining �per-

pendicular� directions adiabatically. The natural question re-
garding the lifetime of the resulting metastable state will be
considered in Sec. VI.

The subsequent dynamics of atoms in the first band�s� is
then predominantly governed by some subset of the terms in
Eq. �2�. This relevant subset will be referred to as the effec-
tive Hamiltonian. We will treat three different regimes of
values for the lattice potentials V0i which lead to effective
Hamiltonians with one, two, and three flavors, respectively.
The three scenarios are �1� V0x�V0y ,V0z �1D, single flavor�;
�2� V0x=V0y �V0z �2D, two flavors�; �3� V0x=V0y =V0z �3D,
three flavors�. As indicated, the numbers of particle flavors as
well as the dimensionalities in the effective Hamiltonians
vary.

The reason for the different numbers of flavors becomes
clear if one considers the restrictions on the final states into
which two atoms may scatter due to the interatomic interac-
tion; the presence or absence of such states can be inferred
from the presence or absence of degenerate, or nearly degen-
erate, levels in the energy spectrum of the noninteracting
system. Take, for example, the second scenario above with
V0x=V0y �V0z and all atoms initially in a state with index
n= �1,0 ,0�; then, due to the on-site interatomic interaction
these atoms can scatter elastically into a state with index n
= �0,1 ,0� through a first-order process connecting different
degenerate states. Further, it is easy to show that scattering
resulting in states with other indices, for instance n
= �0,0 ,1�, is possible only through higher-order processes if
energy �and also parity� is to be conserved, and can safely be
ignored if the gas is dilute. Hence, the atoms can, at a formal
level, be divided into two flavors: an X flavor corresponding
to atoms in n= �1,0 ,0� and a Y flavor in n= �0,1 ,0�. By the
same argument one can see how the one- and three-flavor
situations arise.

Apart from having different number of flavors the dimen-
sionalities of the effective Hamiltonians differ. To understand
this consider again the second case above, V0x=V0y �V0z,
with particles in the excited bands n= �1,0 ,0� and n
= �0,1 ,0� corresponding to X and Y flavors. For the X flavor,
hopping in the x direction has a matrix element t1

�x��V0x�
while hopping in the y and z directions have matrix elements
t0
�y��V0x� and t0

�z��V0z�, respectively. Looking at Fig. 2 it is then
clear that, to a good approximation, the X particles can hop
only in the x direction while hopping in the y and z directions
is strongly �exponentially� suppressed. Similarly, the Y par-
ticles can hop only in the y direction and all hopping occurs
only in the x-y plane; hence the 2D character. A similar ar-
gument holds for the three-flavor case where in addition to
the X and Y particles, there are Z particles hopping in the z
direction.

The effective Hamiltonians also contain terms arising
from the on-site interaction. Apart from the terms that repel
atoms from each other, the symmetry of the on-site interac-
tion allows, say, two X particles moving in the x direction to
collide and convert into two Y particles which thereafter
move off in the y direction. The time-reversed process can,
of course, also occur. Thus, the number of particles of each
flavor is not conserved and there is a pairwise exchange of
particles of different flavors.
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The anisotropy of hopping and the flavor conversion pro-
cess is schematically depicted for the 2D �two-flavor� case in
Fig. 4. Particles of X flavor are shown in gray while the Y
flavor is drawn in black.

Below, we give the effective Hamiltonians for all three
different cases listed above.

A. 1D Hamiltonian, single flavor „V0x™V0y=V0z…

The first case to be considered is when V0x�V0y =V0z and
only states with band index n= �1,0 ,0� �and possibly some
residual atoms in n= �0,0 ,0�� are occupied. In anticipation
of the other effective Hamiltonians it is convenient to intro-
duce for the X flavor the creation and destruction operators

X̂† and X̂, i.e.,

X̂m � d̂�1,0,0��m�, X̂m
† � d̂�1,0,0�

† �m� ,

n̂m
�x� � X̂m

† X̂m, n̂m
�0� � d̂�0,0,0�

† �m�d̂�0,0,0��m� . �9�

The effective Hamiltonian is then essentially that of a quasi-
one-dimensional bosonic Hubbard model,

H1D = 	
m

n̂m
�x��Ex�m� + U0xn̂m

�0� +
Uxx

2
�n̂m

�x� − 1��
− t 	

�m,m��x

�X̂m
† X̂m� + H.c.� .

The energies t� t1
�x�, U0x, and Uxx arise from the interwell

tunneling and the interatomic interaction, respectively. The
presence of atoms residing in the lowest band leads to an
additional effective on-site energy and can be absorbed in the

on-site energies Ex�m� �s=x ,y ,z�. Although this single-
flavor model is equivalent to a single-flavor model in the
zeroth Bloch band, the additional random on-site potential
resulting from residual atoms could be exploited in the study
of the disordered Bose-Hubbard system.

The parameters entering the Hamiltonian �10� are conve-
niently expressed as

Uxx = 2�2�ER�as

a
�O00�v0y�O00�v0z�O11�v0x� , �10�

U0x = 2UxxO01�v0x�/O11�v0x� . �11�

B. 2D Hamiltonian, two flavors „V0x=V0y™V0z…

To simplify the notation for the case V0x=V0y �V0z, we
introduce new letters for the creation and annihilation opera-

tors Ŷm� d̂�0,1,0��m�, n̂m
�y�� Ŷm

† Ŷm. Then the Hamiltonian
governing atoms in the excited bands becomes

H2D = 	
s=x,y

	
m

Es�m�n̂m
�s� + 	

s=x,y

Uss

2 	
m

n̂m
�s��n̂m

�s� − 1�

− t 	
�m,m��y

�Ŷm
† Ŷm� + H.c.�

− t 	
�m,m��x

�X̂m
† X̂m� + H.c. . � + Uxy	

m
n̂m

�x�n̂m
�y�

+
Uxy

2 	
m

�X̂m
† X̂m

† ŶmŶm + H.c.� �12�

Again, the energy Uxy arises from the interatomic interaction
and depends on the lattice depth. Note that this two-flavor
bosonic Hubbard Hamiltonian differs in an important aspect
from previously studied two-flavor systems: the presence of
the last term that mixes the two flavors. Hence, the inter-
atomic interaction leads to a “Josephson term” that allows
for the conversion of two X atoms into two Y atoms, and vice
versa. The coefficients Uyy =Uxx are given by the same ex-
pression as in the 1D case while

Uxy = 2�2�ER�as

a
�O00�v0z�O01�v0x�2. �13�

Figure 4 illustrates the dynamics in the 2D �two-flavor� situ-
ation.

C. 3D Hamiltonian, three flavors „V0x=V0y=V0z…

The generalization of the above Hamiltonian to the case
when V0x=V0y =V0z is straightforward. Introducing a third

flavor Ẑm� d̂�0,0,1��m�, n̂m
�z�� Ẑm

† Ẑm, one may write an effec-
tive Hamiltonian as

FIG. 4. �a� The Hamiltonian in Eq. �12� describes a 2D system
where atoms, which can formally be thought of as having two dif-
ferent flavors �same type of atoms but in different localized on-site
orbitals�, hop around subject to on-site repulsive interactions. One
flavor, the X flavor, can hop only in the x direction whereas the
other, Y flavor, can hop only in the y direction. �b� Conversion
process. The conversion term in Eq. �12� takes two X atoms on the
same lattice site and turns them into two Y atoms, or vice versa.
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H3D = 	
s=x,y,z

	
m
�Es�m�n̂m

�s� +
Uss

2
n̂m

�s��n̂m
�s� − 1��

+ 	
s�s�

	
m

Uss��n̂m
�s�n̂m

�s�� +
1

2
�ŝm

† ŝm
† ŝ�mŝ�m + H.c.��

− t 	
s=X,Y,Z

	
�m,m��s

�ŝm
† ŝm� + H.c.� . �14�

Here Uss�=�ss�Uxx+ �1−�ss��Uxy with Uxx and Uxy given by
Eqs. �10� and �13� with v0x=v0y =v0z.

D. Z2 gauge symmetry

Because of overall number conservation the Hamiltonian
has the usual global U�1� symmetry. However, because the
flavor conversion occurs pairwise and locally �i.e., on site�,
the Hamiltonians described above also exhibit an infinite
number of Z2-gauge symmetries corresponding to conserva-
tion modulo 2 of the number of X particles in any given
column of the lattice running in the x direction �and similarly
for Y and Z particles�. These symmetries correspond to in-
variance under each of the transformations

UX
�my,mz� = exp�i�	

mx

X̂�mx,my,mz�
† X̂�mx,my,mz�� ,

UY
�mx,mz� = exp�i�	

my

Ŷ�mx,my,mz�
† Ŷ�mx,my,mz�� ,

UZ
�mx,my� = exp�i�	

mz

Ẑ�mx,my,mz�
† Ẑ�mx,my,mz�� ,

where the integer pair �mi ,mj� in the superscript of each U
determines the location of a column. The first transformation

for example takes X̂�mx,my,mz�
→−X̂�mx,my,mz�

for all mx in the

column specified by my and mz. Since X̂† and X̂ operators
always appear pairwise, the Hamiltonian is invariant under
this class of Z2 transformations. These Z2 symmetries are in
a sense intermediate between local and global. While the
number of such symmetries is infinite �in the thermodynamic
limit� it is of course subextensive and thus not large enough
to fully constrain the system �or to make it integrable for
example�. As mentioned in the Introduction, such symme-
tries have been found in certain frustrated spin models
�21–24� and in a Bose metal model �25� and are known to
cause dimensional reduction in some cases �21,22,24�. Be-
cause introducing a defect across which the sign of the Z2
order parameter changes along any given single column
costs only finite energy, the system will, like the 1D Ising
model, disorder at any finite temperature, thereby restoring
the Z2 symmetry. We will see below how this reduced-
dimensionality physics appears in a simple way in this sys-
tem.

IV. MEAN-FIELD-THEORY PHASE DIAGRAMS
FOR THE EFFECTIVE HAMILTONIANS

Having derived effective Hamiltonians in one, two, and
three dimensions, we turn now to the investigation of their

ground states. The 1D, single-flavor Hamiltonian has been
extensively studied �see for instance Ref. �39� and references
therein� and needs no further discussion here. The other two
Hamiltonians in Eqs. �12� and �14� deserve some attention
though.

A. Phase diagram in 2D, two flavors

The 2D Hamiltonian �12� is a two-flavor bosonic Hubbard
Hamiltonian, a system that has recently received much atten-
tion and has been shown to have a rich phase diagram
�14–18,40�. In this section we will investigate the ground
state of the Hamiltonian in Eq. �12� using simple mean-field
theory. The Hamiltonian �12� differs from those previously
studied in two aspects: the presence of pairwise interflavor
mixing and the anisotropic tunneling.

We follow here the method suggested in Ref. �41� �see
also Refs. �9,10��. We consider the possibility that the global
U�1� and columnar Z2 symmetries discussed in Sec. III D are
spontaneously broken by introducing complex scalar colum-
nar order parameter fields �x�my� and �y�mx�, i.e., one for
each x column and one for each y column. These fields
should then satisfy the self-consistency conditions

�x�my� = �X̂�mx,my�� �15�

for all mx in the x column specified by my, and,

�y�mx� = �Ŷ�mx,my�� �16�

for each my in the y column specified by mx. For simplicity
we omit in this discussion of the 2D �two-flavor� case the z
component mz of the position vector m. The possibility that
fluctuations restore the symmetry will be discussed further
below.

