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We present a detailed study of the spatial self-organization of laser-driven atoms in an optical cavity, an
effect predicted on the basis of numerical simulations �P. Domokos and H. Ritsch, Phys. Rev. Lett. 89, 253003
�2002�� and observed experimentally �A. T. Black et al., Phys. Rev. Lett. 91, 203001 �2003��. Above a
threshold in the driving laser intensity, from a uniform distribution the atoms evolve into one of two stable
patterns that produce superradiant scattering into the cavity. We derive analytic formulas for the threshold and
critical exponent of this phase transition from a mean-field approach. Numerical simulations of the microscopic
dynamics reveal that, on a laboratory time scale, a hysteresis masks the mean-field behavior. Simple physical
arguments explain this phenomenon and provide analytical expressions for the observable threshold. Above a
certain density of the atoms a limited number of “defects” appear in the organized phase and influence the
statistical properties of the system. The scaling of the cavity cooling mechanism and the phase-space density
with the atom number is also studied.
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I. INTRODUCTION

The manipulation of cold atoms and molecules by laser
light is a rapidly growing field and has become a suitable
ground for studying fundamental phenomena of physics both
experimentally and theoretically �1�. In the last decade, the
emphasis has partly been shifted towards many-body effects
in the dynamics of weakly interacting atoms �2,3�. The me-
chanical action of the electromagnetic radiation field on free
atoms rarely manifests these effects. The refractive index of
a cloud of atoms is simply composed of the product of the
single-atom polarizability and the optical density. Standard
laser cooling methods were also conceived on the basis of
single-atom processes. Only at densities as high as the ones
achievable in a magneto-optical trap does the dipole-dipole
interaction between atom pairs give rise to a Lorentz-Lorenz-
type refractive index and present an appreciable nonlinearity
in the optical density �4,5�. The underlying process, the re-
absorption of spontaneously scattered photons in the atomic
cloud �6,7�, heats the atomic motion and hence limits the
attainable minimum temperature. In addition, this effect also
introduces spatial instability into the atomic cloud and thus
hinders degeneracy in phase space by optical means �8�.

The mechanical effect of light on atoms inside a high-
finesse resonator is substantially modified with respect to
free space, which is the source of a variety of interesting
phenomena in optical cavity quantum electrodynamics
�9,10�. The basic reason is that a cavity photon makes many
round-trips between the mirrors and thus the back action of
the atom on the field, enhanced by the cavity finesse, cannot
be neglected. As opposed to the external forces exerted by
laser fields, the light forces in a cavity cannot be separated
from the dynamics of the resonator mode, which is strongly
influenced by that of the atom.

The coupled atom-field dynamics can yield an efficient
damping of the atomic motion via the mirror loss dissipation
channel �11,12�. Such “cavity cooling” schemes have re-
cently been demonstrated experimentally �13,14�. The fact

that cavity cooling allows for replacing the spontaneous
emission, which is the dissipation channel in all laser cooling
schemes, by irreversible photon loss from the cavity has im-
portant consequences. First, the internal structure of the atom
is not important and the mechanism can be operated on a
wide range of species. Second, the problem of the reabsorp-
tion of spontaneously scattered photons, the source of the
instability of atomic clouds at high densities, can be
suppressed.

The dynamics of atoms in a resonator is inherently a
many-body problem even at a small density of the ensemble
�15,16�. As all atoms are coupled to the same cavity mode,
the modification of the field by one atom is experienced by a
remote atom as well as by itself. The cavity cooling mecha-
nism may become inefficient since the delicate dynamical
correlation between one atom and the field mode could be
perturbed by the motion of another atom �17,18�. Indeed, one
of the cavity cooling schemes was found to slow down lin-
early with increasing number of atoms �19�.

In a recent Letter we predicted a cooperative behavior of
the atoms driven by a laser in a direction perpendicular to the
axis of a standing-wave cavity �20�. At high pump laser in-
tensities �above a threshold� the homogeneous atomic cloud
self-organizes into one of two regular checkerboard patterns
that maximize scattering into the cavity. The constructive
interference of fields radiated by the individual atoms pro-
duces an intensity which depends quadratically on the num-
ber of atoms �superradiance�. Corresponding to the two pat-
terns, there are two possible phases of the output field with
180° difference, which have been observed in an experiment
by Black, Chan, and Vuletić �21�.

The onset of self-organization is relatively fast, on the
microsecond time scale. A basic property of the present sys-
tem is that the field created by the atoms traps and simulta-
neously cools them so that the organized pattern remains
stable on a long time scale �tens of ms�. The cavity cooling
mechanism now acts on many atoms without losing effi-
ciency. There is no external finite-temperature heat bath to
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define the temperature which, instead, is set by the dynami-
cal equilibrium of the dipole force fluctuations and the cavity
cooling effect. This is a distinctive feature with respect to the
recently demonstrated collective atomic recoil laser in a ring
cavity �CARL� �22–25�, where a magneto-optical trap is nec-
essary to stabilize the organized phase, and the otherwise
transient gain �26�, and also to inject noise for obtaining the
phase-transition-like behavior �27–31�.

In the present paper we discuss in detail the self-
organization process from the viewpoint of phase transitions.
A mean-field approach leads to a well-defined threshold in
the pumping strength. Comparison to numerical simulations
reveals effects scaling unusually with the atom density, a
characteristic feature of this cavity-coupled many-atom
system.

The paper is organized as follows. In Sec. II, the equa-
tions of a semiclassical model are recapitulated, where the
atoms are represented as simple linearly polarizable particles.
Thereby the theory applies to a much wider class of particles
than alkali-metal atoms. The main features of the self-
organization process, such as time scales, superradiance, and
collective cooling, are surveyed using a numerical example
in Sec. III. Then, in Sec. IV, we introduce a one-dimensional
mean-field model and determine the threshold and critical
exponent. In Sec. V, we present the results of detailed nu-
merical simulations, which show effects beyond the mean
field. The atom number enters the physics of the system in a
form other than the density. Above a certain atom number,
stable defects appear in the self-organized pattern and
modify the system properties, which is accounted for in Sec.
VI. In Sec. VII, the cooperative atomic behavior is discussed
in detail by demonstrating the superradiance and the ensuing
improvement of localization by collectivity. We conclude in
Sec. VIII.

