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This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated
Raman adiabatic passage �STIRAP�. The approach uses adiabatic elimination of weakly coupled density matrix
elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of
population transfer efficiency is found to decrease exponentially with the factor �0

2 /�, where � is the sponta-
neous emission rate and �0 is the peak Rabi frequency. The transfer efficiency increases with the pulse delay
and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into
optical pumping.
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I. INTRODUCTION

Stimulated Raman adiabatic passage �STIRAP� �1–4� is a
simple and powerful technique for complete and robust
population transfer in three-state quantum systems. In this
techique, the population is transferred adiabatically from an
initially populated state �1� to a target state �3�, which are
coupled via an intermediate state �2� by two pulsed fields,
pump and Stokes. Quite a remarkable and unique feature of
STIRAP is that during the transfer the population remains
trapped in a dark state �d�t��, which is a time-dependent su-
perposition of states �1� and �3� only and does not involve the
intermediate state �2�. Such a dark state is formed by main-
taining the two-photon resonance between states �1� and �3�.
If the pulses are ordered counterintuitively, the Stokes before
the pump, then state �d�t�� is associated with state �1� initially
and state �3� in the end, thus providing an adiabatic route
from �1� to �3�.

Real physical systems are rarely perfect. Real atoms and
molecules can be exposed to various decoherence effects,
such as phase relaxation �dephasing� and population losses
due to spontaneous emission or ionization.

Losses from the intermediate state �2� to other states out
of the system are treated relatively easily because one can
use the Schrödinger equation and model the losses by includ-
ing an imaginary decay rate in the Hamiltonian �5�. In the
adiabatic limit state �2� never gets populated and its decay is
irrelevant. However, if the decay rate becomes sufficiently
large then adiabaticity breaks down and the transfer effi-
ciency of STIRAP decreases �5�.

Phase relaxation is a more subtle effect, as far as STIRAP
is concerned, because its effect is indirect: it destroys the
coherence between states �1� and �3�, which leads to depopu-
lation of the dark state �d�t�� and subsequent loss of effi-
ciency �6–8�. Recently, we have provided an analytic de-
scription of the dephasing effects on STIRAP and we have
derived simple analytic estimates of the transfer efficiency
�8�. Treating dephasing is more difficult than population loss
because it requires the use of the density-matrix Liouville
equation, which is considerably more complex than the
Schrödinger equation.

We also mention another very recent work, where instead
of trying to avoid population decay, STIRAP has been used
in a ladder system to steer the population flow out of the
system, that is to enhance fluorescence from state �3� and
suppress that from state �2� �9�.

In this paper, we present an analytic description of STI-
RAP in the presence of spontaneous emission from the inter-
mediate state to the other two states within a � system. This
problem is considerably more difficult than the description of
losses to states outside the system or dephasing because
spontaneous emission occurs from a state, which is unpopu-
lated in the adiabatic limit; hence one cannot use the adia-
batic solution of the Liouville equation in this case. We de-
rive the solution by using a dark-excited-bright basis and by
adiabatically eliminating all weakly coupled populations and
coherences. We provide an example of the general solution
in the case of Gaussian pulse shapes.

This paper is organized as follows. In Sec. II we provide
background knowledge of STIRAP and define the problem.
We derive the solution of the Liouville equation in Sec. III
for equal decay rates to states �1� and �3�. We then compare
this solution to numerical simulations in Sec. IV. The effects
of unequal decay rates are discussed in Sec. V. A summary is
presented in Sec. VI.

II. GENERAL BACKGROUND

A. The three-state system

The interaction of the three-state � system with the laser
fields is described, in the rotating-wave approximation �10�,
by the Hamiltonian

H�t� =
�

2� 0 �p�t� 0

�p�t� 2��t� �s�t�
0 �s�t� 0

� . �1�

The � system is shown in Fig. 1�a�. A two-photon resonance
between states �1� and �3� is maintained while state �2� can be
generally off resonance by a certain detuning �. For simplic-
ity, we assume a single-photon resonance,
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� = 0; �2�

the detuning effects have been discussed elsewhere �11�.
The functions �p�t� and �s�t� in Eq. �1� are the Rabi

frequencies of the pump and Stokes pulses, respectively, and
each of them is proportional to the electric-field amplitude of
the respective laser field and the corresponding transition di-
pole moment, �p�t�=−d12.Ep�t� /� and �s�t�=−d32.Es�t� /�.
Without loss of generality both �p�t� and �s�t� will be as-
sumed real and positive as the populations do not depend on
their phases.