Mean-field theory results from decoupling sites in the
same column by neglecting fluctuations in the kinetic energy.
For instance, for the x column specified by a particular value
of my one has

X̂�mx,my�
† X̂�mx+1,my� = �X̂�mx,my�

† − �x
*�my� + �x

*�my��

	�X̂�mx+1,my� − �x�my� + �x�my��

� �x�my�X̂�mx,my�
† + �x

*�my�X̂�mx+1,my�

− ��x�my��2.

Thus the sites along each column decouple. Doing the same
for the Y’s and writing the Hamiltonian in dimensionless
form where all energies are scaled by Uxx, i.e., h2D

�H2D /Uxx, t̃� t /Uxx, and Ũxy �Uxy /Uxx, we obtain h2D
�	mh2D

MF(m ;�x�my� ,�y�mx�). Here, the on-site mean-field
Hamiltonians are given by

h2D
MF

„m;�x�my�,�y�mx�…

= − 2t̃ ��x�my�X̂m
† + �x

*�my�X̂m� − 2t̃ ��y�mx�Ŷm
†

+ �y
*�mx�Ŷm� + Ũxyn̂m

�x�n̂m
�y�
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+ 	
s=x,y

�1

2
n̂m

�s��n̂m
�s� − 1� − �̃n̂m

�s� + 2t̃ ��s�m��2�
+

Ũxy

2
�X̂m

† X̂m
† ŶmŶm + Ŷm

† Ŷm
† X̂mX̂m� , �17�

where �̃�� /Uxx serves as a common chemical potential.
The on-site Hamiltonians satisfy the eigenvalue relations

h2D
MF�m;�x,�y���n��x,�y�� = �n��x,�y���n��x,�y��

for two arbitrary complex fields. An eigenstate of the full
mean-field Hamiltonian can be written as a product state of
such eigenstates,

��� = 

m

��nm
„�x�my�,�y�mx�…�

where the fields satisfy the self-consistency conditions in
Eqs. �15� and �16�. The mean-field ground state is obtained
by globally minimizing the energy

E = 	
m

�nm
„�x�my�,�y�mx�…

with respect to the fields and the set of eigenstates 
nm�. This
is most easily done by numerical diagonalization in a trun-
cated Hilbert space where each site can hold at most a total
of Nmax atoms. Since

min
�nm,�x�my�,�y�mx���	m �nm

„�x�my�,�y�mx�…�
� 	

m
min

�n,�x,�y�
�n��x,�y� ,

it is enough to minimize the ground-state energy of a single
site with respect to the fields and then find the largest mani-
fold of states compatible with having columnar order param-
eters fields. Carrying out this scheme reveals two different
scenarios for the minimum of each on-site energy �n��x ,�y�;
either �x=�y =0 and nx+ny is integer �incompressible�, or
��x�= ��y��0 �compressible�. The former case corresponds to
a Mott insulating state while the latter suggests a superfluid
phase.

Due to the positivity of Uxy the last term in the mean-field
Hamiltonian is minimal whenever �x and �y, on the same
site, have a phase difference of ±� /2.

For the �mean-field� ground-state manifold we must have
in this phase ��x�my��= ��y�mx�� for all x- and y-column order
parameters. Requiring the phases of all �x in each x and all
�y in each y column to be the same while fixing the relative
phase between �x and �y to ±� /2 results in configurations as
the one shown in Fig. 5. Here the phases of �x and �y are
shown represented as arrows �planar spins�. The direction of
the arrows defines the angle. Clearly, this phase shows a
breaking of the global U�1� symmetry. The meaning of the
quasilocal nature of the Z2 symmetries discussed above be-
comes clear. Although the phases of �x in each x column are
the same there is no energy cost associated with flipping all
the x spins in a single x column or all the y spins in a y
column. The ordering between different columns is thus
nematic.

One should note here that since the only energy cost as-
sociated with flipping a single spin, say an x spin in an x
column, is given by the states of the neighboring x spins in
the column, the situation is essentially that of a 1D Ising
model along each column. Hence, at any finite temperature,
domains of flipped spins will proliferate and the Z2 symme-
tries will be restored. This essentially one-dimensional be-
havior is an example of the dimensional reduction mentioned
above.

The model under consideration is highly anisotropic.
Mainly since X particles can hop only in the x direction, it
seems to be impossible to develop phase coherence among X
particles in different x columns �and similarly for the other
flavors�. Suppose, however, that, as discussed above, the fla-
vor exchange interaction term causes the relative phase of

two flavors, say X and Y, to lock together so that Ŷ†X̂ con-
denses,

� � �Ŷ†X̂� � 0.

In this case the mean-field decomposition of the exchange
interaction yields terms of the form

V � �Ŷ†X̂ + �*X̂†Ŷ

which permit individual particles to change flavor, and hence
phase coherence can freely propagate in all directions
throughout the lattice via a kind of “Andreev” process �i.e.,
the self-energy is off diagonal in flavor index� in which an X
particle can turn into a Y particle when it needs to travel in
the y direction.

To understand this isotropic superfluid phase, it is conve-
nient to consider a phase-only representation with compact

phase variables on each site X̂m→e−i�m
x

and Ŷm→e−i�m
y

. The
flavor exchange �Josephson� term then becomes �for the 2D
�two-flavor� case�

FIG. 5. Columnar phase ordering in 2D superfluid phase. The
directions of the arrows correspond to the phase angles �x�my� and
�y�mx� of the order parameter fields �x�my�= ��x�my��ei�x�my� and
�y�mx�= ��y�mx��ei�y�mx�. Solid arrows correspond to �x and dashed
to �y.
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V = Ũxy	
m

cos�2��m
x − �m

y �� .

Defining �m
± ��m

x ±�m
y we have

V = Ũxy	
m

cos�2�m
− � .

Assuming that the relative phase of the condensates is locked
together by this Josephson term is equivalent to assuming
that �for Uxy �0� the fluctuations of �− away from the
ground-state value � /2 �or its equivalent −� /2 under the
Z2-gauge symmetry� are massive and can be ignored. Thus
we obtain �m

�x,y�=�m
+ /2±� /4. The continuum limit of the an-

isotropic kinetic energy T= ��x�
x�2+ ��y�

y�2 then becomes T
����x�

+�2+ ��y�
+�2� and we immediately see that the aniso-

tropy has effectively disappeared at long wavelengths and we
have a superfluid.

A vortex configuration in �+ can be viewed as a bound
state of two half vortices in the �x and �y fields. The colum-
nar Z2 symmetry allows the �x field to have a phase jump of
� across a cut parallel to the x axis and similarly for �y. Thus
half vortices are permitted. If the two order parameter phases
are locked together ��− fluctuations are massive� then the
two half vortices are confined to each other as shown in Fig.
6. Such a vortex has an energy which scales �as usual� only
logarithmically with system size, despite the semi-infinite
branch cut �� phase jump� of �x running horizontally out to
the right from the vortex center and of the similar branch cut
in �y running vertically out above the vortex center. To see

that such a vortex is topologically well defined despite the Z2
symmetry one can consider a loop around the vortex core as
shown in Fig. 6. In going around the loop we add up the
phase twist �� and map onto the complex plane. To calcu-
late �� along the loop the changes in �y have to be added
when going vertically and the changes in �x when going
horizontally. The net result is that going once around the
vortex core the phase winds by �. If one applies a � flip in
all the �x ��y� phases in any row �column� the mapping onto
the complex plane remains invariant.

The Mott insulating states, having integer number of at-
oms in each well, are best characterized by the t̃=0 eigen-
states. These are product states

��0�t̃ = 0�� = 

m

��Ni�m�� ,

where h2D
MF�0,0���Ni�=�Ni��Ni� and the integer N is the total

number of particles N=nx+ny in each well. The index i runs
from 0 to N for each N and for the three lowest values of N
the eigenstates are

��00� = �0�, �00 = 0,

��10� = �1x,0y�, �10 = − �̃ ,

��11� = �0x,1y�, �11 = − �̃ ,

��20� = �1x,1y�, �20 = − 2�̃ + Ũxy ,

��21� =
1
�2

��2x,0y� + �0x,2y��, �21 = 1 − Ũxy − 2�̃ ,

��22� =
1
�2

��2x,0y� − �0x,2y��, �22 = 1 + Ũxy − 2�̃ .

In Fig. 7 the mean-field phase diagram has been drawn for

the physically relevant value Ũxy =1/3 which is characteristic
for the proposed setup. The lobes marked MI correspond to
incompressible Mott insulating phases with integer filling
factors. The remaining part of the diagram, marked SF, cor-
responds to a superfluid phase with the columnar nematic
ordering �see Fig. 5� discussed above. Considering the t=0

eigenstates above two things become clear. Trivially, if Ũxy
→0 the lowest lobe, and all other odd filling lobes, vanish
and the model reduces to two noninteracting single-flavor

models as expected. Second, at Ũxy =0.5 there is a level
crossing between ��20� and ��21�. It follows that the size of
the lowest odd filling lobes increases with increasing values

of Ũxy up until Ũxy =0.5 after which it starts to decrease
again.

By considering fluctuation effects higher order in the tun-
neling amplitude, we can demonstrate that the permutational
symmetry between the X and Y flavors can be broken in the
Mott insulator phase. In the absence of tunneling, the single-
particle states ��10� and ��11� are degenerate. Taking tunnel-
ing into account breaks this degeneracy and to second order
in t̃ �using for instance the Schrieffer-Wolff transformation

FIG. 6. �Color online� Phase configuration for �x ��black� solid
arrows� and �y ��red� dashed arrows� containing a half vortex. No-
tice the branch cuts indicated by the long solid �black� and dashed
�red� lines. The Z2 symmetry means that these branch cuts have
zero “string tension” and contribute only a finite core energy to the
vortex. The half winding number can be seen by going around a
loop A-B-C-D-A and calculating the total phase twist ��. This twist
is calculated by summing the changes in �y when going vertically
and �x when going horizontally.
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�42�� an effective �pseudo�spin-1 /2 Hamiltonian for the in-
teraction between neighboring sites can be found:

Hef f = − Jef f 	
�m,m��

�̂m
�z��̂m�

�z� . �18�

The up and down states of the pseudospin operators �̂m
�z�

correspond to the site m being occupied by one X atom or
one Y atom, respectively. The effective magnetic interaction
is

Jef f =
t̃2�Ũxy

2 + 2Ũxy − 1�

Ũxy�1 − Ũxy
2 �

.

There is a critical value of the interflavor interaction Ũxy
c

=�2−1�0.414 for which Jef f vanishes. For Ũxy � Ũxy
c , the

system is ferromagnetic and spontaneously favors one flavor

over the other. For Ũxy � Ũxy
c the system is antiferromagnetic

and favors an ordering with X and Y atoms on alternating
sites. Thus, we conclude that at integer filling factor the per-
mutational symmetry between X and Y flavors �or equiva-
lently, the cubic symmetry of the underlying lattice� is al-
ways broken in the mean-field ground state. Further, in the
antiferromagnetic state, sublattice �i.e., translation� symme-
try is broken as well.