II. SEMICLASSICAL MODEL

We consider N atoms in an open optical resonator �Fig. 1�.
The atoms are illuminated from the side by a “transverse”
standing-wave laser pump with frequency �. This geometry
corresponds to various experimental setups realizing the con-

trolled transport of atoms from the side into a cavity �14,32�
where the standing-wave pump amounts to a “conveyor belt”
�33,34�. There is an efficient scattering of photons into the
cavity mode quasiresonant with the pump, �C��, due to the
enhanced dipole coupling described by the single-photon
Rabi frequency g=�C

1/2�2�0�V�−1/2deg, for a mode volume V
and atomic transition dipole moment deg along the cavity
mode polarization. Large detuning of the laser from the
atomic transition ��−�A���, where 2� is the full atomic
linewidth at half maximum, ensures that the upper level of
the atoms can be adiabatically eliminated. This model then
describes a very general class of linearly polarizable
particles—in the following, we continue to use “atoms” for
convenience. For the sake of simplicity, we restrict the
atomic motion to two dimensions, along the pump laser and
the cavity axis, coordinates x and z, respectively, without
losing any relevant physical effect. Motion in the third di-
mension could be taken into account in the same way as
along x.

The quantum master equation for the density matrix reads

�̇ = −
i

�
�H,�� + L� . �1�

Here the Hamiltonian is

H = �
j=1

N
p j

2

2M
− ��Ca†a + �U0�

j=1

N

E†�r j�E�r j� , �2a�

where a and a† are the boson operators of the cavity mode,
and r j = �xj ,zj� and p j = �pxj

, pzj
� are the position and momen-

tum vectors of the jth atom. The Liouville operator describ-
ing the cavity photon losses with rate 2� and the spontaneous
emission reads

L� = 2��a�a† −
1

2
a†a� −

1

2
�a†a	

− 	0�
j=1

N �E†�r j�E�r j�� + �E†�r j�E�r j�

− 2
 d2uN�u�E�r j�e−ikAurj�eikAurjE†�r j�	 . �2b�

In the above formulas, E�r� is the dimensionless electric
field,

E�r� = f�r�a + 
�r�/g � cos�kz�a + cos�kx�
/g . �2c�

The Rabi frequency of the driving laser is 
�r�, whose posi-
tion dependence is given by a cos�kz� mode function for a
standing-wave field. In the following, we are going to refer
to the maximum value of the Rabi frequency 
 as “pumping
strength.” The variation of the pump field along the cavity
axis and that of the cavity mode function f�r� along the
transverse direction �Gaussian envelope� are neglected. The
detunings are defined as �C=�−�C and �A=�−�A. The
parameters

FIG. 1. �Color online� The setup: transversely driven atoms
moving in a standing-wave cavity. The laser intensity is given by
the maximum free-space Rabi frequency �pumping strength� 
. The
atoms couple to the cavity mode with one-photon Rabi frequency g.
The loss channels are spontaneous emission �rate 2�� and cavity
loss �rate 2��.
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U0 =
g2�A

�A
2 + �2 , 	0 =

g2�

�A
2 + �2 �3�

describe the dispersive and absorptive effects of the atoms,
respectively, as they shift and broaden the resonance line of
the cavity. In the last term of Eq. �2b�, the integral represents
the averaging over the angular distribution N�u� of the ran-
dom recoil due to spontaneous emission into the free-space
modes.

Instead of directly using the density matrix, we consider
the evolution of the corresponding joint atom-field Wigner
function �35�. This can be systematically approximated by
semiclassical equations for a set of classical stochastic vari-
ables �, p j, and r j, the index j=1, . . . ,N labeling the atoms,

�̇ = i��C − U0�
j

cos2�kzj��� − �� + 	0�
j

cos2�kzj���

− 
eff�
j

cos�kzj�cos�kxj� + ��, �4a�

ṗxj
= − �U0�
/g�2 �

�xj
cos2�kxj�

− i��
eff
* � − 
eff�

*�
�

�xj
cos�kxj�cos�kzj� + �xj

,

�4b�

ṗzj
= − �U0���2

�

�zj
cos2�kzj�

− i��
eff
* � − 
eff�

*�
�

�zj
cos�kxj�cos�kzj� + �zj

, �4c�

where the effective pumping strength for the cavity mode is


eff =

g

− i�A + �
. �5�

These equations include Langevin noise terms ��, �xj
, and �zj

,
defined by the nonvanishing second-order correlations

��
*��� = � + �

j=1

N

	0 cos2�kzj� , �6a�

�n��� = i�	0�nE�r j�cos�kzj� , �6b�

�n�m� = 2�2k2	0�E�r j��2un
2nm + �2	0��nE*�r j��mE�r j�

+ �nE�r j��mE*�r j�� , �6c�

where the indices n ,m=xj ,zj. The noise terms associated
with different atoms are not correlated. The complex dimen-
sionless electric field E�r� is derived from Eq. �2c�, replacing
the field operator a by the complex variable �. We iterate the
coupled, stochastic Ito-type differential equations �4� by a
Monte Carlo–type algorithm.

There are two types of force terms in the equations of the
momentum components. The terms in the first lines derive
from the usual one-dimensional “optical lattice” potentials;

the laser pump keeps the atoms inside the resonator via this
term. In the second lines, the force terms originate from the
coherent redistribution of photons between the pump and
field mode. The potentials depending on the amplitude �,
which itself is a variable, are not conservative �all but the
optical lattice created by the transverse pump�. The time-
delayed correlations in the dynamics of the atomic motion
and the field mode can result in a friction force on the atoms,
known as cavity cooling �11,35–41�.