STIRAP proceeds through the dark �or trapped� state,

�d�t�� =
�s�t�
��t�

�1� −
�p�t�
��t�

�3� , �3�

where

��t� = 	�p�t� + �s�t� �4�

is the rms Rabi frequency. This state is an eigenstate �adia-
batic state� of the Hamiltonian �1�, with a zero eigenvalue,
and it is a time-dependent coherent superposition of states �1�
and �3�. In STIRAP the pulses are applied in the counterin-
tuitive order, i.e., the Stokes pulse �s�t� precedes the pump
pulse �p�t�; then

lim
t→−�

�p�t�
�s�t�

= 0, lim
t→�

�p�t�
�s�t�

= � . �5�

Consequently, the dark state �d�t�� is equal to state �1� as
t→−� and to state −�3� as t→�. If the evolution is adia-
batic, which requires large pulse area �4�, then the system
remains in the dark state �d�t�� at all times and the population
is transferred completely to state �3�.

A unique feature of STIRAP is that in the adiabatic limit
the intermediate state �2� remains unpopulated, even tran-
siently, because the dark state �d� does not involve it. This
feature makes STIRAP robust against population relaxation
effects, such as spontaneous emission from state �2� within
the system or irreversible loss from state �2� to levels outside
the system. State �2� can get some population only if the
evolution is not perfectly adiabatic; then it will decay and the
transfer efficiency of STIRAP will decrease. Hence, in order
to describe the effect of spontaneous emission from state �2�
within the system we cannot use the adiabatic approximation
and have to account for the nonadiabatic couplings.

B. The Liouville equation

1. Diabatic basis

We model the effect of relaxation processes on quantum
dynamics by introducing phenomenological decay terms into
the Liouville equation,

i��̇ = �H,�� + D , �6�

where an overdot means d /dt. The dissipator D describes
spontaneous emission within the system,

D�t� = − i
�

2� − 2�1�22 ��1 + �3��12 0

��1 + �3��21 2��1 + �3��22 ��1 + �3��23

0 ��1 + �3��32 − 2�3�22
� ,

�7�

with �1 and �3 being constant rates of spontaneous emission
from the exited state �2� to states �1� and �3�, respectively.
Equation �6� is solved with the condition that the system is
initially in state �1�,

�11�− �� = 1, �mn�− �� = 0 �mn � 11� . �8�

In terms of the parameters

� = �1 + �3, 	 = �1 − �3, �9�

the dissipator �7� reads

D�t� = D��t� + D	�t� , �10a�

D��t� = − i�
�

2 �− �22 �12 0

�21 2�22 �23

0 �32 − �22
� , �10b�

D	�t� = i�
	

2��22 0 0

0 0 0

0 0 − �22
� . �10c�

We first assume that the two decay rates are equal,

�1 = �3 =
1

2
� , �11�

which means that 	=0, D	�t�=0 and D�t�=D��t�; this
greatly simplifies the treatment. For example, such a situa-
tion occurs when STIRAP is realized between the magnetic
sublevels m=−1 and m=1 of a J=1 level via the sublevel
m=0 of a J=0 or J=1 level by two left and right circularly
polarized laser pulses �4�. In Sec. V we shall discuss the
effects of unequal �1 and �3.

2. Bright-excited-dark basis

We choose a basis composed of the dark state �d�t��, the
bright state �b�t��, and the excited state �e�,

�b�t�� = sin 
�t��1� + cos 
�t��3� , �12a�

�e� = �2� , �12b�

FIG. 1. �Color online� �a� The three-state � system studied in
this paper in the original basis. �b� The � system in the bright-
excited-dark basis for equal decay rates, �1=�3= 1

