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Ultracold molecules can be associated from ultracold atoms by ramping the magnetic field through a
Feshbach resonance. A reverse ramp dissociates the molecules. Under suitable conditions, more than one
outgoing partial wave can be populated. A theoretical model for this process is discussed here in detail. The
model reveals the connection between the dissociation and the theory of multichannel scattering resonances. In
particular, the decay rate, the branching ratio, and the relative phase between the partial waves can be predicted
from theory or extracted from experiment. The results are applicable to our recent experiment in 87Rb, which
has a d-wave shape resonance.
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I. INTRODUCTION

The association of ultracold molecules from ultracold
atomic gases using Feshbach resonances was a major recent
breakthrough in the field of cold molecules �1–9�. Experi-
mentally, the method requires a slow magnetic-field ramp
that crosses a Feshbach resonance in the proper direction.
The molecules can be dissociated back into unbound atom
pairs by ramping the magnetic field back through the Fesh-
bach resonance. Initially, the atomic gas is so cold that only
s-wave collisions are relevant in the gas. The molecular
bound state that causes the Feshbach resonance is usually
also an s-wave state, and the outgoing wave in the dissocia-
tion is again an s-wave.

If one chooses a Feshbach resonance where the molecular
bound state is not an s-wave state, then one might wonder if
outgoing waves other than the s-wave can be produced. Of
course, if the outgoing wave is as cold as the incoming one,
the s-wave will dominate again. But if the magnetic-field
ramp for the dissociation is fast, then kinetic energy can be
added during the dissociation �10,11�. It thus seems feasible
to populate outgoing higher partial waves. This prompts
many questions: If one creates a higher partial wave, will
there still be an s-wave component? Do the different partial
waves form a coherent superposition or an incoherent mix-
ture? What determines the relative phase and the branching
ratio? And how fast is the dissociation process? Are certain
Feshbach resonances better suited than others for creating a
large fraction of a specific outgoing partial wave? Answering
these questions is nontrivial and no theory has been devel-
oped on the subject, yet.

The key to a theoretical description of the dissociation
process lies in the observation that the dissociation is “half a
collision.” In a full collision, two atoms come together and
then separate again. In the association and dissociation using
Feshbach resonances, the experimenter can “freeze” the
population in the middle, after the atoms came together. He

can even choose, how much time is spent between associa-
tion and dissociation. Still, the association and dissociation
can be regarded as the first and second half of one collision.
The concept of a half-collision proved useful in other con-
texts before �see, e.g., Refs. �12–15��. Unfortunately, the
models developed there are not directly applicable here. The
question is then how the dissociation can be linked quantita-
tively to scattering theory. The objective of the present paper
is to establish this link.

The motivation for this investigation comes from an ex-
periment we performed recently, where dissociation into two
partial waves, s and d, is observed �16�. The experiment
employs 87Rb, where the dissociation is particularly interest-
ing because of the presence of a d-wave shape resonance.
Our theoretical studies in the present paper are geared to-
wards explaining the results of this experiment. A very brief
summary of the model was already presented in Ref. �16�.

The paper is outlined as follows: Section II begins with a
brief summary of some basics of scattering theory. Section
III presents the theory of scattering resonances for a single
partial wave. The d-wave shape resonance in 87Rb is intro-
duced as a specific example. In Sec. IV, magnetically tunable
Feshbach resonances in the collision of ultracold atoms are
introduced. Section V describes some basics of scattering
resonances with more than one partial wave and then dis-
cusses the combination of the shape resonance and the Fes-
hbach resonance. The stage is then set for Sec. VI, where the
link between scattering theory and the dissociation of mol-
ecules is presented. The decay rate, branching ratio, and the
relative phase between the partial waves as observed in the
experiment of Ref. �16� are explained with this model.

II. BASICS OF SCATTERING THEORY

A. General

The problem of scattering two particles off one another is
easily separated into center-of-mass and relative coordinates.
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The center-of-mass motion is trivial so that the problem is in
the relative motion. The latter is equivalent to the scattering
of one particle with the reduced mass mred off a potential
V�r��. The relative motion is characterized by the wave vector
k�. The corresponding kinetic energy is E=�2k2 / �2mred�.

Scattering theory is usually formulated as a time-
independent process with an incoming plane wave with k�
pointing along the z direction. One can show that the scat-
tered wave at large radius falls off radially like a spherical
wave. Hence, the scattering wave function has the
asymptotic form

��+��r�� �
r→�

eikz + f��,��
eikr

r
, �1�

where r ,� ,� are spherical coordinates. The scattering am-
plitude f�� ,�� is related to the differential scattering cross
section,

d�

d�
= �f��,���2, �2�

where d�=sin �d�d� is the differential solid angle. Finally,
the total cross section � is obtained by integration of the
differential cross section over the full solid angle. The task in
scattering theory is to determine f�� ,�� for a given potential
V�r��.