B. Phase diagram in 3D, three flavors

Using the same type of mean-field theory as for the 2D
�two-flavor� case, the 3D �three-flavor� case can be treated as

well. The resulting phase diagram for Ũxy =1/3 is shown in

Fig. 8. Again, Mott lobes with integer filling factors are seen
surrounded by a superfluid phase where all order parameters
�x,y,z have equal magnitude, i.e., ��x�= ��y�= ��z��0. Due to
the positivity of the coefficient Uxy in the Josephson term in
Eq. �14� the relative phases of the three condensates are frus-
trated �see Fig. 9�. Thus writing �s= ��s�ei�s, s=x, y, z, one
finds �x−�y =�y −�z=�z−�x= ±2� /3±�.

An interesting effect here is that the on-site frustrated
phase configurations come in two different “chiralities” that
cannot be converted into each other by shifting any one of
the phases by the � shift allowed by the Z2-gauge symmetry.
To see this one may consider the current flowing between the

FIG. 7. Mean-field ground-state phase diagram for the 2D �two-
flavor� Hamiltonian in Eq. �17� in the plane of �̃, the scaled chemi-
cal potential � /Uxx, and t̃= t /Uxx, the scaled hopping energy, here

calculated for the experimentally relevant ratio Ũxy �Uxy /Uxx

=1/3 using a truncated Hilbert space with at most ten particles per
site. Lobes of Mott insulating states, of successively increasing in-
teger filling factor with increasing chemical potential �̃, are sur-
rounded by a superfluid phase. The superfluid phase is characterized
by columnar order parameter fields �x�my� and �y�mx�, one for each
x and y column, respectively. All �x and �y have equal, nonzero,
magnitudes while their relative phases are either 0 or � �see Fig. 5�.

FIG. 8. Mean-field ground-state phase diagram for the 3D
�three-flavor� Hamiltonian.

FIG. 9. �Color online� Phase ordering in 3D superfluid phase.
The directions of the arrows correspond to the phase
angles �x�my ,mz�, �y�mx ,mz�, and �z�mx ,my� of the order
parameter fields �x�my ,mz�= ��x�my ,mz��ei�x�my,mz�, �y�mx ,mz�
= ��y�mx ,mz��ei�y�mx,mz�, and �z�mx ,my�= ��y�mx ,my��ei�y�mx,my�. As
in the 2D �two-flavor� case the underlying symmetry of the Hamil-
tonian allows for flipping, say, all the �x along any x column by �
to obtain another ground-state configuration. In addition to the
ground-state degeneracy obtained from such operations, an acciden-
tal degeneracy associated with parallel planes of different chirality
is present. In this figure the middle x-z plane has a different chirality
from the other two x-z planes.
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condensates of different flavors on a given site. The current
flowing between the X and Y condensates on a particular site
is determined by sin�2��x−�y��. In a right-handed configu-
ration with, say, �x=0, �y =2� /3, �z=4� /3 there is an on-
site current flowing from

X → Y → Z → X .

The situation is different in a left-handed configuration with
�x=0, �y =4� /3, �z=2� /3, where the current is now flow-
ing in the opposite direction, i.e.,

X ← Y ← Z ← X .

Adding an arbitrary phase of � �i.e., invoking the Z2 sym-
metry� to any of the phases does not affect these currents.

Starting from a ground state with the same chirality
throughout the system one can choose a set of parallel planes
and change the chirality of each plane individually. Such
changing of chirality of a plane requires that the whole plane
has the same chirality. This additional ground-state degen-
eracy is not associated with any symmetry of the Hamil-
tonian but is an accidental one. A similar situation occurs for
special parameter values in frustrated XY models, where par-
allel zero-energy domain walls can be inserted �28�. One
should note that such accidental degeneracies at the mean-
field level may be lifted by fluctuation effects associated with
collective modes such as spin waves.

As in the 2D �two-flavor� case, the smaller Mott lobes,
corresponding to integer filling factors not divisible by the
dimensionality of the system, are degenerate in the t̃=0 limit.
This degeneracy is lifted due to tunneling, leading to
�pseudo�magnetic ordering like that demonstrated for the 2D
�two-flavor� case. To fully lift the degeneracy one has to
employ fourth-order perturbation theory. The resulting
Hamiltonian will include terms acting simultaneously on
three and four sites. However, such fourth-order corrections
are very small and may be difficult to observe in the pro-
posed experimental situation. They can, however, lead to
novel physics and can be intentionally generated �43,44�.

Before leaving this section, we comment on the possibil-
ity of breaking the permutational symmetry among the fla-
vors in the superfluid phase. As is well known, large inter-
species interaction strength in the two flavor bosonic
Hubbard model leads to phase separation. A phenomena oc-

curring also here if Ũxy �0.5. However, due to the positive
constant in front of the “Josephson” �flavor changing� term,
another phenomenon can take place in the 3D �three flavors�
model.

As an example consider Fig. 10. Here �̃=0.27 and Ũxy

=0.8. As can be seen for small t̃ the system is in a Mott
insulating state with filling factor 2. As t increases the system
becomes superfluid. This occurs in two steps. First, mean-
field theory predicts a second-order transition to a state with
only one flavor superfluid and then a first-order transition to
a state with two nonzero superfluid order parameters of equal
magnitude. Increasing the hopping strength further does not
seem to make the third flavor superfluid. We attribute this to
the large energy cost associated with having the phases of the
three order parameters in a frustrated configuration.

V. INTERFERENCE PATTERNS AND DENSITY
CORRELATIONS

The traditional way of detecting superfluidity is by releas-
ing the trap and looking at the density distribution of the
expanding cloud. Provided that the cloud expands many
times its initial diameter, the final position of a particle is
determined by its momentum rather than its initial position.
Hence this expanded real-space density distribution provides
a direct picture of the momentum-space distribution of the
trapped system. More precisely, the density distribution a
time t after trap release is related to the momentum density
of the trapped state ��� as

�n�r,t�� = �m

ht
�3

���nQ�r����

where Q�r�=mr / ��t�. It is useful to think of this spatial
distribution as resulting from interference of matter waves
radiated by the different lattice sites when the trap is re-
leased. The one-dimensional character of the Z2-gauge sym-
metry means that thermal fluctuations can destroy the long-
range phase order by allowing the phase on an arbitrary site
to flip by ±�. If the system disorders in this way, any inter-
ference pattern in the radiated matter waves will be de-
stroyed as well. In this case, further information about the
correlations in the system can be obtained by looking at the
density fluctuations �noise� in the released cloud �45–47� in a
Hanbury-Brown-Twiss- �HBT-�like statistical measurement.

We begin this section by looking at the zero-temperature
momentum distribution and then consider the density fluc-
tuations of the expanded cloud around its mean.

FIG. 10. �Color online� Example of broken permutational sym-

metry. If one increases the interspecies interaction Ũxy beyond 1/3,
superfluid phases with broken permutational symmetry can be
achieved. Shown here are the order parameters sorted according to
magnitude, �1=max��x ,�y ,�z�, �3=min��x ,�y ,�z� for an inter-

species interaction Ũxy =0.8 as a function of t̃. The total number of
particles is shown as a dashed line.
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A. Interference patterns

Although any real experiment is conducted at finite tem-
perature, the zero-temperature columnar phase ordering may
prevail for a finite system at low enough temperatures. The
zero-temperature momentum distribution is thus of interest
and we will estimate it by using a single macroscopically
occupied wave function corresponding to the superfluid
states in the two- and three-flavor cases. The details of the
calculations can be found in the Appendix and we here only
state the main results.

We begin by considering a single 2D plane with N	N
sites at zero temperature in the two-flavor system and model
the superfluid state with a macroscopically occupied wave
function

��� =
�aSF

† �M

�M!
�0� .

Here �0� is the vacuum state of the lattice, i.e., no atoms
present, while aSF

† is the creation operator

aSF
† �

1
�2N

	
m=1

N

	
n=1

N

�
mnXmn
† + �mnYmn

† � .

The subscripts m and n denote the coordinates, rows and
columns, in the lattice while 
 and � are phase factors ��
�
= ���=1� determining the phase of the wave function on a
given site. At zero temperature the phases of X particles are
ordered along rows while the phases of Y particles are or-
dered along columns, i.e., 
mn=
m and �mn=�n �cf. Figs. 5
and 17�. For a macroscopic occupation M the observed den-
sity distribution in a single shot in the x-y plane after expan-
sion is proportional to the momentum distribution
����Q

† �Q���. As shown in the Appendix we have for a single
2D plane in the two-flavor system

����Q
† �Q��� = ��̃x�Q��2 + ��̃y�Q��2

where

��̃x�2 = �M��̃0
x�Q��2f1�Qy,
m� 	

odd n

��aQx − n�� ,

��̃y�2 = �M��̃0
y�Q��2f1�Qx,�n� 	

odd m

��aQy − m�� .

The functions �̃0
x and �̃0

y are the Fourier transforms of the
on-site Wannier functions and f1�Qy ,
m� and f1�Qx ,�m� are
2� /a-periodic random functions with typical magnitude of
order unity which depend on which of the degenerate ground
states is observed �see Fig. 18 and the Appendix for details�.
From the above equations the interference pattern from a
single 2D plane in the two-flavor system can be seen to be a
gridlike structure as shown in Fig. 11 where the interference
pattern has been calculated numerically for a 40	40 lattice.
The appearance of lines, rather than points as in a single-
flavor 2D system, stems from the one-dimensional character
of the superfluid state with phases being aligned only along
rows �columns� but randomly distributed between rows �col-
umns�. The randomness in the distribution between the rows

�columns� shows up as the random interference pattern along
grid lines.

In an experiment one typically does not probe a single
plane, but it is the integrated density of a large number of
planes that is imaged. For imaging in the plane parallel to the
2D planes the integrated column density �intensity in the
absorption image� is for an N	N	N lattice with M atoms
in each 2D plane

I�Qx,Qy� = N� dQz

2�
����Q

† �Q��� .

Here the bar over the quantum-mechanical averaging denotes
the averaging over the different ground-state configurations
allowed by the Z2 symmetry. Since f1�Q ,
m�=1 �see Appen-
dix� the random interferences seen in Fig. 11 will be aver-
aged out and a grid of smooth lines, void of interference, will
be seen. Another source of smoothing out the random inter-
ferences comes from limited detector precision. For a large
system, the random oscillations becomes increasingly rapid
and only an average over nearby momenta can be probed.

In the 3D �i.e., three-flavor� case, the situation is very
similar. Special care has to be taken with accidental symme-
try breaking of the ground state giving rise to planes of dif-
ferent chirality. If we assume that planes with uniform chiral-
ity have normals in the x direction the momentum
distribution can be written

����Q
† �Q��� = ��̃x�Q��2 + ��̃y�Q��2 + ��̃z�Q��2

+ 2 Re��̃x�Q�*�̃y�Q��

+ 2 Re��̃y�Q�*�̃z�Q�� + 2 Re��̃z�Q�*�̃x�Q��
�19�

where

FIG. 11. �Color online� Calculated momentum distribution for a
40	40 lattice. The momentum distribution was calculated by nu-
merically summing the contributions to the distribution function.
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��̃x�2 = 2���̃0
x�2

M

3
f2�Qy,Qz,�no

x � 	
odd n

��aQx − n�� ,

��̃y�2 = 2���̃0
y�2

M

3
g2

y�Qz,Qx,�m
y ,�m� 	

odd n

��aQy − n�� ,

��̃z�2 = 2���̃0
z �2

M

3
g2

z�Qx,Qy,�m
z ,�m� 	

odd n

��aQz − n�� .