2�. �c� The effec-
tive two-state system after adiabatic elimination of weakly coupled
density matrix elements.
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�d�t�� = cos 
�t��1� − sin 
�t��3� , �12c�

where the mixing angle 
�t� is defined by

tan 
�t� =
�p�t�
�s�t�

. �13�

There are several reasons for this choice of basis instead
of the traditional adiabatic basis. The presence of the dark
state �d�t�� is a must, as far as STIRAP is concerned, because
it is this state where the population resides entirely in the
adiabatic limit in the absence of decoherence; our solution
should reduce to the lossless solution for �=0 and therefore,
the dark state must be in the basis. The decaying state �e� is
chosen as another basis state, which is justified by its special
role as the only decaying state, which makes it distinctly
different from states �1� and �3�, or any linear superposition
of them. Had we chosen to work in the adiabatic basis in-
stead, then we would have to deal with two adiabatic states
�besides the dark state�, which are superpositions of all bare
states �1�, �2�, and �3�, and hence they involve both decaying
and stable states, which complicates the treatment. Finally,
once we have chosen states �d�t�� and �e� for the new basis,
they determine the third state �b�t�� uniquely �up to an unim-
portant global sign�.

The vectors �12� form the matrix �R−1=R�

R�t� = � sin 
�t� 0 cos 
�t�
0 1 0

cos 
�t� 0 − sin 
�t�
� , �14�

which transforms the Liouville equation in the new basis,

i��̇̃ = �H̃, �̃� − i��RṘ, �̃� + D̃ , �15�

where

�̃ = R�R , �16a�

H̃ = RHR =
�

2� 0 ��t� 0

��t� 0 0

0 0 0
� , �16b�

D̃ = RDR = − i�
�

2 �− �ee �be 0

�eb 2�ee �ed

0 �de − �ee
� . �16c�

The linkage pattern in this basis is sketched in Fig. 1�b�. In
this basis the excited state �e� decays to the dark and bright
states �d� and �b� with the same rates � /2 as to states �1� and
�3� in the original basis.

Equation �15� is solved with the initial conditions

�dd�− �� = 1, ����− �� = 0 ��� � dd� . �17�

The transformed Liouville equation �15� still involves
nine coupled differential equations, as the original Eq. �6�.
Using Tr �̃=1 the system reduces to eight equations, but the
problem remains unsoluble exactly. However, the advantage
of the new basis is that it allows one to make some reason-
able approximations, which reduce the problem considerably,

to a soluble one. The approximate solution of Eq. �15� is
derived in the next section.

III. STIRAP AMIDST SPONTANEOUS EMISSION

A. Irrelevance of adiabatic evolution assumption

In the adiabatic approximation, one neglects the nonadia-

batic coupling term −i��RṘ , �̃� in the Liouville equation

�15�, which is 
̇. Then the solution does not depend on the
decay rate � at all. Indeed, from Eq. �15� we find that in the
adiabatic limit,

�Im �̇be

�̇bb

�̇ee
� = �−

1

2
�

1

2
� −

1

2
�

− � 0
1

2
�

� 0 − �

��Im �be

�bb

�ee
� . �18�

Equation �18� represents a system of linear homogeneous
differential equations with null initial conditions �17�; hence
it has only the trivial solution

�ee�t� = �bb�t� = Im �be�t� = 0, �19a�

from where it follows that

�dd�t� = 1. �19b�

The conclusion is that if the evolution is perfectly adiabatic
then spontaneous emission does not affect STIRAP at all.
The physical reason is that the lossy state �e� remains un-
populated in the adiabatic limit. Hence in order to determine
the effect of spontaneous emission we must account for the
nonadiabatic coupling between the dark state �d� and the
bright state �b�.

B. Adiabatic elimination of weakly coupled populations and
coherences

We assume that the rms Rabi frequency is large compared
to the nonadiabatic coupling,

��t� � �
̇�t�� , �20a�

which is the condition for adiabatic evolution in the absence

of losses ��=0� �4�, and we shall therefore consider 
̇ /� as
a small parameter. Furthermore, we assume that

� � �0, �20b�

where �0 is the peak Rabi frequency. The reason for this
assumption is that for ���0 the evolution is adiabatic and
the solution is given by Eq. �19�; decrease of transfer effi-
ciency can only occur for condition �20b�.

If the excited state �e� decays strongly then the density
matrix elements involving this state change negligibly,
�̇ee= �̇eb= �̇ed
0, an assumption that amounts to adiabatic
elimination of these elements. By inserting these derivatives
into the Liouville equation �15�, the corresponding three dif-
ferential equations turn into algebraic equations, from which
we determine �ee, �eb, and �ed in terms of the other elements
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of �̃: �bb, �dd, and �db �the expressions are straightforward to
derive but too cumbersome to be presented here�.