B. Partial waves

It is often useful to expand the scattering problem in terms
of partial waves, i.e., spherical harmonics Yl,ml

�� ,��. The
result for the incoming plane wave is

eikz = �
l=0

�

iljl�kr�Yl0����4��2l + 1� , �3�

where jl denotes the spherical Bessel function of order l. The
outgoing wave is also written as a sum of partial waves. In
this paper, we restrict the scattering problem to the case,
where all outgoing partial waves have ml=0. This is the case,
e.g., if the potential is invariant under rotations around the z
axis. The experiment in Ref. �16� does not have such a cy-
lindrically symmetric potential, yet all outgoing partial
waves have ml=0, as we will see in Sec. V B. Hence,

f��� = �
l=0

�

f lYl0����4��2l + 1� , �4�

where the partial-wave coefficients are labeled f l. With these
expansions, one can reformulate the scattering problem. As a
first step, one solves the scattering problem for one incoming
partial wave l�, where the asymptotic form of the scattering
state is

�l�
�+��r�� �

r→�

�− 1�l�e−ikr

r
Yl�0��� −

eikr

r
�
l=0

�

Sll�Yl0��� . �5�

The outgoing partial waves have certain complex ampli-
tudes. These amplitudes form the so-called S-matrix �or scat-
tering matrix�. Conservation of the number of particles im-

plies that the S-matrix is unitary. In addition, realistic
Hamiltonians in atomic physics are invariant under time re-
versal, which implies that the S-matrix is symmetric.

The second step is to superpose the incoming partial
waves with suitable amplitudes to obtain an incoming plane
wave. This yields

f l =
1

2ik
�
l�=0

� �2l� + 1

2l + 1
�Sll� − 	ll�� , �6�

where 	ll� is the Kronecker symbol. The task of calculating
f��� for a given potential V�r�� is therefore replaced by the
task of calculating the S-matrix. Realistic potentials lead to
selection rules for the angular momentum. Therefore, there
are usually only few nonvanishing matrix elements in S. Cal-
culating the S-matrix is therefore often easier than calculat-
ing f��� directly.

If more than one scattered partial wave is populated, then
the differential cross section shows a spatial interference pat-
tern between the partial waves. The total cross section, how-
ever, shows no interference because 	Yl�0

* Yl0d�=	ll�. Hence,

� = �
l=0

�

�l = �
l=0

�

4��2l + 1��f l�2. �7�

When calculating differential or total cross sections, special
attention must be paid in the case of indistinguishable par-
ticles, because then the two-particle wave function needs
proper symmetrization. We restrict the rest of this paper to
the scattering of identical bosons, where the cross sections
double for the even partial waves and vanish for the odd
partial waves.

C. Spherical symmetry

Things simplify if the potential is spherically symmetric.
The quantum number l is then conserved, so that the
S-matrix is diagonal. Combined with unitarity this implies
�Sll��=	ll�. All the information about the S-matrix is therefore
in the phases of the diagonal elements and one defines the
scattering phase 	l for each partial wave by

Sll = e2i	l. �8�

Note that the scattering phase is real and only defined
modulo �. The connection between f l and the S-matrix sim-
plifies to

f l =
Sll − 1

2ik
. �9�

For identical bosons, the total cross section for the lth partial
wave is

�l = �2l + 1�
8�

k2 sin2 	l �10�

if l is even; and 0 otherwise. Since 	l is real, �l has an upper
bound,
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�l
max = �2l + 1�

8�

k2 , �11�

which is called the unitarity limit.

D. Threshold behavior

The low-energy limit of the scattering properties is often
important. For reasons discussed in Sec. IV A, the energy
where k=0 is called the dissociation threshold. The behavior
near threshold can often be expressed in terms of simple
power laws. This was first systematically investigated by
Wigner �17�. If the potential is spherically symmetric and has
a long-range tail following a power law V�r�
r−s, then one
can show that �see p. 230 in Ref. �18��

f l �
k→0
O�k2l� if 2l � s − 3,

O�ks−3� otherwise.
� �12�

Hence, Eqs. �7�–�9� imply that 	l vanishes near threshold like
kfl and that �l vanishes like f l

2. For s�3 it follows that, in
the low-energy limit, s-wave scattering dominates over all

other partial waves and that 	0 �
k→0

O�k�. This motivates the
definition of the s-wave scattering length �19�

a = − lim
k→0

	0

k
. �13�

The total scattering cross section for identical bosons is then

� �
k→0

8�a2. �14�

The regime of cold collisions is characterized by energies
that are so low that only few partial waves have a noticeable
scattering cross section. If only s-waves are important, the
collisions are called ultracold.

E. Coupled-channels calculations

After performing the partial-wave expansion, the remain-
ing problem in scattering theory lies in the calculation of the
S-matrix for a given potential. In essence, the Schrödinger
equation must be solved along the radial coordinate. Various
numerical methods have been developed to solve this prob-
lem. If more than one collision channel is involved, then
coupling between the channels must be taken into account.
The corresponding calculations are called coupled-channels
calculations.