Again, since long-range order is aligned only along 1D
strips, the released cloud will be a set of intersecting perpen-
dicular planes with intersections at positions corresponding
to odd momenta Qx,y,z= �2n+1�� /a. The planes in each di-
rection will have a random intensity modulation specified by
the random functions f2, g2

y, and g2
z �see the Appendix for

details�. Examples of these distribution functions f2 and g2
are shown in Fig. 12. The last three terms in Eq. �19� ran-
domly modulate the distribution along the intersections of
the planes.

If a single-shot measurement is made, the integrated col-
umn density will show a pattern of grid lines similar to that
in Fig. 11, the grid lines showing random interference pat-
terns. Between the lines a periodic random distribution �of
lesser intensity than the lines� will be present. This latter
distribution will be either f2 or g2 depending on the orienta-
tion of the planes with uniform chirality. Thus if the absorb-
tion image is taken in the same plane as the planes with
uniform chirality this background modulation will be sym-
metric under space inversion �cf. Fig. 12�a�� whereas if it is
taken perpendicular there will be no such symmetry in the
random modulation �cf. Fig. 12�b��.

B. Density-density correlations

As pointed out above, the dimensional reduction present
in the system means that finite temperatures can destroy the
1D Ising-like ordering of phases along columns and that the
individual phases at any one site can be flipped ±�, i.e., the
Z2-gauge symmetry is restored. In this case there will be no
visible interference pattern although atoms are delocalized,

i.e., the � peaks will be smeared and a random density dis-
tribution will be seen for each shot.

To illustrate the usefulness of correlation measurements
we consider a single N	N 2D plane in the two-flavor sys-
tem at unit filling �M =N2�. If the temperature is finite, not
only may the Z2 symmetry in the superfluid state be restored
but it is also possible for the unit filling Mott state to be
disordered. There are then four different possible states the
system can be in:

�1� superfluid with restored Z2 symmetry;
�2� ferromagnetic Mott insulator �all atoms of the same

flavor�;
�3� antiferromagnetic Mott insulator �alternating flavors

on alternating sites�; and
�4� disorder Mott insulator �each site having one atom but

with random flavor�.
If one makes multiple single-shot measurements and av-

erages the density distribution obtained in each shot, one
obtains a measure of the average momentum distribution
�see the Appendix�

���nQ��� =
M

2
���̃0

x�Q��2 + ��̃0
y�Q��2�

which is the same for each of the four states 1–4. We will
henceforth refer to averages �·� as disorder averages. To dis-
tinguish the four states one can instead measure the HBT-like
density-density correlations of the expanding cloud �45–47�,

G�r,r�� � �n�r�n�r���t − �n�r��t�n�r���t.

Here �n�r��t is the density of atoms at point r a time t after
the trap has been switched off averaged over many experi-
mental realizations �see the Appendix�. To measure
�n�r�n�r���t one calculates the product of the observed den-
sities n�r�n�r�� in each shot and averages over several ex-
perimental runs. Just as for the density distribution, the cor-
relation function G provides a measure of the momentum
correlations,

G�r,r�� = �m

ht
�6

��nQnQ�� − �nQ� 	 �nQ��� ,

prior to trap release.
To get a qualitative understanding of how the superfluid

state can be detected by correlation measurements we first
return to the T=0 result in the previous section and look at
the periodic function f1�Qy�. This random modulation arose
because the phases of the Y’s were uncorrelated between
rows. Since the relative phases of the Y’s in rows is ±� this
function is even in Q and along any given grid line the quan-
tity �nQnQ�� is thus strongly correlated when Qy +Qy�
=2m� /a. Averaging over many realizations one sees that
�along a grid line of constant Qx=2n� /a�

�nQnQ��T=0 � 	
n

��Qy + Qy� − 2m�/a� + �other terms� .

In the thermally disordered superfluid state the phase on any
site is allowed to flip by � �restoring Z2 symmetry�. This

destroys the � peaks in ��̃�x,y��2 and gives instead a random

FIG. 12. �Color online� �a� The random function f2�Qy ,Qz ,�no
x �

for a 40	40 lattice for a specific realization of �no
x . Note that f2 is

symmetric under inversion. �b� The random function
g2

y�Qx ,Qz ,�no
y ,�m� for a 40	40 lattice for a specific realization of

�no
y and �m. Note that g2 is not symmetric under inversion.
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modulation given by the function f2�Qx ,Qy�. Since only �
flips are allowed this modulation is symmetric f2�Qx ,Qy�
= f2�−Qx ,−Qy� and we get strong correlations in �nQnQ��,

�nQnQ��T�0 � 	
n

��Q + Q� − Gn� + �other terms� ,

where Gn is a reciprocal lattice vector. On a technical level
�see the Appendix� this can be seen to arise since the
disorder-averaged propagator for single particles is necessar-
ily short ranged due to the random � phase changes at finite
temperature, while the disorder-averaged propagators for
pairs of particles can still be long ranged.

In the Appendix we have calculated G(Q�r� ,Q��r��) for
the four scenarios for a single plane in the two-flavor system
and we here give the qualitative results. The superfluid state
is, confirming the qualitative discussion above, characterized
by peaks at Q±Q�=Gn �see Eq. �A40�� while the ferromag-
netic Mott state and the disordered Mott state have peaks
only at Q−Q�=Gn �see Eqs. �A44� and �A59��. The corre-
lation functions in these Mott states are distinguished by hav-
ing different background intensities between peaks and dif-
ferent peak strengths. The antiferromagnetic Mott state has
peaks at half reciprocal lattice vectors Q−Q�=Gn /2 �see Eq.
�A51��.

In the three-flavor system the situation is similar to the
two-flavor scenario discussed above. In the presence of ther-
mal disordering of the superfluid state the interference pat-
terns of the Mott state and the superfluid states become in-
distinguishable. Again, in the three-flavor case the pair
propagators will be nonzero in the disordered superfluid state
and G(Q�r� ,Q��r��) will have peaks at Q±Q�=Gn �see Eq.
�A70��.

While there should be no problem in measuring the cor-
relation functions for a system with three flavors, the two-
flavor system poses a problem of technical nature since in an
experiment several uncorrelated 2D planes will be created.
Suppose one has N uncorrelated planes. If one detects one
atom at position r and another at r� in a single experiment
the atoms could have come from either the same plane or
different planes. Measuring the product of densities in each
shot and averaging over several experiments one will for the
case with N 2D planes actually measure

N�n�r�n�r���t + N�N − 1��n�r��t�n�r���t

rather than N�n�r�n�r���t. Thus the signal-to-noise ratio
scales as 1 /N requiring many experimental runs for large
systems.

VI. LIFETIME ESTIMATE IN 1D

In the previous sections, effective Hamiltonians for atoms
in the first band�s� of the optical lattice were introduced and
the mean-field ground-state phase diagrams drawn. In doing
so, it was assumed that the interaction terms in the original
Hamiltonian �2� responsible for scattering particles between
bands could be ignored. In this section, these interactions are
taken into account perturbatively and the lifetime of atoms in
the first band is estimated. The obtained �inverse� lifetime

should be compared to other energy scales in the problem,
most importantly the smallest one, the hopping energy. If the
lifetime turns out to be long compared to the time scale of
hopping, the states described in the previous sections should
be possible to realize in experiment.

To simplify matters, the discussion will be restricted to
the 1D case. The ensuing results are expected to agree well,
both qualitatively as well as quantitatively, with the 2D and
3D cases to lowest order in perturbation theory. This follows
from taking parity considerations into account when deter-
mining the allowed transitions. Thus, ignoring tunneling in
the y and z directions and measuring distance in units of the
lattice spacing �see Sec. II� the 1D Hamiltonian can be writ-

ten Ĥ= Ĥ0+ V̂ with

Ĥ0 = ER	
n
� d� �̂n

†����−
�2

��2 + v0x sin2�����̂n���

and

V̂ =
U

2 	
n1,n2,n3,n4

� d� �̂n1

† ����̂n2

† ����̂n3
����̂n4

��� . �20�

Here �̂n
†��� creates an atom at � in the nth band of the 1D

system and U�4�ER�as /a�O00�v0y�O00�v0z�.
Apart from the field operators �̂n��� it is convenient to

define boson operators in two other bases. First, we have the
basis of Bloch functions unk��� with band index n and lattice

momentum k. These functions satisfy Ĥ0unk���=�n�k�unk���
and are associated with the field operators ânk,ânk

† . Second,
we have the Wannier functions �̃n��−�m� defined in Sec. II.
In this section we will denote the corresponding field opera-
tors by ân�m�,ân

†�m�. Note that these definitions depart from
the conventions in previous sections and that operators cor-
responding to Bloch functions and Wannier functions are dis-
tinguished in the number of subscripts.

A. Wideband limit

We begin by looking at the case when the second term V̂

in Eq. �20� is small compared to Ĥ0 and consider an initial
state where all N atoms reside in the lowest-lying Bloch state
of the first band,

�i� = �N ! �−1/2�ân=1,k=�/a
† �N�0� .

A first-order decay process is then one where two atoms in
the first band collide, promoting one to the second band and
the other to the zeroth band, i.e., the final state is

�f� =
ân=2,k2

† ân=0,k0

† ân=1,k=�/aân=1,k=�/a

�N�N − 1�
�i� .

The first-order matrix element for this transition is

��f �V̂�i�� = U��k0 + k2 − 2m�/a��N�N − 1�

	� u0k0

* ���u2k2

* ���u1k=�/a���2 d� .

If the filling factor �atoms per well� of the first band is �1,
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and the density of states of the nth band is �(�n�k�) the tran-
sition rate per well becomes

w �
2�

�

��1U�2�� u0k0

* ���u2k2

* ���u1k=�/a���2d��2

�„�0�k0�…−1 + �„�2�k2�…−1 .

Defining

w̃�v0z� �
32�3ER

���0�−1 + ���2�−1�� u0k0

* u2k2

* u1k=�/a
2 d��2

this can be compactly written as

w =
ER

�
�1

2�as

a
�2

O00�v0y�2O00�v0z�2w̃�v0x� . �21�

In Fig. 13 w̃�v� obtained from numerical calculation is
shown. For convenience the inverse of w̃ has been plotted.
As can be seen, the lifetime goes to zero for small and large
v. This is a result of the diverging density of states at the
band edges. Above v�19 the first-order process is no longer
energetically possible and higher-order perturbation theory
has to be applied.

The validity of the wideband calculation relies upon the
assumption that the inequality �1U� t is satisfied. This con-
dition can be used to obtain an upper bound on the ratio as /a
by assuming the lattice depth to be the same in all directions,
i.e., v0x=v0y =v0z=v0, which yields

as

a
� �as

a
�

max
�

t

�1ER

1

�2��3/2O00�v0�2O11�v0�
.