By replacing �ee, �eb, and �ed in the remaining differential
equations for �̇bb, �̇dd, and �̇db we find an effective reduced
system of three linear differential equations involving �bb,
�dd, and �db and their derivatives only. In the next step, be-
cause of the assumptions �20� we neglect all terms of orders

O��2�, O��2�, and O���� and higher, where �= 
̇ /� and �
=� /�. Thus we obtain the relations

Re �de = −
�

�
Im �db + O��2� + O���� , �21a�

Im �de =
�

�
Re �db + O��2� + O���� , �21b�

Re �be = O��2� + O���� , �21c�

Im �be =
�

�
�bb + O��2� + O���� + O��2� , �21d�

�ee =
�

�
��

�
�bb + O��2� + O���� + O��2�� . �21e�

The approximations �21� allow one to reduce Eq. �15� to
just three equations,

u̇ = −
�2

2�
u , �22a�

v̇ = −
�2

2�
v − 2
̇w , �22b�

ẇ = 2
̇v −
�2

2�
�w + 1� , �22c�

where w=�bb−�dd, v=2 Re �db, and u=2 Im �db, along with
�bb�t�+�dd�t�=1−O��2�.

C. Approximate analytic solution

Equation �22� has exactly the same form as the Bloch
equations for a two-state system �12�, composed of states �d�
and �b�, which are coupled by a resonant field with a pulse-

shaped coupling 2
̇�t�, and the bright state �b� “decays”
spontaneously to the dark state �d� with a time-dependent
rate �2�t� /2�. This effective two-state system is shown in
Fig. 1�c�. In this reduced picture, the spontaneous emission
from state �e� in STIRAP shows up as “spontaneous emis-
sion” from state �b� to state �d�; however, the rate �2�t� /2�
from state �b� is inversely proportional to the rate � from
state �e�. Hence the limit �→0 corresponds to an infinitely
strong “spontaneous emission” �b�� �d� resulting in popula-
tion trapping in state �d�. The limit �→� corresponds to
absence of “spontaneous emission” from state �b�, which re-
sults in lossless resonant excitation in the db system, with
populations Pd�t�=cos2 
�t� and Pb�t�=sin2 
�t�; since


���=� /2 �cf. Eq. �13�� we have Pd���=0, i.e., no popula-
tion transfer at all.

The solution for Eq. �22a� is given immediately,

u = 2 Im �db�t� = 0, �23�

because Eq. �22a� is a linear homogeneous differential equa-
tion with a null initial condition. The other two equations
�22b� and �22c� can be solved exactly and the time-
dependent solution reads

�bb�t� = e−f�t�
−�

t


̇�t��ef�t�� sin�2
�t� − 2
�t���dt�,

�24a�

�dd�t� = 1 − �bb�t� , �24b�

where

f�t� =
1

2�


−�

t

�2�t��dt�. �25�

By setting 
̇�t�=0, this solution reduces to the correct limit
�19� for adiabatic evolution. The excited-state populaton
�21e� is �ee�t��O��2��1.

D. Populations in the original basis

The time-dependent populations of states �1� and �3� can
be determined from �bb�t� and �dd�t� by using Eq. �16a�.
Explicitly,

�11�t� = �bb�t�sin2 
�t� + �dd�t�cos2 
�t� + Re �bd�t�sin 2
�t� ,

�26a�

�33�t� = �bb�t�cos2 
�t� + �dd�t�sin2 
�t� − Re �bd�t�sin 2
�t� .

�26b�

After the interaction, since 
���=� /2, they are

�11��� = �bb��� , �27a�

�33��� = �dd��� . �27b�

Equations �26� and �27�, with Eq. �24�, provide the time-
dependent and the final approximate solutions of the Liou-
ville equation �6� in the presence of strong spontaneous
emission, Eq. �20b�.