III. SELF-ORGANIZATION

We study he motion of the atoms in the cavity by numeri-
cally integrating the set of stochastic ordinary differential
equations �4�. To be specific, 85Rb was considered, with the
5 2S1/2 ,F=3↔5 2P3/2 ,F=4 transition. Starting from a gas of
thermal atoms �random positions from a uniform and veloci-
ties from a thermal distribution� and no light in the cavity
mode ��=0�, with the right choice of parameters we observe
a buildup of the cavity field accompanied by the appearance
of an organized pattern in the spatial distribution of the at-
oms. This is illustrated in Fig. 2, where the trajectories of 40
atoms during the initial 50 �s of a run are shown. The grid
lines denote points of maximum coupling to the standing-
wave cavity or pump field. Trapped atoms are oscillating
about intersections of grid lines, where a single atom can
scatter pump photons into the cavity mode most efficiently.
For many atoms, however, destructive interference can in-
hibit the scattering process: the source term in Eq. �4a� con-
tains the factor � j cos�kxj�cos�kzj�, which can be small even
if all the atoms are maximally coupled due to the alternating
signs of the summands. In contrast to this, in Fig. 2, only
every second “maximally coupled” site—the black or the
white fields of a checkerboard—is occupied, leading to an

FIG. 2. �Color online� Two-dimensional trajectories of 40 ru-
bidium atoms in a cavity, during the initial 50 �s. A checkerboard
pattern of trapped atoms emerges; untrapped atoms move mainly
along the cavity axis. Parameters: �=20/�s, �g ,��= �2.5,0.5��,
atomic detuning �A=−500�, cavity detuning �C=−�+NU0, and the
pumping strength 
=50�.
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efficient Bragg scattering of pump photons into the cavity.
The emergence of a checkerboard pattern of atoms with

every second point of maximum coupling empty happens
only due to the good choice of the parameters, ensuring posi-
tive feedback, as explained in the following. Initially, in the
random position distribution some atoms scatter into the cav-
ity in a given phase and some with an opposite phase, and
thus most of the scattered field is canceled. The dipole force
�first term of Eq. �4b�� attracts atoms towards antinodes of
the pump �for red detuning, �A�0�, but almost no field in
the cavity means no substantial modification of the uniform
position distribution along the cavity axis. This can be seen
in Fig. 2, where most atoms are well trapped along the trans-
verse axis but some meander along the cavity axis. Due to
statistical fluctuations, either the in-phase or opposite-phase
scatterers will be in a tiny majority and a small cavity field
does build up. The dipole force due to the cavity field, first
term of Eq. �4c�, now attracts atoms towards antinodes of the
cavity. The crucial point to consider is the interference of the
cavity and pump fields, giving the second terms in Eqs. �4b�
and �4c�. The product cos�kxj�cos�kzj� alternates sign be-
tween the black and white fields of the checkerboard. For a
right choice of detuning �C, there is a positive feedback and
the atoms are attracted towards the “majority” sites and are
repelled from the “minority” sites, due to the interference.

The initial fast buildup continues over a longer time scale,
with the kinetic energy of the oscillating and free-flying un-
trapped atoms dissipated owing to the cavity cooling mecha-
nism �for the transverse pumping case and for the chosen
detuning �C, it is the one described in Ref. �36��. This leads
to an increase of the ratio of trapped atoms and to a stronger
localization in the vicinity of the antinodes. Simultaneously,
the coherent scattering into the cavity improves, giving a
slow increase in the cavity field intensity. The time evolution
of the photon number is plotted in Fig. 3 for this self-
organization process of 40 and 160 atoms. In the latter case,
the photon number scale was rescaled by a factor of 16. This
way, the overlap of the two curves demonstrates the super-
radiance effect; i.e., the intensity is quadratically propor-
tional to the atom number.

In this phase-transition-like process, the reduction of the
kinetic energy is not a good characterization of the cooling

efficiency. For the motion along the cavity axis, the transition
from vanishing photon number to the “superradiated” light
field is accompanied by a change of the heat capacity of the
atomic ensemble since the number of quadratic degrees of
freedom changes from 1 �kinetic energy� to 2 �kinetic and
potential energy�. In deep harmonic traps, even a very low
level of excitation can correspond to high kinetic energies.
Thus even though the temperature can increase, cavity-
induced dissipation increases the phase-space density of the
system by improving localization. An appropriate measure of
this process is the effective phase-space volume of the sys-
tem �the inverse of the phase-space density�, measured by the
Heisenberg uncertainty product �x�px /� and �z�pz /� for
each degree of freedom. Here ��x�2 and ��z�2 are the aver-
ages of the squared distance of the atom from the nearest
antinode along the directions x and z, respectively. For a
harmonic potential, the dimensionless effective phase-space
volume amounts precisely to the mean number of excitation
quanta. For untrapped atoms with mean kinetic energy
p2 /m�=kBT, the phase-space volume is ��mkBT / �4�3��.