This quantity is shown for filling factor �1=1 as the dashed
line in Fig. 13.

B. Narrowband limit

From the discussion above it is clear that for deep enough
potentials the validity of the wideband analysis breaks down
unless �1�as /a� is extremely small. An alternative starting
point is when �1U� t while the filling factors for the zeroth
and the second band are small, i.e., �0,�2�1. Keeping terms
of order �1U, the relevant unperturbed Hamiltonian to start
from is in this case one where tunneling events in the two
lowest bands are completely ignored whereas interactions
between atoms are considered only for atoms interacting
with particles in the first band. Hence, one finds

Ĥ0 = 	
n=0,1

	
m

En�m�n̂n�m� + U0x	
m

n̂0�m�n̂1�m�

+
1

2
Uxx	

m

n̂1�m��n̂1�m� − 1�

+ ER 	
n�1

� d� �̂n
†����−

�2

��2 + v0x�����̂n���

+ 2U 	
n�1

� d� �̂1
†����̂1����̂n

†����̂n��� . �22�

Here the number operators n̂n�m�� ân
†�m�ân�m� have been

introduced.
The initial state is a product of Fock states with definite

numbers of particles in the first band of each well as depicted
in Fig. 14. Here, each well m initially has nm atoms in the
first band, i.e.,

�i� = 

m

�â1
†�m��nm

�nm!
�0� .

The final state is one where the population has changed such
that, for a particular well, denoted by r, one particle has
decayed from the first band down to the zeroth while another
atom, in order to conserve energy, ends up in a Bloch state of
the nth �n�1� band, i.e.,

�f� =
â0

†�r�ânk
† â1�r�2

�nr�nr − 1�
�i� .

This state is not an exact eigenstate of the unperturbed
Hamiltonian in Eq. �22� but an approximate one. The correc-
tion to the Bloch wave functions for n�1, which will later
occur in the overlap integrals, is, however, only of the order
U /v0x�1 and can thus be ignored. What is more important
is the associated energy shift since this affects the positions
of the band edges of the nth band. This, in turn, can have

FIG. 13. �Color online� Solid line: Inverse of the coefficient w̃
occurring in Eq. �21� for the first-order decay rate calculated in the
wideband limit. In this limit, there are no available energy states for
the first-order decay provided 19�v0x. Dashed line: The maximum
value of the ratio as /a for which the wideband analysis is valid.

FIG. 14. Typical initial state �i� for the lifetime estimate in the
narrowband limit. All atoms are residing in the first band, localized
in the wells. In this particular case the filling factors are �0=0, �1

=1, and �n�1=0.

A. ISACSSON AND S. M. GIRVIN PHYSICAL REVIEW A 72, 053604 �2005�

053604-14



impact on the lifetime since it affects the final density of
states. Hence, one can replace the two last terms in the un-
perturbed Hamiltonian �22� by a term diagonal in the band
index n:

Ĥ0 = 	
n=0,1

	
m

En�m�n̂n�m� + U0x	
m

n̂0�m�n̂1�m�

+
1

2
Uxx	

m

n̂1�m��n̂1�m� − 1� + 	
n�1,k

��n�k� + �1�nk�n̂nk.

�23�

Here, the first-order �Hartree� shift �nk in energy due to in-
teractions between an atom in the nth Bloch band and the
atoms in the first band has been incorporated,

�nk � U� d��unk��� + un,−k����2��̃1����2.

For first-order decay one needs only the matrix element

�f �V̂�i� from which the rate follows:

w =
2�

�
U2nr�nr − 1��� d� unk

* ����̃0
*����̃1���2�2

�„�n�k�… .

�24�

To present a comprehensive numerical analysis of this
decay rate is prohibitive due to the large number of param-
eters entering expression Eq. �24�. Thus, for sake of illustra-
tion, we will here restrict the discussion to unit filling factor
in the second band, i.e., �1=1. Further, we use �as /a�
=1/100 which is a reasonable value from an experimental
point of view. The lattice depths in the transverse directions
will be chosen slightly larger than in the x direction, i.e., we
choose v0y =v0z=v0x+1.

The results of the calculation, using wave functions ob-
tained from band-structure calculations, are shown in Fig. 15
which plots the ratio between the hopping rate and decay rate
t1 / ��w�. The different solid lines correspond to different
numbers of particles initially in the well. The cases
nr=2,3,4,5 are shown, nr=2 having the longest lifetime and
nr=5 having the shortest. The dashed line shows the ratio
t1 / ��1U� which should be less than unity for the expression
to be valid. As a comparison, the resulting lifetime obtained
in the wideband limit Eq. �21� is also shown as the dash-
dotted line.

The most interesting part of the result shown in Fig. 15 is
the sudden decay of the lifetime. This is, as was the case in
the wideband limit, a result of the diverging density of states
�(�2�k�) near the band edge. For lattice potentials deeper
than v0x�20, there is no phase space �no available final en-
ergy levels for the excited particle� available for the first-
order decay. To find out the lifetime for larger values of v0x,
second-order perturbation theory is needed.

Consider again the same initial state �i� as above. Adher-
ing to energy conservation arguments, there are three differ-
ent, mutually orthogonal, final states reachable through a
second-order process,

�f1� =
ânk

† â0
†�r�2â1�r�3

�2nr�nr − 1��nr − 2�
�i� ,

�f2� =
ânk

† â0
†�r�3â1�r�4

�6nr�nr − 1��nr − 2��nr − 3�
�i� ,

�f3� =
ân�k�

† ânk
† â0

†�r�2â1�r�4

�2nr�nr − 1��nr − 2��nr − 3�
�i� .

The corresponding decay rates w1,2,3 are obtained from the
textbook relation

wi =
2�

�
�	

m

�f i�V�m��m�V�i�
�i − �m

�2

��� f� .

Numerical evaluations of the decay rates reveal that the
dominant contribution to the total decay rate wtot=w1+w2
+w3 comes from w1. The reason for this is easily understood;
the contribution from w2 is small due to destructive interfer-
ence of time-reversed processes while the smallness of w3 is
due to the smallness of the overlap integrals, which in turn
can be understood from parity considerations.

The decay rate w1 is shown in Fig. 16. As can be seen, it
is possible to achieve lifetimes considerably larger than the
inverse of the hopping energy, thus justifying the validity of
the Hamiltonians in Eqs. �12� and �14�.

FIG. 15. �Color online� First-order lifetime w−1 for a 1D system
with filling factor �1=1 and �as /a�=1/100 in the narrowband limit
according to Eq. �24�. The solid lines show the ratio between the
lifetime and the time scale for hopping ��t1

−1� for nr particles in well
r. From top to bottom, �blue� nr=2; �green� nr=3; �red� nr=4;
�black� nr=5. The dashed line shows the ratio t1 /�1U which should
be less than unity for perturbation theory to be valid. The dot-
dashed line shows the result obtained by using the wideband for-
mula in Eq. �21� with the same parameters.
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VII. CONCLUSIONS

By extending the usual mapping to the bosonic Hubbard
model of ultracold atoms in an optical lattice to incorporate
higher Bloch bands, effective Hamiltonians governing the
dynamics of atoms in the first Bloch band�s� have been ob-
tained. These Hamiltonians resemble previously studied
bosonic Hubbard Hamiltonian but differ in two important
respects.

�1� Atoms in the first excited band are labeled by three
possible flavors X,Y,Z. The dynamics is such that X particles
can �to a good approximation� move only in the x direction,
etc.

�2� Flavor-changing collisions of atoms on the same site
leading to conversion of the form XX→YY, etc. occur.

By appropriate choices of the lattice depths in the differ-
ent directions the number of flavors and the effective dimen-
sionality �equal to the number of flavors� of the system can
be changed. To obtain values of the relevant parameters, such
as hopping energy and interaction energies, entering these
effective Hamiltonians we have solved the time-independent
Schrödinger equation �Mathieu equation�.

The effective Hamiltonians in two and three dimensions
also show, apart from the usual global U�1� gauge symmetry,
a set of Z2-gauge symmetries intermediate between local and
global. The ground state in the 3D �three-flavor� case also
displays a chiral symmetry breaking and an additional acci-
dental ground-state degeneracy associated with different pla-
nar chiral ordering.

The phase diagrams for two particular cases relevant for
experiment have been sketched using mean-field theory, in-
dicating quantum phase transitions between Mott insulating
and superfluid states.

Using time-dependent perturbation theory up to second
order in the interatomic interactions the lifetime of the atoms

in the excited bands has been estimated. The results show
that lifetimes considerably longer �orders of magnitude� than
relevant dynamical time scales can obtain. This suggests that
it may be possible to realize quasiequilibrium in the sub-
spaces of metastable states spanned by the effective Hamil-
tonians. Finally, we would like to stress that the mean-field
theory used to draw the phase diagram is able to describe
only the most simple scenario with a transition from a Mott
state to a superfluid state with order parameter �X��0. It is
well known �14–18� that other multiflavor bosonic Hubbard
models such as the two-species Bose-Hubbard model show a
rich phase diagram with phases that cannot be described in
this simple approximation. The present model, already rich at
the mean-field level, warrants further study. In particular, we
have pointed out potential connections to certain classes of
models of frustrated spins �21–24� and Bose metals �25� that
also have an infinite but subextensive number of Z2-gauge
symmetries and as a result exhibit dimensional reduction and
exotic phases. With the microscopic Hamiltonian developed
here, these connections can and should now be pursued in
detail.

ACKNOWLEDGMENTS

The authors wish to acknowledge M.-C. Cha, K. Sen-
gupta, N. Read, and S. Sachdev for many useful discussions.
A.I. was in part supported by The Swedish Foundation for
International Cooperation in Research and Higher Education
�STINT� and SMG by the National Science Foundation
through NSF Grant No. DMR-0342157.

APPENDIX

Here we provide a detailed derivation of the density dis-
tribution one expects to observe in the various phases and the
different ways of measuring the density-density correlations
in the released cloud of atoms.

If the system is in a many-body quantum state ��� when
the trap is released at time t=0 the density distribution of
atoms at a later time t is given by

�n�r��t = ���U†�t�n�r�U�t���� , �A1�

where U�t� is the time-evolution operator of the released
system U�t�=exp�−i�−1Ht�. To measure the quantity in Eq.
�A1� one has to, in general, perform several measurements
starting with the same trapped state ��� each time. An ex-
ception to this is when the ground state is to a good approxi-
mation a macroscopically occupied single-particle state. This
is typically the case for a superfluid system and a single
measurement gives a good approximation of �n�r��t. For a
weakly interacting dilute gas of atoms the interactions be-
tween atoms can be ignored during the expansion of the
cloud and the time-evolution operator in Eq. �A1� can be
replaced by the free time-evolution operator U0�t�. Expand-
ing in the momentum components one finds

FIG. 16. �Color online� Second order lifetime w1
−1 for a 1D

system with filling factor �1=1 and �as /a�=1/100 in the narrow-
band limit according to Eq. �24�. The solid lines show the ratio
between the lifetime and the time scale for hopping ��t1

−1� for nr

particles in well r. From top to bottom: top �green�, nr=3; bottom
�red�, nr=4.
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�n�r��t =� dk1

�2��3 � dk2

�2��3e−i�k1−k2�·�r−��t/2m��k1+k2��

	 ����k1

† �k2
��� . �A2�

For a system of linear size L and for times �t�mL2 the
stationary-phase approximation gives

�n�r��t � �m

ht
�3

���nQ�r����, Q�r� �
mr

�t
. �A3�

Measuring the density of atoms after a long time of flight t
thus corresponds to a measurement of momentum distribu-
tion of the state ��� prior to trap release.