E. Example: Gaussian pulses

We have performed numerical integration of the Liouville
equation �6� for Gaussian pulses, with characteristic widths
T, peak Rabi frequencies �0, and delay �,

�p�t� = �0e−�t − �/2�2/T2
, �s�t� = �0e−�t + �/2�2/T2

. �28�

For these pulses we have


̇�t� =
�

T2 sech
2t�

T2 , �29a�
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f�t� =	�

2

�0
2T

4�
�erf�2t − �

T	2
� + erf�2t + �

T	2
� + 2� ,

�29b�

where erf�x� is the error function �13�. The final populations
�27� are given by

�11��� = exp�−	�

2

�0
2T

2�
�F , �30a�

�33��� = 1 − exp�−	�

2

�0
2T

2�
�F , �30b�

with

F =
2�

T2
0

�

sech2 2t�

T2 cosh�	�

2

�0
2T

4�

��erf�2t − �

T	2
� + erf�2t + �

T	2
���dt , �31�

where we have used erf���=1. The integral �31� can be ap-
proximated as �see the Appendix�

F = cosh a −
cosh a − 1

	b + 1
, �32�

where

a =
�0

2T

2�
	�

2
, �33a�

b =
4a2T2e−�2/T2

�2�2�cosh a − 1�
. �33b�

Equation �30� provides the solution for the populations of the
original diabatic states for Gaussian pulses �28� at the end of
the interaction.

In the limit of no decay, �→0, we have

F �
2a2T2e−�2/T2

�2�2 , �34�

and hence Eq. �30� reduces to the correct STIRAP limit,

�11��� →
�→0

0, �33��� →
�→0

1.

In the limit of very strong decay, ���0
2T, the integral

�31� is approximated by

F 

2�

T2
0

�

sech2 2t�

T2 dt = 1, �35�

and the solution for the populations reads

�11��� = exp�−	�

2

�0
2T

2�
� , �36a�

�33��� = 1 − exp�−	�

2

�0
2T

2�
� . �36b�

For �→�, the populations tend to their unperturbed values,

�11��� →
�→�

1, �33��� →
�→�

0,

which is a manifestation of quantum overdamping. The over-
damping shows up as decoupling of the system from the
driving fields; then the system freezes in its initial state. Cu-
riously, Eq. �36� has also the correct �→0 limit,

�11��� →
�→0

0, �33��� →
�→0

1.

It follows from Eq. �36b� that �33 decreases to 1
2 for

�1/2T =
	�/2

2 ln 2
��0T�2. �37�

Hence the range of � where high transfer efficiency is main-
tained, increases with the square of the pulse area.

IV. COMPARISON WITH NUMERICAL RESULTS

We have examined the validity of the analytic solution
�30� by comparison with the numerical solution of the Liou-
ville equation �6� for Gaussian pulse shapes �28�. Figure 2
shows the final population of state �3� as a function of the
spontaneous emission rate � from state �2� in two cases: with
and without the Stokes pulse. In the presence of the Stokes
pulse the population of state �3� shows considerable robust-
ness for ��100T−1, which means that for this particular
pulse area �A=�0T	�
14�� the excited state can decay up
to 100 times during the population transfer without affecting
the transfer efficiency. The approximate analytic solution
�36b� is indistinguishable from the numerical values. For
large decay rates, ��100T−1, the population of state �3� de-
parts from unity and decreases to zero for �→�, as a result
of overdamping. The value �1/2 at which �33 decreases to 1

2 ,

FIG. 2. �Color online� Final population �33 of state �3� as a
function of the spontaneous emission rate � for Gaussian pulse
shapes �28� with peak Rabi frequency �0=25T−1 and delay
�=1.5T. The dots show the numerical solution of the Liouville
equation �6� and the solid curve the analytic solution �36b�. The
dashed curve shows the numerical solution without the Stokes
pulse, �s�t�=0.
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Eq. �37�, is �1/2
565T−1, in excellent agreement with the
numeric results.

In the absence of Stokes field ��s=0�, the population of
state �3� tends to zero for �→0, as should be the case be-
cause state �3� is uncoupled and population can only reach
this state via �pulsed� optical pumping �OP�. For weak-to-
moderate spontaneous emission ��T�10�, it is STIRAP that
transfers the population because the spontaneous emission
rate is not high enough to enable OP. As � increases in the
range 10��T�100, the OP solution reaches unity and be-
comes indiscernible from the STIRAP solution. For �T
�100, both STIRAP and OP are subjected to overdamping
and �33→0 for �→�, as discussed above.