In Fig. 4, the time evolution of the Heisenberg uncertainty
product is shown for three cases. When the pumping strength
is below threshold �N=40, 
=10��, the uncertainty product
is a constant. Here the spatial distribution of the atomic en-
semble remains uniform—the transverse pump is too weak
to induce any noticeable spatial modulation at temperatures
kBT���. Thus �z�pz�=const and �x�px�=const reveal

FIG. 3. �Color online� The time evolution of the photon number
in the cavity on a long time scale, for N=40 and N=160 atoms
�note the different vertical scaling�. The parameters are the same as
in Fig. 2

FIG. 4. �Color online� Evolution of the phase-space volume,
along the cavity axis �up� and along the transverse pump �bottom�,
on a long time scale for various settings, the same parameters as in
Fig. 3. The number of atoms is N=40 and N=160 �black line� and
N=40 but pumped below threshold, 
=10�, for the dashed line.
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that the temperature itself does not change in either direction.
At the cavity cooling limit kBT=�� the numerical value for
the phase-space volume from the last paragraph is 13.4�, in
accordance with the value along the transverse x direction.
Along the cavity axis z, however, the phase-space volume is
above this estimate, indicating a higher temperature. Above
threshold, the phase-space volume transiently jumps to high
values for both directions and then it is gradually decreased.
Compression is apparently more efficient along the cavity
axis; here, the phase space goes considerably below the value
corresponding to the uniform distribution. In both plots the
two curves corresponding to N=40 and N=160 are very
similar, which manifests that the cooling rate of the ensemble
is independent of the atom number. This is a very important
observation, being at variance with the expectation that the
efficiency of cavity cooling mechanism is reduced for in-
creasing number of atoms. This prediction was made for a
setup where the external pump field is injected directly into
the cavity. Apparently it does not apply to the transverse
pumping case studied here.

With the help of these few examples, we surveyed three
important properties appearing in the dynamics of a laser-
driven atomic ensemble coupled to a cavity mode: �i� the
system rapidly self-organizes into a checkerboard pattern in a
trapping field, �ii� which is generated by a collective, super-
radiant scattering into the cavity, and finally, �iii� the energy
of the atoms is dissipated at a rate independent of the number
of atoms. This behavior requires a sufficiently strong pump-
ing strength, indicating the possibility of a well-defined
threshold separating two different stability regions. This
threshold is discussed in the next section within the frame-
work of a mean-field approximation.

IV. MEAN-FIELD APPROXIMATION

The essence of the self-organization process can be under-
stood on the ground of conservative mean-field forces acting
on the atoms. This amounts to treating the cavity field as if it
responded immediately to the positions of the atoms. Cavity
cooling, which is directly related to the time lag of the cavity
field, is absent in this model. Moreover, the mean-field ap-
proach corresponds to the thermodynamic limit of the sys-
tem: N→�, g→0, �=const with Ng2=const. Physically, the
limit can be thought of as taking larger cavities �cavity length
lcav→�� filled with a gas of atoms of constant density �atom
number N� lcav�. Due to the V−1/2 dependence of the cou-
pling constant g on the mode volume V, one then has Ng2

=const, neglecting the variation of the waist of the mode.
Moreover, due to larger photon travel time between the mir-
rors, the reflectivity has to scale like �lcav

−1 to keep �=const.
For the sake of simplicity, we analyze one-dimensional �1D�
motion along the cavity.

A. Potentials

Taking xj =0, j=1, . . . ,N, according to Eq. �4c� each atom
moves in a potential

V�z� = U2 cos2�kz� + U1 cos�kz� �7�

composed of the sum of a � /2 periodic potential stemming
from the cavity field and a � periodic one arising from the

interference between cavity and pump fields. The potential
depths are given by

U2 = N2cos�kz��2�I0U0, �8a�

U1 = 2Ncos�kz���I0��C − NU0cos2�kz��� . �8b�

These, in the mean-field approximation, depend on the posi-
tion of the individual atoms only via the mean value

� = cos�kz�� =
1

N
�
i=1

N

cos�kzi� , �9�

which can be considered a spatial order parameter, and via
the bunching parameter

B = cos2�kz�� =
1

N
�
i=1

N

cos2�kzi� . �10�

The order parameter � has characteristic values: �i� ��0
describes the uniform distribution, and �ii� �→ ±1 corre-
sponds to a self-organized phase with atoms in the even or
odd antinodes, respectively. Finally, I0 represents the maxi-
mum number of photons each atom can scatter into the
cavity

I0 =
�
eff�2

�� + N	0B�2 + ��C − NU0B�2 . �11�

In equilibrium the spatial distribution of the atoms and the
above averages are time independent, which makes it pos-
sible to attribute a physical meaning to the potential �7�.
Since the potential depends on the position distribution, how-
ever, the system is highly nonlinear.

For U0�0, obviously U2�0 and the cavity field gives a
potential with “even” wells at kz=2n� and “odd” ones at
kz= �2n+1��. The interference term ��cos�kz�� discrimi-
nates between the even and odd sites, raising the energy of
one of them and lowering that of the other. If 2�U2�� �U1�,
this effect is so strong that V�z� yields a potential with wells
at the even and hills at the odd sites—or the other way
around, depending on the sign of U1.

The sign of U1 is crucial. To simplify the dependence, let
us require a cavity detuning �C�−N�U0� so that the second
factor in U1 is always negative regardless of the momentary
configuration of the atoms. To be specific, in the following
we are going to use

�C = NU0 − � . �12�

If the atoms accumulate around the even �odd� antinodes,
then �� +1 ���−1� and the U1 cos kz potential is attrac-
tive at the even �odd sites�, while repulsive at the odd �even�
sites. Therefore Eq. �12� is the proper choice for positive
feedback that makes the runaway solution of self-
organization possible.

Two more parameters describing spatial order are used
later in this work: �i� the “defect ratio,” the ratio of atoms
closer to minority sites than majority sites; and �ii� the “lo-
calization parameter,” the position variance �along the cavity
axis and/or the transverse pump�:
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Dz =
1

N
�
i=1

N � kzi

�
	2

, �13�

where zi is measured from the nearest antinode of the cavity
mode function. A uniform distribution of atoms gives a de-
fect ratio close to 50% and a localization parameter of 1 /12.
For a self-organized pattern, both parameters approach 0.