In a typical experiment one takes an absorbtion image of
the released cloud. This means that only the integrated col-
umn density is measured, i.e., if an image of, say, the x-y
plane is taken, one measures

I�x,y� =� dz�n�r��t = �m

ht
�2� dQz

2�
���nQ�r���� .

In the next subsection we derive the momentum distribution
���nQ�r���� for the superfluid states in the two- and three-
flavor systems at zero temperature where Z2 symmetry is
broken.

1. 2D, two flavors, superfluid state, T=0

For the two-flavor case the system is comprised of 2D
planes with uncorrelated ground states. A superfluid state of
a single 2D plane can be described by a wave function with
M particles in a single state,

��� = �M ! �−1/2�aSF
† �M�0� ,

aSF
† �

1
�2N

	
m=1

N

	
n=1

N

�
mnXmn
† + �mnYmn

† � . �A4�

The subscripts m and n denote the coordinates, rows and
columns, in the lattice while 
 and � are phase factors �
�
= ���=1 determining the phase of the wave function on a
given site.

To evaluate the momentum distribution we expand the
field operators �Q

† and �Q in terms of the localized creation
and destruction operators Xmn

† , Ymn, etc., where the subscripts
m and n, respectively, denote the row and column for the site
on which the operator is acting. For a general state ��� �not
necessarily the state in Eq. �A4�� we find

����Q
† �Q��� =� dr1 dr2 eiQ·�r1−r2�����†�r1���r2����

= 	
m1n1

	
m2n2

� dr1� dr2 eiQ·�r1−r2�

	����Xm1n1

† �m1n1

x �r1�* + Ym1n1

† �m1n1

y �r1�*�

	�Xm2n2
�m2n2

x �r2� + Ym2n2
�m2n2

y �r2����� .

�A5�

The localized Wannier orbitals �nm
x �r� and �nm

y �r� can be
rewritten

�mn
x �r� = �− 1�n�0

x�r − nax̂ − maŷ� ,

�mn
y �r� = �− 1�m�0

y�r − nax̂ − maŷ�

with the prefactors �−1�n�m� coming from the gauge choice in
the inital way of writing the Hamiltonian in Eq. �2�. Carrying
out the Fourier integrals we find

����Q
† �Q��� = 	

m1n1

	
m2n2

eiQ·�R1−R2�����Xm1n1

† �− 1�n1�̃0
x�Q�*

+ Ym1n1

† �− 1�m1�̃0
y�Q�*��Xm2n2

�− 1�n2�̃0
x�Q�

+ Ym2n2
�− 1�m2�̃0

y�Q����� . �A6�

Here the position vectors R1 and R2 are shorthand for the
lattice vectors

R1 � n1ax̂ + m1aŷ, R2 � n2ax̂ + m2aŷ ,

and �̃0
x�y��Q� denote the Fourier transforms of the onsite

wave functions. In the harmonic oscillator approximation
these are given by

�̃0
x�Q� = �3/4�−5/2Qxe

−�Qx
2+Qy

2+Qz
2�/2�2

, �2 =
2��mV0

��
,

�̃0
y�Q� = �3/4�−5/2Qye

−�Qx
2+Qy

2+Qz
2�/2�2

. �A7�

To evaluate ����Q
† �Q��� we need to calculate expectation

values of the kind ���X†Y���. For the superfluid state ��� in
Eq. �A4� it is easily verified that in terms of the in-plane
density ��M /N2 one gets

���Xm1n1

† Xm2n2
��� =

�

2

m1n1

* 
m2n2
,

���Xm1n1

† Ym2n2
��� =

�

2

m1n1

* �m2n2
,

etc. Hence the term in Eq. �A6� factors and one can write it
conveniently as

����Q
† �Q��� = ��̃x�Q��2 + ��̃y�Q��2 + 2 Re��̃x�Q�*�̃y�Q��

�A8�

where we have defined

�̃x�Q� � �̃0
x�Q���

2	
mn

e−iQ·Rmn�− 1�n
mn, �A9�

�̃y�Q� � �̃0
y�Q���

2	
mn

e−iQ·Rmn�− 1�m�mn. �A10�

For a system at absolute zero the phase factors 
 and � are
aligned along rows and columns, respectively, but are ran-
domly distributed between the lines and columns. To de-
scribe this situation we introduce two sets of fields �m

x and �n
y

MULTIFLAVOR BOSONIC HUBBARD MODELS IN THE… PHYSICAL REVIEW A 72, 053604 �2005�

053604-17



which can take on values ±1. The relation between these
values of the fields and the phases along rows and columns is
shown in Fig. 17. Thus we can write


nm = �m
x , �nm = i�n

y . �A11�

Consider now the summations needed to evaluate �̃x:

�̃x�Q� = �̃0
x�Q���

2	
mn

e−iQ·Rmn�− 1�n�m
x �A12�

The summation over columns �n summation� converges in
the large-N limit to a sequence of � functions,

�̃x � 2��̃0
x�N�

2 	
mn

�„aQx − �2n + 1��…e−imQya�m
x ,

�A13�

and a similar equation can be obtained for �̃y. Hence

��̃x�2 = 2�N
�

2
��̃0

x�2	
n

�„aQx − �2n + 1��…

	 	
mm�

e−i�m−m��Qya�m
x �m�

x .

Introducing �=m−m� the last summations can be rewritten
as

Nf1�Qy,�m
x � � 	

mm�

e−i�m−m��Qya�m
x �m�

x

= 	
�

e−i�Qya	
m

�m
x �m−�

x = N

+ 	
��0

e−i�Qya	
m

�m
x �m−�

x �A14�

where we have defined the random momentum distribution
function f1. With the aid of Eq. �A14� we now deduce some

properties of f1. We begin with the magnitude of the function
for any value of Qy. For each nonzero value of � the last
summation is over an uncorrelated sequence of integers ±1
and can be viewed as a 1D random walk for which we have
that

	
m

ei���m
x −�m−�

x � � O��N� .

The summation over � contains N−1 terms which for each
value of Qy are random of magnitude �N. This is again a
random walk with N−1 steps and we conclude that the
whole expression in Eq. �A14� is of order N. This can also be
seen by noting that

a

2�
�

−�/a

�/a

dQy f1�Qy,�m
x � = 1.

Thus for each configuration �m
x we have a randomly oscillat-

ing function f�Qy ,�m
x � of unit magnitude. An example of f1

obtained for a specific realization of �m
x with N=40 is shown

in Fig. 18. From Eq. �A14� it is also clear, since �m
x and �m−�

are uncorrelated for nonzero �, that the average over allowed
ground-state configurations is

f1�Qy,�m
x � �

1

2N 	
�1

x,…,�N
x =±1

f1�Qy,�m
x � = 1.

An important property of f1 is that it is even in Qy,

f1�Qy,�m
x � = f1�− Qy,�m

x � .

This is a result of the nematic ordering between rows. ��̃y�2

can be calculated in the same way as ��̃x�2 and we get

��̃x�2 = �M��̃0
x�Q��2f1�Qy,�m

x � 	
odd n

��aQx − n�� ,

��̃y�2 = �M��̃0
y�Q��2f1�Qx,�n

y� 	
odd m

��aQy − m�� .

The interference term, the last part of Eq. �A8�, for the mo-
mentum distribution vanishes. To see this one can make use
of Eqs. �A11� and �A13�,

FIG. 17. Sample configuration of phases and the fields �m
x and

�n
y for a plane in the two-flavor system at zero temperature.

FIG. 18. Example of the random function f1�Qy ,�m
x � defined in

Eq. �A14�.
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2 Re��̃x�Q�*�̃y�Q��

= 4�2��̃0
x�̃0

y Re�	
mn

�„aQx − �2n + 1��…eimQya�m
x

	i	
mn

�„aQy − �2m + 1��…e−inQxa�n
y� = 0.

2. 3D, three-flavors, superfluid state, T=0

For the three-flavor case at T=0 we consider again a state
of the kind in Eq. �A4� but with

aSF
† �

1
�3N3/2	

j=1

N3

�
 jXj
† + � jY j

† + � jZj
†� .

The subscript j denotes collectively the x, y, and z coordi-
nates in the 3D lattice. As in the two-flavor case, the ob-
served momentum distribution can be written as

����Q
† �Q��� = ��̃x�Q��2 + ��̃y�Q��2 + ��̃z�Q��2

+ 2 Re��̃x�Q�*�̃y�Q��

+ 2 Re��̃y�Q�*�̃z�Q�� + 2 Re��̃z�Q�*�̃x�Q��
�A15�

with

�̃x�Q� � �̃0
x�Q���

3 	
mno

e−iQ·Rmno�− 1�m
mno,

�̃y�Q� � �̃0
y�Q���

3 	
mno

e−iQ·Rmno�− 1�n�mno,

�̃z�Q� � �̃0
z�Q���

3 	
mno

e−iQ·Rmno�− 1�o�mno.

Here the subscripts m,n,o refer to the x, y, and z coordi-
nates in the lattice, respectively. To see how to handle the
phase factors in the three-flavor case, we begin with a state
without accidentally broken chiral symmetry,


mno = �no
x , �mno = ei2�/3�mo

y , �mno = ei4�/3�mn
z ,

where the random fields �ij can again take on values ±1.
Since the accidental chiral symmetry breaking occurs in par-
allel planes we can without loss of generality single out the x
direction as the direction in which planes have uniform
chirality �to compare with Fig. 8 make the rotation of axes
y→z, z→x, x→y in Fig. 8�. We thus introduce an additional
field �m taking values ±1 for planes with different x coordi-
nates m. The corresponding phase factors for such a state
will be


mno = �no
x , �mno = ei�m�2�/3��mo

y , �mno = ei�m�4�/3��mn
z .

�A16�

We can now evaluate ��̃x�2 in the same way as for the two-
flavor case,

��̃x�2 = 2���̃0
x�2

M

3
f2�Qy,Qz,�no

x � 	
odd m

��aQx − m�� .

�A17�

In Eq. �A17� f2�Qy ,Qz ,�no
x � has been introduced,

f2 �
1

N2 	
n2o2

n1o1

eia�n1−n2�Qyeia�o1−o2�Qz�n1o1

x �n2o2

x .

The random distribution function f2 is the two-variable ana-
log of the function f1 above. An example of f2 for a 40
	40 lattice is shown in Fig. 12�a�. Just as f1, f2 obey a sum
rule,

� a

2�
�2�

−�/a

�/a �
−�/a

�/a

dQyd Qz f2�Qy,Qz,�no
x � = 1

is symmetric under inversion,

f2�Qy,Qz,�no
x � = f2�− Qy,− Qz,�no

x � ,

and has an average equal to unity when averaged over
ground states,

f2�Qy,Qz,�no
x � = 1.