We emphasize that pulsed OP achieves the same result as
STIRAP only because the system is closed. Moreover, the
population transfer for 10��T�100, dominated by OP, is
incoherent, which implies that it is not accompanied by co-
herent momentum transfer.

Figure 3 shows the final populations against the peak Rabi
frequency �0. As �0 increases adiabaticity improves and the
populations reach their STIRAP values. An excellent agree-
ment is observed between the analytic solution �36� and the
numerical results. For comparison, the lossless solution is
also plotted �upper frame�, wherein the population �11 shows
characterstic nonadiabatic oscillations. Figure 3 shows that
although adiabaticity is deteriorated by spontaneous emis-
sion, meaning that high transfer efficiency requires higher
Rabi frequencies, this effect is not very dramatic and the
increase in the required Rabi frequency is only moderate.

In Fig. 4 the final population of state �3� is plotted as a
function of the pulse delay � in two cases: without �upper
frame� and with spontaneous emission �lower frame�. In the
presence of spontaneous emission �33 increases as � in-
creases and reaches a steady value, which depends on the
peak Rabi frequency �0; this value is described very accu-

rately by the analytic solution �30b�. When � is equal to just
a few pulse widths ���2.5T�, the lossless STIRAP �upper
frame� breaks down due to deteriorated adiabaticity. In con-
trast, the transfer efficiency in the presence of spontaneous
emission remains constant as � increases indefinitely because
beyond ��3T the population transfer dynamics is deter-
mined by OP, for which the delay is irrelevant.

V. EFFECT OF UNEQUAL DECAY RATES

Hitherto we have assumed that the decay rates from state
�2� to states �1� and �3� are equal, Eq. �11�. Different decay
rates lead to the inclusion of the term D	, Eq. �10c�, in the
Liouville equation �6�. By using again the dark-excited-
bright basis and performing adiabatic elimination of density
matrix elements involving the decaying excited state we ob-
tain

v̇ = −
�2

2�
v − 2
̇w +

�2	 sin 2


2�2 �w + 1� , �38a�

ẇ = 2
̇v −
�2

2�
�1 +

	 cos 2


�
��w + 1� . �38b�

We have verified by numeric integration that Eq. �38� pro-
vides virtually the same results as the full Liouville equation
�15�. Compared to Eq. �22�, Eq. �38� has additional terms
proportional to 	; with these terms an analytic solution does
not appear possible.

However, one can still deduce the qualitative behavior of
the populations with 	. Unlike the total decay rate ��0, the
difference 	 can be positive �for �1��3� or negative �for
�1��3�. It is clear from Eq. �38� that the solution is not

FIG. 3. �Color online� Final populations of states �1� and �3�
against the peak Rabi frequency �0 for Gaussian pulse shapes �28�.
The spontaneous emission rate is �=0 �upper frame� and
�=1000T−1 �lower frame� and the pulse delay is �=1.5T. In the
upper frame the curves show numerical results. The dots in the
lower frame show numeric results and the solid curves the analytic
solution �36�.

FIG. 4. �Color online� Final population �33 plotted against the
pulse delay � for Gaussian pulse shapes �28� with peak Rabi fre-
quency �0=20T−1, 40T−1, and 60T−1 �denoted on the respective
curves�. The spontaneous emission rate is �=0 �upper frame� and
�=1000T−1 �lower frame�. In the upper frame the curves show
numerical results. The dots in the lower frame show numerical re-
sults, whereas the curves show the analytic solution �30b� with the
approximation �32�.
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symmetric with respect to the sign of 	. Because
−1�w�1 and because sin 2
�0, the sign of the last term
in Eq. �38a� is the same as the sign of 	. Furthermore, for
small-to-moderate population losses �then w�0� the term

−2
̇w�0 because 
̇�0, see Eq. �29a�. These two terms
determine the effective interaction between the dark and
bright state, which is responsible for the population loss from
the dark state. For 	�0 the term with 	 is negative and
hence the interaction between �d� and �b� weakens, which
should lead to smaller population loss from state �d� than for
	=0. On the contrary, for 	�0 the term with 	 is positive
and the interaction between �d� and �b� increases, which
should lead to larger population loss from state �d�. In result,
the population �33 is expected to decrease as 	 grows from
−� to �.