B. Canonical distribution

We suppose that the phase-space distribution of the atoms
factorizes to position and momentum dependence, the latter
simply given by a thermal distribution with mean energy
kBT. There is no external finite-temperature heat bath to set
kBT; it is instead determined by the dynamics �4� through the
equilibrium of the cavity cooling and the Langevin noise
terms. This allows for a position- and time-dependent effec-
tive temperature, effects neglected in this model. For a far-
detuned pump, cavity losses dominate spontaneous emission
and an estimate kBT��� is provided by the Einstein rela-
tion. The spatial density of the atoms in the potential V�z� is
then given by a canonical distribution

��z� =
1

Z
exp�− V�z�/�kBT�� , �14�

with the partition function Z=� exp�−V�z� / �kBT��dz ensuring
that ��z� is normalized to unity. In our case the potential V�z�
is a function of the density ��z�; therefore, this equation has
to be solved in a self-consistent manner.

A direct approach to solving Eq. �14� is to use it itera-
tively to determine the ��z� for given values of the physical
parameters. We set the temperature to the cavity cooling
limit kBT=��. Note that the temperature parameter T just
rescales the pumping strength 
; e.g., taking kBT=2��
would correspond to increasing 
 by a factor of �2. The
results thus obtained after 100 iterations of Eq. �14� for an
experimentally realistic example are shown in Fig. 5 �open
diamonds�. There we plot the percentage of atoms near odd
sites—i.e., with ��2m+1�� /2−z��� /4 for any integer m—as
a function of the pumping strength. Below a certain thresh-
old in the pumping laser amplitude 
* �vertical dotted line�
the atoms are distributed uniformly; for stronger pumping,
this symmetry is broken. Two examples of such self-
organized position distributions obtained by the iterations are
shown in the insets. Note also that the convergence of the
iterations is slow near the critical 
* �critical slowing down�;
this is evidenced by plotting the results after 10 iterations
�solid circles� as well.

The uniform distribution ��z�=1/� leads to �=0, B
=1/2, which give V�z�=0; thus, the distribution fulfills Eq.
�14� trivially for any values of the physical parameters. To
investigate its stability, we add an infinitesimal perturbation
to it,

��0��z� =
1

�
+ �g�z�

1

�
, �15�

with � infinitesimal, and the general �-periodic perturbation
function

g�z� = �
m=1

�

�Am cos�mkz� + Bm sin�mkz�� ,

�
m

Am
2 + Bm

2 = 1. �16�

Since the spatial average of g�z� disappears, ��0��z� is nor-
malized to 1. Iterating Eq. �14� once leads to the new density
function

��1��z� =
1

�
− N�

A1

�

�I0

kBT
��C −

N

2
U0	cos�kz� + o��2� .

�17�

To lowest order in � the only relevant perturbation is that
proportional to cos kz. Stability requires that the first-order
correction in � be self-contracting. Substituting Eq. �12� for
the cavity detuning, we have the following instability thresh-
old for the uniform distribution:

NI0��N

2
�U0� + �	 � kBT . �18�

For far-detuned atoms ��A��Ng2 /�; i.e., when the total cav-
ity mode shift by the atoms is much smaller than the cavity
linewidth, N�U0���. This translates into the following
threshold on the pumping strength:


 � 
* =�kBT

��

���A�
�Ng

�2. �19�

This approximation of the critical value 
* is in good agree-
ment with the simulations shown on Fig. 5, giving 
*

=35.4�, which differs by less than � from the actual value.
To make the physical content more transparent, this condi-
tion can be expressed in terms of the transverse pumping
power density �energy/unit area/unit time� as

FIG. 5. �Color online� Numerical iterations of the mean-field
approximation. The percentage of atoms near odd sites after 10
�solid circles� and 100 �open diamonds� iterations is shown varying
the pumping strength 
. The vertical line is at 
* of Eq. �19�. The
two insets show two steady-state position distribution functions at
two different pumping strengths. Parameters: �=� /2, �A=−500�,
Ng2=200�2, �C=−�−Ng2 / ��A�, and kBT=��.
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Pin � kBT��A

�
	2

�
4k3

3N/V
. �20�

As shown in the next section, the condition �19� amounts to
requiring that the potential depth along the cavity axis of a
self-organized checkerboard pattern exceed significantly the
energy scale of thermal fluctuations.

C. Critical exponent

The stability analysis of the uniform distribution of atoms
��z�=1/� has revealed the critical value of the pumping
strength 
*. Moreover, we have seen that for 
�
*, the
relevant perturbation gives

��z� = 1/� + � cos�kz�/� . �21�

Going beyond first-order perturbations, the above formula
allows us to solve Eq. �14� self-consistently.

Pumping the atoms slightly above threshold, 
=
*�1
+�, with �1, we expect Eq. �21� to give a good approxi-
mation of ��z�, with � depending nonlinearly on . Substi-
tuting it into Eq. �14� we need to expand the exponential to
third order to obtain a solution to lowest order in the small
parameters. This analytical calculation yields ��1/2; i.e.,
above the critical value, � increases from 0 as the square root
of the dimensionless excess pumping strength. The order pa-
rameter �=� /2 and the percentage of majority atoms �2� /��
both depend linearly on the small parameter �. Therefore, the
analytical result shows the critical exponent of this phase
transition to be 1

2 .

V. NUMERICAL SIMULATIONS OF THE PHASE
TRANSITION

In the mean-field description of the steady state, the num-
ber of atoms enters only in the form of the atomic density
N /V�Ng2. The approximation is expected to be valid in the
thermodynamic limit—i.e., N→� with the atomic density
and the cavity loss rate constant. Trying to approach this
limit in simulations of Eq. �4� we are in for a surprise. In Fig.
6, we show the measured percentage of defect atoms after
4 ms of simulation time as a function of the pumping laser
strength. The thermodynamic limit is approached in three
steps: N=50, 200, and 800. The parameters are the same as
in Fig. 5; the atoms had random initial velocities from a
thermal distribution with average kinetic energy ��. The ini-
tial positions were either uniformly distributed �“up”� or at
“odd” points of maximal coupling �“down”�. In this con-
trolled way we mimic the ramping of the laser power. Al-
though the “down” curves show reasonable agreement with
the mean-field result, the “up” curves scale anomalously: a
hysteresis is observed, whose breadth increases with the
atom number.