The expressions for ��̃y�2 and ��̃y�2 are similar but the acci-
dental ground-state degeneracy modifies the random distri-
bution functions. Explicitly we have

��̃y�2 = 2���̃0
y�2

M

3
g2

y�Qz,Qx,�m
y ,�m� 	

odd n

��aQy − n�� ,

��̃z�2 = 2���̃0
z �2

M

3
g2

z�Qx,Qy,�m
z ,�m� 	

odd n

��aQz − n�� ,

with

g2
y � 	

m2o2

m1o1

eia��m1−m2�Qx+�o1−o2�Qz��m1o1

y �m2o2

y e−i�2�/3���m1
−�m2

�,

g2
z � 	

m2n2

m1n1

eia��m1−m2�Qx+�n1−n2�Qy��m1n1

z �m2n2

z e−i�4�/3���m1
−�m2

�.

An example of the distribution function g2
y is shown in Fig.

12�b�. Note that due to the fields � characterizing the differ-
ent chirality of planes this distribution function is not sym-
metric under inversion. Finally we look at the interference
terms in Eq. �A15�:

�̃x
*�̃y = 4�2�̃0

x�̃0
y �

3 	
m,n odd

	��aQx − m����aQy − n�� 	
n1o1

	
m2o2

eiaQz�o1−o2��− 1�n1

	�n1o1

x �− 1�m2�m2o2

y ei�2�/3��m2. �A18�

In the above equation the summations over n1 and m1 con-
stitute random walks. For the n1 summation this is a random
walk on a line with N unit steps ±1 giving rise, for each
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value of o1, to a random term of order �N. The sum over m2
can also be viewed as a random walk for each value of o2 but
in the complex plane, each step being of unit length in any of
the four directions ±2� /3 and ±4� /3. Summing over n1 and
m2 thus yields, for each �o1 ,o2�, a random term of magnitude
N with a completely random phase. Thus the interference
terms in Eq. �A15� �the other two terms can be treated simi-
larly� give rise to a three-dimensional grid of lines in the
released cloud where the density along any given line is ran-
domly distributed. If the density is averaged over several
shots with different ground states we have no contribution

from the interference terms since �̃x
*�̃y =0.

3. Density averages and correlations, Tœ0

If T is large enough for thermal fluctuations to restore Z2
symmetry but still small enough to preserve the distinction
between the Mott state and the superfluid state, measuring
the density distribution alone does not suffice since the �
peaks will be smeared. Instead correlations can be measured.
To this end, assume we have a single physical system. At
finite T this system undergoes transitions in a manifold of N
states. Denote this manifold by the states 
��i��i=1

N . In a single
shot a single one of these states will be probed. In an infinite
series of experiments each of these states will be probed an
infinite number of times and one can thereby measure the
quantity

���Ô��� �
1

N	
i=1

N

��i�Ô��i� . �A19�

Here we have ignored the Boltzmann factors since the mani-
fold we are looking at is nearly degenerate. In reality only a
finite sequence of M experiments can be carried out and the

fluctuations in ���Ô��� are of concern. There are two
sources of fluctuations: First, for each state ��i� there is
quantum shot noise; and second, since not all of the N states
will be probed there will be deviations due to not sampling
the entire distribution.

If the manifold of states probed are superfluid states then
N=O��2d�Nd� with d being the dimensionality of the system.
Since superfluid states are to a good approximation macro-
scopically occupied single-particle states, fluctuations due to
shot noise are reduced. The remaining fluctuations are clas-

sical and expected to scale as M−1/2, and ���Ô��� should in
principle be possible to measure. On the other hand, if the
state measured is a Mott state the manifold 
��i��i=1

N consists
typically of only a few states in which case multiple mea-
surements reduce the quantum shot noise since each quan-
tum state will be probed many times. We thus conclude that
by making repeated measurements and averaging the results,

one can measure ���Ô���.
A quantity of interest to measure in this way is the corre-

lation function

G�r,r�� � �n�r�n�r���t − �n�r��t 	 �n�r���t.

Again, if �t�mL2 this is to a good approximation the same
as

G�r,r�� = �m

ht
�6

��nQnQ�� − �nQ� 	 �nQ��� .

The disorder averages of the momentum density distributions
are easy to calculate. For instance, for the two-flavor super-
fluid state in Eq. �A4� we have

���nQ��� = ��̃x�Q��2 + ��̃y�Q��2 + 2 Re��̃x�Q�*�̃y�Q�� .

�A20�

The averages in Eq. �A20� can be calculated using the rep-
resentation in Eqs. �A9� and �A10�,

��̃x�2 = ��̃0
x�2

�

2 	
m2n2

m1n1

eiQ·�R1−R2��− 1�n1+n2
m1n1

m2n2

.

The average means averaging over all 
mn= ±1 �and all
�mn= ± i�. It follows that

��̃x�Q��2 =
M

2
��̃0

x�Q��2��̃x�Q��2 =
M

2
��̃0

y�Q��2

and �̃x�Q�*�̃y�Q�=0. Hence, for the two-flavor case we find

���nQ��� =
M

2
���̃0

x�Q��2 + ��̃0
y�Q��2� , �A21�

whereas for three flavors we have

���nQ��� =
M

3
���̃0

x�Q��2 + ��̃0
y�Q��2 + ��̃0

z�Q��2� .

We now turn to the evaluation of the two-point correlator
which we begin by normal ordering

�nQnQ�� = �2��3�nQ���Q − Q�� + ��Q
† �Q�

†
�Q�Q�� .

The normal-ordered expectation value ��Q
† �Q�

† �Q�Q�� can be
written in a form analogous to Eq. �A6�:

����Q
† �Q�

†
�Q�Q����

= 	
ijkl

eiQ·�Ri−Rj�eiQ�·�Rk−Rl�

	����Xi
†�− 1�ni�̃0

x�Q�* + Yi
†�− 1�mi�̃0

y�Q�*�

	�Xk
†�− 1�nk�̃0

x�Q��* + Yk
†�− 1�mk�̃0

y�Q��*�

	�Xj�− 1�nj�̃0
x�Q� + Y j�− 1�mj�̃0

y�Q���Xl�− 1�nl�̃0
x�Q��

+ Yl�− 1�ml�̃0
y�Q������ . �A22�

Here the subscripts i,j,k,l are collective row and column
coordinates for the site index in the 2D lattice.

For the two-flavor superfluid state in Eq. �A4� �a single
plane with N	N sites having a total of M particles� it is easy
to verify that the expectation values of on-site operators are
given by expressions of the type
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���Xi
†Yk

†Y jXl��� =
M�M − 1�

4N4 
i
*�k

*� j
l �
�2

4

i

*�k
*� j
l.

To calculate the average over disorder we have to average
over 
 j = ±1 and � j = ± i. The nonzero averages are easily
seen to be

�Xi
†Xk

†XjXl� =
�2

4

i

*
k
*
 j
l �A23�

=
�2

4
��ik� jl + �ij�kl + �il�kj� ,

�A24�

�Xi
†Xk

†Y jYl� =
�2

4

i

*
k
*� j�l = −

�2

4
�ik� jl, �A25�

�Yi
†Xk

†Y jXl� =
�2

4
�i

*
k
*� j
l =

�2

4
�ij�kl, �A26�

�Yi
†Xk

†XjYl� =
�2

4
�i

*
k
*
 j�l =

�2

4
�il�kj , �A27�

�Xi
†Yk

†Y jXl� =
�2

4

i

*�k
*� j
l =

�2

4
�il�kj , �A28�

�Xi
†Yk

†XjYl� =
�2

4

i

*�k
*
 j�l =

�2

4
�kl�ij , �A29�

�Yi
†Yk

†XjXl� =
�2

4
�i

*�k
*
 j
l = −

�2

4
�ik� jl, �A30�

�Yi
†Yk

†Y jYl� =
�2

4
�i

*�k
*� j�l =

�2

4
��ik� jl + �ij�kl + �il�kj� .

�A31�

Note that Eqs. �A23�, �A24�, �A30�, and �A31� have contri-
butions that correspond to pairs of particles propagating, the
disorder average of single-particle propagation being zero
due to the random orientation of phases. Using Eqs.
�A22�–�A31� we can evaluate the terms in Eq. �A22� that are
nonzero. We state each term contributing to the correlator in
Eq. �A22� separately using subscripts to denote the specific
ordered combination of operators from which the term de-
rives:

����Q
† �Q�

†
�Q�Q����XXXX

= ��0
x�Q��2��0

x�Q���2
�2

4 	
ij

�1

+ ei�Q+Q��·�Ri−Rj� + ei�Q−Q��·�Ri−Rj�� , �A32�

����Q
† �Q�

†
�Q�Q����XXYY = − �̃0

x�Q�*�̃0
x�Q��*�̃0

y�Q��̃0
y�Q��

�2

4

		
ij

ei�Q+Q��·�Ri−Rj�, �A33�

����Q
† �Q�

†
�Q�Q����YXYX = �̃0

y�Q�*�̃0
x�Q��*�̃0

y�Q��̃0
x�Q��

M2

4
,

�A34�

����Q
† �Q�

†
�Q�Q����YXXY = �̃0

y�Q�*�̃0
x�Q��*�̃0

x�Q��̃0
y�Q��

�2

4

		
ij

ei�Q−Q��·�Ri−Rj�, �A35�

����Q
† �Q�

†
�Q�Q����XYYX = �̃0

x�Q�*�̃0
y�Q��*�̃0

y�Q��̃0
x�Q��

�2

4

		
ij

ei�Q−Q��·�Ri−Rj�, �A36�

����Q
† �Q�

†
�Q�Q����XYXY = �̃0

x�Q�*�̃0
y�Q��*�̃0

x�Q��̃0
y�Q��

M2

4
,

�A37�

����Q
† �Q�

†
�Q�Q����YYXX = − �̃0

y�Q�*�̃0
y�Q��*�̃0

x�Q��̃0
x�Q��

�2

4

		
ij

ei�Q+Q��·�Ri−Rj�, �A38�

����Q
† �Q�

†
�Q�Q����YYYY = ��0

y�Q��2��0
y�Q���2

�2

4

		
ij

�1 + ei�Q+Q��·�Ri−Rj�

+ ei�Q−Q��·�Ri−Rj�� . �A39�

Collecting the results of Eqs. �A21�–�A39� we find

GSF
2D�r,r�� � �2��3 M

2
��Q − Q�����̃0

x�Q��2 + ��̃0
y�Q��2�

+
�2

4
��̃0

x�Q��̃0
x�Q�� + �̃0

y�Q��̃0
y�Q���2

		
ij

ei�Q−Q��·�Ri−Rj� +
�2

4
��̃0

x�Q��̃0
x�Q��

− �̃0
y�Q��̃0

y�Q���2

		
ij

ei�Q+Q��·�Ri−Rj� �A40�

where the factor of proportionality is �m /ht�6. The Fourier
sums give, in the limit of an infinite lattice, sequences of �
functions,
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ij

ei�Q±Q��·�Ri−Rj� → �2�N

a
�2

	
i

���Q ± Q�� − Gi� ,

where Gi are reciprocal lattice vectors. The most interesting
part of Eq. �A40� is the last term which comes from the
pairlike propagation. This can be used as a signature to de-
tect the superfluid phase even if thermal disorder has restored
the Z2 symmetry.