This feature is indeed seen in Fig. 5, which shows the
populations �11 and �33 against the difference 	 between the
decay rates. A monotonic behavior is observed with �33 in-
creasing as 	 approaches −� to the left. This limit corre-

sponds to �1=0 and �3=�, which is obviously favorable for
�33 as spontaneous emission occurs then in the desired direc-
tion, towards state �3�. The other limit 	→�, corresponding
to �3=0 and �1=�, is least favorable for STIRAP, because
then the spontaneous emission returns the population back to
the initial state �1�.

Figure 6 shows the level lines, on which the population
�33 equals 0.9, against the two decay rates �1 and �3. The
population �33 exceeds the value 0.9 on the left of the respec-
tive line. The figure confirms the qualitative prediction that
STIRAP is more sensitive to the decay rate �1 since it drives
the population oppositely to STIRAP, towards the initial state
�1�; this decrease occurs primarily due to deteriorated adia-
baticity. The decrease of �33 with �3 occurs at much larger
values and it is a result of quantum overdamping.

VI. CONCLUSIONS

In this paper we have explored the effect of spontaneous
emission on the population transfer efficiency in STIRAP.
We have derived an approximate analytic solution to the
Liouville equation, which has been verified by comparison
with numerical simulations to provide a very accurate de-
scription of the populations. The solution has been derived
by transforming the Liouville equation to the dark-excited-
bright basis and identifying there weakly coupled popula-
tions and coherences, which have been eliminated adiabati-
cally.

Besides providing an accurate quantitative description of
spontaneous emission in STIRAP, we have found several in-
teresting features. We have concluded that for small-to-
moderate decay rates STIRAP is not affected very signifi-
cantly by spontaneous emission. Then for moderate-to-strong
decay rates STIRAP degenerates into incoherent pulsed OP.
The definitions of “weak,” “moderate,” and “strong” decay
rates depend on the peak Rabi frequency �0 and they scale
with �0

2. For very strong spontaneous emission the system
gets overdamped and freezes in its initial state for �→�.
These results provide quantitative estimates of the robustness
of STIRAP in lossy conditions and explain why STIRAP has
been implemented successfully in numerous systems even
when the intermediate-state lifetime has been much shorter
than the pulse duration �4�.
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APPENDIX: CALCULATION OF THE INTEGRAL F

We estimate the integral �31� by using two approxima-
tions. First, we replace sech2 x by a Gaussian,

FIG. 5. �Color online� Numerically calculated final-state popu-
lation �33 plotted against the difference 	=�1−�3 of the decay rates
of state �2� to states �1� and �3�. We have assumed Gaussian pulse
shapes �28� with pulse delay �=1.5T, peak Rabi frequency
�0=60T−1, and total decay rate �=2000T−1.

FIG. 6. Numerically calculated level lines, for which the final-
state population is �33=0.9, plotted against the decay rates of state
�2� to states �1� and �3�. The population �33 exceeds 0.9 on the left
side of the respective curve. We have assumed Gaussian pulse
shapes �28� with pulse delay �=1.5T and four values of the peak
Rabi frequency, �0=25T−1, 50T−1, 75T−1, and 100T−1, denoted
nearby the respective line.
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sech2 x 
 e−�x2/4, �A1�

since both functions are pulse-shaped, have the same maxi-
mum at x=0, and the same pulse area. Second, we replace
the cosh factor in Eq. �31� as

cosh�a

2�erf�2t − �

T	2
� + erf�2t + �

T	2
���


 cosh a − �cosh a − 1�e−�b�2t2/T4
, �A2�

where a is given by Eq. �33a� and b is a free parameter. The

justification is that the left-hand side is an inverted-bell-
shaped function, which has a minimum of 1 at t=0 and tends
to cosh a for t→�; the function on the right-hand side of Eq.
�A2� has the same properties but it allows the exact integra-
tion of Eq. �31�. The parameter b is determined by imposing
the condition that the second time derivatives of these
“inverted-bells”are equal at t=0, which is motivated by the
fact that the main contribution to the integral �31� comes
from the region around t=0 because of the sech2 factor; this
leads to Eq. �33b�.

With the replacements �A1� and �A2�, the integral �31�
can be solved exactly and the result is given by Eq. �32�.
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