The hysteresis effect observed in Fig. 6 but absent from
the mean-field prediction is due to the long time scales asso-
ciated with reaching a steady state. In fact, thermal fluctua-
tions do not only alter the equilibrium solution by smoothing
out the concentration differences due to the dynamics �this is
correctly rendered by the mean-field approach�, but they can

also delay significantly the onset of that equilibrium. This
slowing down is effective if the energy scale of thermal fluc-
tuations is at least of the same order as the potential diffences
due to the statistical fluctuations in the initial positions of the
atoms.

The statistical fluctuations for a finite uniformly distrib-
uted atomic ensemble lead to �N−N� /2 atoms around the
kz=2n� and �N+N� /2 atoms are around the kz= �2n+1��
positions. Taking uniform distributions around the respective
antinodes, we have � cos�kzi��2N /� and � cos2�kzi�
�N /2. The potential difference then reads

�E = 2�U1� = �I0
8N

�
�� − N�U0�/2� = �

4N

�


2g2

��A
2 . �22�

For the final expression in the second line, we considered the
far-detuned regime ��A������g and N�U0�, N	0��.

The self-organization occurs “instantly” if the trap depth
originating from the statistical fluctuations exceeds the aver-
age kinetic energy kBT of the atoms. Using the expectation
value of the finite-size fluctuations, N��N, we obtain


 � 
↑ =�kBT

��

���A�
N1/4g

��

2
. �23�

Comparison with Eq. �19� gives 
↑=�� /8N1/4 
*: the func-
tional dependences of the two thresholds on the physical
parameters are the same, except for the “anomalous” scaling
of 
↑ with N as the thermodynamic limit is approached.

To check the laboratory time-scale threshold for self-
organization �23�, we performed simulations with the same
physical parameters as in Figs. 5 and 6, starting from uni-
formly distributed atoms, but this time increasing the atom
number with Ng4=const. In Fig. 7, the percentage of defect
atoms is plotted as a function of the pumping 
. These nu-
merical results confirm that the threshold depends on Ng4;
moreover, the value 
↑=83� from Eq. �23� with kBT=�� is
also consistent with the simulations. In the transition regime,
there is a remarkable overlap of the curves corresponding to

FIG. 6. �Color online� Ratio of defect atoms against pumping
strength 
, 4 ms after the loading of the trap with a uniform �“up”�
or organized �“down”� gas of atoms. The different curves show the
approach towards the thermodynamic limit. The parameters are the
same as in Fig. 5.
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various numbers of atoms with keeping Ng4 constant, indi-
cating that the equilibration time also scales with Ng4.

The “down” curves of Fig. 6 are invariant with respect to
the thermodynamical limit, but the threshold they give is
only 50%–80% of the mean-field prediction 
* of Eq. �19�.
Again, this can be explained with an argument based on the
comparison of energy scales. Instead of the statistical fluc-
tuations in the position distribution, we now have a well-
defined initial state � cos kzi=� cos2 kzi=N. The threshold
�E�kBT now gives the particularly simple result 
�
↓
=
* /2. This is slightly below the “down” curves of Fig. 6;
the difference can be attributed to the nonoptimal coupling
due to the position spread of the trapped atoms.

In the last curve of Fig. 7, N=3200, the atom-cavity cou-
pling g is the smallest parameter, and thus the system does
not strictly realize the strong-coupling regime of cavity
QED. In fact, self-organization does not depend on strong
coupling: small g can be compensated by increasing the
number of atoms. We remark that the experimental setup of
�21� was also operated out of the strong-coupling regime.

VI. STABLE DEFECT ATOMS

The curve in Fig. 7 corresponding to N=3200 deviates
slightly from the other data and for large pumping strength it
converges to a nonzero value of the defect atoms. In fact, for
the parameters chosen there, defect atoms can be stably
trapped at the minority sites of the checkerboard of maxi-
mally coupled points, which presents another important
physical element of the system beyond the capabilities of the
simple mean-field theory. In the following we discuss the
condition for the appearance of defects and the upper limit
on their number.

For the analytical treatment of the defect atoms we use the
1D model of Sec. IV. If the atoms are perfectly self-
organized—say, kzj =2nj� with integer nj for every j—then
the potential depths of Eqs. �8a� scale with the number of
atoms as U2=−N2I0�U0� and U1=−N2I0�. Thus, for large
enough N, the � /2-periodic potential is dominant and atoms
can be trapped in the minority sites. These stable “defect”

atoms reduce the superradiant scattering of the self-
organized pattern.

How many defects can stably reside in the pattern? For
simplicity, we take N−M atoms exactly at kz=2n� and M
�N /2 “defect” atoms at kz= �2n+1��, neglecting the posi-
tion spread. We then obviously have � cos�kzi�=N−2M and
� cos2�kzi�=N. Substituting this and the prescription �12� for
the cavity detuning into Eq. �8a� we obtain

U2 = − �N − 2M�2�U0��I0, �24a�

U1 = − 2�N − 2M��I0� , �24b�

I0 =
�
eff�2

�� + N	0�2 + �2 . �24c�

Defect atoms can persist if at every kz=n� there is a poten-
tial minimum

0 � 2�U2� − �U1� = 2�I0�N − 2M���N − 2M��U0� − �� ,

which entails

N

2
−

�

2�U0�
� M . �25�

If some defect atoms appear, the rise in their number is lim-
ited by the above inequality. In particular, if the left-hand
side is negative, there can be no stable defects: the condition
for the possibility of stable defects reads

N � Nthr =
�

�U0�
. �26�

Note that this threshold is independent of the pumping
strength. The maximum number of defects is limited by

M � Mmax =
N − Nthr

2
. �27�

Working at large atomic detuning �U0��g2 / ��A�, we find that
defects can appear if the total mode frequency shift due to
the atoms exceeds the cavity linewidth:

Ng2 � ���A� . �28�

This inequality puts a lower bound on the atomic density.
Equivalently, it amounts to an upper bound on the atomic
detuning �A: to avoid the occurrence of defects a large de-
tuning can be chosen. This ��A��Ng2 /� is exactly the “far-
detuned” limit of the previous sections, used to derive the
thresholds 
*, 
↑, and 
↓. Likewise, none of the curves in
Fig. 6 satisfy Eq. �28�. In Fig. 7, however, the curve corre-
sponding to N=3200 is above the critical density �28�.