For comparison we also look at the 2D �two-flavor� Mott
state. For simplicity we consider unit filling. There are three
scenarios for the unit filling Mott state that need to be con-
sidered: �a� a ferromagnetic Mott state, i.e., all atoms of the
same flavor; �b� an antiferromagnetic Mott state, X flavor and
Y flavor on alternating sites; and �c� a thermally disordered
Mott state with random occupation of X and Y flavors on
each site.

In the ferromagnetic Mott state at unit filling M =N2 we
have two degenerate ground states ��1�=
iXi

†�0� and ��2�
=
iYi

†�0� and the average in Eq. �A19� is trivial to evaluate:

���nQ��� =
1

2
���1�nQ��1� + ��2�nQ��2��

=
M

2
���0

x�Q��2 + ��0
y�Q��2� . �A41�

The momentum correlator can be calculated using Eq. �A22�.
For the state ��1� this equation reduces to

��1��Q
† �Q�

†
�Q�Q���1�

= ��̃0
x�Q��2��̃0

x�Q���2	
ijkl

eiQ·�Ri−Rj�

	eiQ�·�Rk−Rl���1�Xi
†Xk

†XjXl��1� . �A42�

There are two pairings of operators that contribute to the
average,

��1�Xi
†Xk

†XjXl��1� = �1 − �ik���ij�kl + �il�kj� .

The term �1−�ik� results from having only one particle at
each site but we will ignore this term �and terms similar to it
in what follows� since its relative contribution is of order
1 /N2. The disorder average contains only two states, yielding

����Q
† �Q�

†
�Q�Q���� =

1

2
���̃0

x�Q��2��̃0
x�Q���2

+ ��̃0
y�Q��2��̃0

y�Q���2�

		
ik

�1 + ei�Q−Q��·�Ri−Rk�� .

�A43�

The correlation function for the ferromagnetic Mott state is
thus

GFM
2D �r,r�� � �2��3��Q − Q��

M

2
���0

x�Q��2 + ��0
y�Q��2�

+
M2

4
���0

x�Q��2 − ��0
y�Q��2����0

x�Q���2

− ��0
y�Q���2� +

1

2
���̃0

x�Q��2��̃0
x�Q���2

+ ��̃0
y�Q��2��̃0

y�Q���2�	
ik

ei�Q−Q��·�Ri−Rk�.

�A44�

In the antiferromagetic Mott state the disorder average is
again over two states. Dividing the 2D lattice into two sub-
lattices A and B, these states are ��1�=
i�A
 j�BXi

†Y j
†�0� and

��2�=
 j�A
i�BXi
†Y j

†�0�. For the momentum density we have

��1�nQ��1� = ��2�nQ��2� =
M

2
���̃0

x�Q��2 + ��̃0
y�Q��2�;

hence we find again that

���nQ��� =
M

2
���̃0

x�Q��2 + ��̃0
y�Q��2� .

The normal-ordered two-point correlator can again be writ-
ten in the form of Eq. �A22� and has six nonzero contribu-
tions. The disorder average over the two states will in this
case make no difference since the two different states always
give the same contribution and it is enough to consider one
of them:

��1��Q
† �Q�

† �Q�Q���1�XXXX

= ��̃0
x�Q��2��̃0

x�Q���2�M2

4
+ 	

i�Aj�A

ei�Q−Q��·�Ri−Rj�� ,

�A45�

��1��Q
† �Q�

† �Q�Q���1�YYYY

= ��̃0
y�Q��2��̃0

y�Q���2�M2

4
+ 	

i�Bj�B

ei�Q−Q��·�Ri−Rj�� ,

�A46�

��1��Q
† �Q�

† �Q�Q���1�XYXY =
M2

4
��̃0

x�Q��2��̃0
y�Q���2,

�A47�

��1��Q
† �Q�

† �Q�Q���1�XYYX

= �̃0
x�Q�*�̃0

y�Q��*�̃0
y�Q��̃0

x�Q�� 	
i�Aj�B

ei�Q−Q��·�Ri−Rj�,

�A48�

��1��Q
† �Q�

† �Q�Q���1�YXYX =
M2

4
��̃0

y�Q��2��̃0
x�Q���2,

�A49�

A. ISACSSON AND S. M. GIRVIN PHYSICAL REVIEW A 72, 053604 �2005�

053604-22



��1��Q
† �Q�

† �Q�Q���1�YXXY

= �̃0
y�Q�*�̃0

x�Q��*�̃0
x�Q��̃0

y�Q�� 	
i�Aj�B

ei�Q−Q��·�Rj−Ri�.

�A50�

Hence, we find for the 2D antiferromagnetic Mott state at
unit filling the correlation function

GAFM
2D �r,r�� � �2��3��Q − Q��

M

2
���̃0

x�Q��2 + ��̃0
y�Q��2�

+ 2 Re��̃0
x�Q�*�̃0

y�Q��*�̃0
y�Q��̃0

x�Q���

	 	
i�Aj�B

cos��Q − Q�� · �Ri − R j��

+ ���̃0
x�Q��2��̃0

x�Q���2 + ��̃0
y�Q��2��̃0

y�Q���2�

	 	
i�Aj�A

ei�Q−Q��·�Ri−Rj�. �A51�

The Fourier sums converge in the limit of large N to

	
i�Aj�B

cos��Q − Q�� · �Ri − R j��

=
�2N2

2a2 	
mn

��− 1�n + �− 1�m���Qx −
n�

a
�

	��Qy −
n�

a
� ,

	
i�Aj�A

ei�Q−Q��·�Ri−Rj� =
�2N2

2a2 	
mn

�1 + �− 1�n+m�

	��Qx −
n�

a
���Qy −

n�

a
� ,

and the correlation function for the antiferromagnetic Mott
state will thus have peaks at locations corresponding to half
reciprocal lattice vectors.

Finally we look at the disordered Mott state where each
site holds one atom but whether it is an X or a Y is random.
The manifold of states to average over thus contains N
=2N2

states. Such a state can be written as

��� = 

i

1

2
�Xi

†�1 + �i� + Yi
†�1 − �i���0�

where �i is a random field taking on values ±1 on each site i.
The disorder-averaged momentum distribution is again the
same as before,

����Q
† �Q��� = 	

i

1 + �i

2
�̃0

x��Q��2 +
1 − �i

2
��̃0

y�Q��2

=
M

2
��̃0

x��Q��2 + ��̃0
y�Q��2� , �A52�

and there are six contributions to the momentum correlator:

����Q
† �Q�

† �Q�Q����XXXX =
1

4
��̃0

x�Q��2��̃0
x�Q���2	

ik

1

+ ei�Q−Q��·�Ri−Rk�, �A53�

����Q
† �Q�

† �Q�Q����YYYY =
1

4
��̃0

y�Q��2��̃0
y�Q���2	

ik

1

+ ei�Q−Q��·�Ri−Rk�, �A54�

����Q
† �Q�

† �Q�Q����XYXY =
M2

4
��̃0

x�Q��2��̃0
y�Q���2,

�A55�

����Q
† �Q�

† �Q�Q����XYYX =
1

4
�̃0

x�Q�*�̃0
y�Q��*�̃0

y�Q��̃0
x�Q��

		
ik

ei�Q−Q��·�Ri−Rk�, �A56�

����Q
† �Q�

† �Q�Q����YXYX =
M2

4
��̃0

y�Q��2��̃0
x�Q���2,

�A57�

����Q
† �Q�

† �Q�Q����YXXY =
1

4
�̃0

y�Q�*�̃0
x�Q��*�̃0

x�Q��̃0
y�Q��

		
ik

ei�Q−Q��·�Ri−Rk�, �A58�

resulting in a correlation function for the disordered Mott
state

GDO
2D �r,r�� � �2��3��Q − Q��

M

2
���̃0

x�Q��2 + ��̃0
y�Q��2�

+
1

4
��̃0

x�Q�*�̃0
x�Q�� + �̃0

y�Q�*�̃0
y�Q���2

		
ik

ei�Q−Q��·�Ri−Rk�. �A59�

4. Correlations in 3D, three flavors, Tœ0

We now look at the momentum correlations in the ther-
mally disordered three-flavor superfluid phase. To evaluate
the correlation function ����Q

† �Q�
† �Q�Q���� one can write

down the extension of Eq. �A22�. There will be overall 81
terms in the expansion to evaluate. When taking the disorder
average only 21 terms are nonzero. Note that when taking
the disorder average in the three-flavor model one has to
average not only over all possible � flips of the phases but
also over the symmetry breaking field �m �see Eq. �A16�� to
account for the chiral symmetry breaking as well as over the
three directions in which chiral symmetry is broken. The
nonzero averages one obtains in this way are shown below:
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�Xi
†Xk

†XjXl� = �Yi
†Yk

†Y jYl�

= �Zi
†Zk

†ZjZl� =
�2

9
�1

2
�ik� jl + �ij�kl + �il�kj� ,

�A60�

�Xi
†Xk

†Y jYl� = �Xi
†Xk

†ZjZl� = −
1

4

�2

9
�ik� jl, �A61�

�Yi
†Yk

†XjXl� = �Yi
†Yk

†ZjZl� = −
1

4

�2

9
�ik� jl, �A62�

�Zi
†Zk

†Y jYl� = �Zi
†Zk

†XjXl� = −
1

4

�2

9
�ik� jl, �A63�

�Xi
†Yk

†XjYl� = �Xi
†Zk

†XjZl� =
�2

9
�ij�kl, �A64�

�Yi
†Xk

†Y jXl� = �Yi
†Zk

†Y jZl� =
�2

9
�ij�kl, �A65�

�Zi
†Xk

†ZjXl� = �Zi
†Yk

†ZjYl� =
�2

9
�ij�kl, �A66�

�Xi
†Yk

†Y jXl� = �Xi
†Zk

†ZjXl� =
�2

9
�il�kj , �A67�

�Yi
†Xk

†XjYl� = �Yi
†Zk

†ZjYl� =
�2

9
�il�kj , �A68�

�Zi
†Xk

†XjZl� = �Zi
†Yk

†Y jZl� =
�2

9
�il�kj , �A69�

and the desired correlator is obtained:

GSF
3D�r,r�� � �2��3��Q − Q��

M

3
���̃0

x�Q��2 + ��̃0
y�Q��2 + ��̃0

z�Q��2� +
1

2

�2

9
���̃0

x�Q��̃0
x�Q�� − �̃0

y�Q��̃0
y�Q���2 + ��̃0

y�Q��̃0
y�Q��

− �̃0
z�Q��̃0

z�Q���2 + ��̃0
z�Q��̃0

z�Q�� − �̃0
x�Q��̃0

x�Q���2�	
ik

ei�Q+Q��·�Ri−Rk� +
�2

9
��̃0

x�Q��̃0
x�Q��* + �̃0

y�Q��̃0
y�Q��*

+ �̃0
z�Q��̃0

z�Q��*�2	
ik

ei�Q−Q��·�Ri−Rk�. �A70�
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