For comparison to the full solution of the dynamics, we
numerically simulated Eqs. �4� at fixed �=� /2, g=5� /2,
�A=−500�, and 
=50�. The number of atoms was varied
from 0 to 200; 25 runs with different random seeds were
performed for each atom number for a duration of 5 ms. The
conditions for self-organization derived in Secs. IV and V
give for this parameter setting a threshold atom number N
�10–40 �for kBT=��−���.

FIG. 7. �Color online� Ratio of defect atoms in the ensemble
�measure of the spatial order� as a function of the control parameter

 �given in units of ��. There is a clear threshold for self-
organization which is independent of the atom number provided
Ng4 is kept constant. Parameters are the same as in Figs. 6 and 5.
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The numerical results presented in Fig. 8 show that the
ratio of defect atoms averaged over the 25 trajectories is well
below 50%. For small atom numbers this is merely a “finite-
size” effect compatible with a balanced binomial distribu-
tion. For 15 atoms the defect ratio is still about half; for 18
atoms it is only a quarter of that expected from the uniform
distribution. The ratio then drops down to the percent range,
indicating stable self-organization, for 50 or more atoms.
Concerning the appearance of defect atoms, Eq. �26� gives
N�Nthr�40. Due to nonperfect bunching, this threshold is
shifted to somewhat higher values. The inset of Fig. 8 shows
the absolute number of defect atoms after 5 ms, averaged
over the runs: the minimum at N�60 followed by a rise can
be identified with the threshold, which is in accordance with
the previous, simple estimate.

The transition from the perfectly ordered phase to the one
where defect atoms can be present manifests itself in the
statistical properties of the system. As discussed in Sec. III,
the appropriate measure of the thermal excitations is the
phase-space volume, given by the Heisenberg uncertainty
product �z�pz /�. In Fig. 9, this is plotted as a function of
the atom number: both the final phase-space volume of indi-
vidual runs after 5 ms �dots� and the average over these tra-
jectories after 2, 3, 4, and 5 ms �solid lines� are shown. For
very few atoms, the phase-space volume is scattered around
the value of 13.4, corresponding to uniform spatial distribu-
tion and mean kinetic energy kBT=��. For N�50, the de-
crease of the average phase-space volume and the reducing
variance around the mean show that the more stable the self-
organized pattern, the less thermally excited the system is. At
N�60, a broad peak �due to the transition to a double-well
potential� heralds the appearance of stable defect atoms. This
is followed by a slow but steady increase, which can be
attributed to the rising percentage of defects.

To indicate some of the dynamics, Fig. 9 shows the
Heisenberg product at earlier times as well: at 2, 3, and 4 ms.
The appearance of defect atoms slows down the equilibration
process, but the respective curves converge uniformly to the

one obtained at 5 ms. This demonstrates that the cooling
time is closely independent of the atom number.

VII. COLLECTIVE EFFECTS IN THE SELF-ORGANIZED
PHASE

The most direct evidence of cooperative action is super-
radiance into the resonator mode that can be measured by
detecting the power output from the cavity. In the self-
organized checkerboard pattern each atom radiates with the
same phase, and so the cavity photon number ���2 increases
quadratically with the number of atoms. This can be ob-
served in the numerical simulations of Eqs. �4�, gradually
increasing the number of atoms as detailed in the previous
section. The cavity photon number is shown on a logarithmic
scale in Fig. 10. For many atoms in the cavity �N�20� the
intensity data are well approximated by the fitted quadratic
function ���2=0.08N2. The steady-state solution of Eq. �4a�
reads

���2 = I0cos�kzj�cos�kxj��2N2. �29�

If all atoms are perfectly at the antinodes
�cos�kzj�cos�kxj��2=�=B=1�, this yields a coefficient of

FIG. 8. �Color online� Defect atom ratio 5 ms after loading the
trap as a function of the atom number. Each point is an average over
25 runs of the simulation. The inset shows the average number
defects. The physical parameters are �=� /2, g=2.5�, �A=−500�,
and 
=50�.

FIG. 9. �Color online� The normalized phase-space volume of
the system. Dots represent the values taken at individual trajectories
at 5 ms; the thick solid line is their average. The thin lines corre-
spond to the average over the trajectories at 2, 3, and 4 ms. The
physical parameters are the same as in Fig. 8.

FIG. 10. �Color online� Photon number in the cavity 5 ms after
loading. At high atom numbers �N�20� the simulation results
�dots� are fitted well by a quadratic function �black line�, indicating
that the atoms scatter cooperatively. The physical parameters are the
same as in Fig. 8.
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0.125. The value from the simulations is 30% below this: the
difference can be attributed to the position spread and to the
defect atoms.

The superradiance has important effects on the spatial dis-
tribution of the atoms about their respective field antinodes.
With increasing number of atoms the trap deepens so that the
size of the atomic clouds about the antinodes is compressed,
as shown in Fig. 11. We note again the appearance of the
shoulder at N�60 due to the transition into the double-well
potential with stable defect atoms. Apart from this, the over-
all decrease of the localization parameter in the range N
=10, . . . ,200 is proportional to 1/N. As we show below, this
scaling law can be derived by a careful examination of the
self-generated trap potential.

We consider one-dimensional motion of the atoms in the
limit where they are strongly localized in the vicinity of the
antinodes. In this limit of harmonic oscillation the field am-
plitude in Eq. �4a� is coupled to the atomic positions only
through the sum �zi

2—i.e., through the localization param-
eter defined in Eq. �13�. It is instructive to introduce new
coordinates in the configuration space: the mean radius r
=��zi

2 /N, and a number of N−1 angular coordinates � j with
canonically conjugate momenta p�j =Nmr2�̇ j, these latter de-
coupled from the field dynamics. Only the radial motion is
damped by the cavity cooling mechanism; the angular ones
are not. For the coordinate r the potential is composed of the
harmonic attraction �r2 and a centrifugal repulsion �1/r2.
There is a potential minimum and the radius is damped into
it by cavity cooling. For large number of atoms the cloud
size at an antinode can be simply estimated by the radius at
the potential minimum. In this way we discard the role of
fluctuations in this coordinate, assuming that the variance is
much smaller than the mean.

For a quasistationary field amplitude, the harmonic poten-
tial is m�2Nr2 /2 with vibration frequency

� =��k2

m
� �U0�


g
��� + 2�U0����2	 . �30�

The angular kinetic energies are of the form p�j

2 / �2mNr2�,
j=1, . . . , �N−1�. The momenta p�j

can be estimated by their

initial value in the unorganized phase, when all degrees of
freedom have the same energy kBT /2 and the radius is r
=� /�48. The potential minimum is just at the radius where
the harmonic potential energy equals the sum of the centrifu-
gal energies. Simple algebra leads to the cloud size

r2 �
�2

8��3
� kBT

��U0�
�


g
��� + 2���2	−1/2

, �31�

and since ���2�N2, the 1/N law for the localization param-
eter follows. Altogether, the increase in atom number results
in a smaller cloud size in the vicinity of the antinodes, a very
important virtue of the collective atomic action. This com-
pression is limited by the dipole-dipole interaction of the
atoms near the same antinode, which effect was not taken
into account in the present model.

VIII. CONCLUSION

A dilute cloud of noninteracting cold atoms in a high-Q
cavity can undergo a phase transition if driven from the side
by a laser sufficiently red detuned from an atomic resonance.
Increasing the laser power above a threshold the atoms self-
organize into a lattice so as to scatter most effectively into
the cavity mode. In this way the atoms minimize their energy
in the optical potential generated from the interference pat-
tern of the cavity and pump field. Under proper conditions
the atoms are cooled in this process, giving long-term stabil-
ity to the pattern.

The phenomenon has been previously seen in simulations,
and strong evidence was found in experiments �21�, but
threshold, scaling, and efficiency of the effect with atom
number, cavity parameters, and system size remained un-
clear. Here we gave a thorough analytical discussion of the
effect. A continuous density approach allowed us to derive
analytical formulas for the critical pump power as a function
of atom number and cavity volume and showed that the ef-
fect should persist if one scales up the volume at fixed
atomic density, i.e.—Ng2=const. Numerical simulations of
the evolution for finite durations revealed a hysteresis be-
tween the ordered and homogeneous density phases on vary-
ing the control parameter—i.e., the pumping strength. This
shifts the observable threshold in the pumping strength,
which then scales with Ng4. We still have a cooling mecha-
nism for large numbers of any type of optically polarizable
particles.

The system is composed of noninteracting atoms that
communicate via a commonly coupled, single cavity mode.
The cavity component of the system plays a multiple role.
First, the binding energy of the ordered phase is stored in the
superradiantly enhanced field intensity of this single mode.
Next, as an attractive feature of this system, the outcoupled
field intensity directly serves as a possibility of time-resolved
monitoring of the formation of the ordered phase. Note that
in setups without resonator, the uncontrolled scattered field
can lead to a binding of micrometer-sized particles in an
ordered pattern in liquid �42,43�. In the cavity scheme, fi-
nally, the viscous motion is provided by the dynamically
coupled single-mode cavity field. Apart from the geometry,

FIG. 11. �Color online� The localization parameter Dz

=�i�kzi /��2 /N measured by the simulation �dots� and averaged
over runs �solid black line� shows an overall 1 /N dependence as a
function of the atom number. The dashed line is the approximation
of Eq. �31�. The physical parameters are the same as in Fig. 8.
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this is also a distinctive feature with respect to CARL.
From the laser cooling point of view, the picture is com-

plicated by the phase transition. The appropriate measure of
the cooling efficiency is the phase-space volume occupied by
the system. The self-organization process reduces this vol-
ume below that of a system at the cavity cooling limit with
uniform spatial distribution. Moreover, the steady state is
established within milliseconds, and this is closely indepen-
dent of the number of atoms in the cloud �numerical simula-
tions confirm this up to a few hundreds of atoms�. Collective
cooling was previously known only for the stochastic cool-
ing method �44� and for common vibrational modes of
trapped particles �45�. The collective behavior strongly im-
proves the localization; i.e., the size of the atom cloud pieces
at the trapping sites is proportional to the inverse of the atom
number.

This work could be extended to various directions. First
of all, the numerical simulations should confirm some of the
statements of the present paper on a larger range of the atom
number or on a longer time scale �e.g., the dependence of the
hysteresis on the duration of the evolution�. Our prescription
for the pump-cavity detuning �C in Eq. �12� is probably
impractical in the limit of large atom numbers, as one has to
go closer to the resonance in order to initiate the self-

organization. Next, the maximum achievable densities can-
not be determined in the present model as some of the lim-
iting factors were omitted—e.g., vacum-mediated dipole-
dipole interactions between the atoms, the eventual
superradiant enhancement of the spontaneous scattering into
lateral directions, etc. In extremely good cavities, quantum
effects in the motion of the atoms begin to play an important
role �46,47�, which was not studied here. Finally, the nature
of the phase transition is strongly determined by the geom-
etry of the cavity mode: the possible trapping sites are de-
fined by the antinodes of the cavity mode and the transverse
pumping field. This situation can be essentially modified
in a cavities with different geometry—e.g., ring or confocal
resonator.
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