For atom-atom collisions �except for atomic hydrogen�
there is another problem, ab initio calculations for the inter-
action potentials are not accurate enough to make realistic
predictions for the cold-collision properties. As a solution,
some quantities, such as the van der Waals coefficient C6, are
treated as free fit parameters and experimental input is used
to constrain the model, in order to obtain realistic predictions
for the cold-collision properties �see, e.g., Ref. �20��.

III. RESONANCE SCATTERING

A. S-matrix

Resonance scattering relies on the presence of a quasi-
bound state. A quasibound state is a discrete state just like a

bound state, but with an energy above threshold. Hence, if
one prepares population in this state, it will undergo sponta-
neous exponential decay into unbound states. Examples for
quasibound states are given in Secs. III E and IV. The decay
of the quasibound state is a dissociation process, because a
quasibound system decays into two unbound particles. The
words decay and dissociation are therefore synonymous in
the present context.

In a scattering experiment, some fraction of the incoming
flux can make the transition to the quasibound state and sub-
sequently decay back into unbound states. Obviously, the
probability to make this transition must depend on the energy
difference between the incoming flux and the quasibound
state. When the energies match, the population of the quasi-
bound state is resonantly enhanced, while far-off resonance
the population of the quasibound state becomes negligible.

Near resonance, the S-matrix is changed drastically. In
this section, we consider only the case, where the S-matrix is
diagonal and only one partial wave has a resonance. With
some effort one can show that the relevant S-matrix element
is well approximated by a Breit-Wigner form �18,21� �see the
Appendix for a derivation�,

Sll = e2i	l
bg�1 −

i�

E − Eres + i�/2
 . �15�

Here 	l
bg is the background value of the scattering phase for

the relevant partial wave. This value is reached for energies
far away from the resonance. Eres is the energy, at which the
resonance occurs. The parameter  must be positive and can
be interpreted as the decay rate of the quasibound state as
discussed in Sec. III C. Generally, 	l

bg and  can depend on
E, but in the following we assume that they are independent
of E within the width of the resonance.

It is customary to introduce the dimensionless detuning of
the energy from resonance

� =
2

�
�E − Eres� . �16�

Since �Sll�=1, one can again write Sll=e2i	l, where 	l is real
and one can easily show that

	l = 	l
bg + 	l

res �17�

with

� = − cot 	l
res. �18�

This means that 	l�E� has the form of an inverse tangent plus
an offset, as shown in Fig. 1�a�. In particular, 	l increases by
�, as the energy moves all the way through resonance. Right
on resonance 	l

res=� /2 and 	l has an inflection point.

B. Cross section

From the S-matrix in Eq. �15�, one can easily derive an
expression for the total cross section of the relevant partial
wave, yielding

�l = �l
bg�q + ��2

1 + �2 �19�

with
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q = − cot 	l
bg �20�

and

�l
bg = �2l + 1�

8�

k2 sin2 	l
bg. �21�

Equation �19� is called a Beutler-Fano profile. This asymmet-
ric resonance profile was first observed experimentally by
Beutler in an autoionization experiment �22� and then ex-
plained by Fano �23,24�. An example of a Beutler-Fano pro-
file for q=2 is shown in Fig. 1�b�.

A physical interpretation of the asymmetry in the Beutler-
Fano profile is obtained easily when writing the S-matrix
from Eq. �15� as the sum of a background scattered part

Sll
bg=e2i	l

bg
and a resonantly scattered part

Sll = Sll
bg + Sll

res. �22�

Note that Sll
res is usually not unitary. It is merely the resonant

contribution to the S-matrix, but not really an S-matrix by
itself.

It is obvious from Eq. �15�, that the phase of Sll
res changes

by �, when E moves all the way through resonance. Hence
the interference between Sll

bg and Sll
res changes from construc-

tive to destructive, or vice versa. It follows from Eq. �19�,
that there is complete destructive interference at �=−q, while
the unitarity limit Eq. �11� is reached at �=1/q. At these
points 	l reaches 0 and � /2, respectively. The resonance po-
sition, i.e., �=0, is at the inflection point of 	l, which is

usually not identical to the maximum of �l. Note that q can
be positive or negative, so that the region of destructive in-
terference can occur on either side of the resonance. For
�q��1 �i.e., 	l

bg�0�, the Beutler-Fano profile is well approxi-
mated by a Lorentzian �except way out in the wings�.

C. Decay of the quasibound state

Scattering theory is usually formulated as a time-
independent problem. But in order to obtain a physical inter-
pretation of the parameter  in Eq. �15�, we now consider
resonance scattering of a pulsed incoming wave. The incom-
ing pulse can be expressed as a superposition of incoming
plane waves, each of which can be described by time-
independent scattering theory. We first consider the case
where the energy width �E of the incoming pulse is large,
i.e., �E��. In this case, one can show �see p. 254 in Ref.
�18�� that the shape of the scattered wave packet has a tail at
long times t. In the tail, the probability of detecting a scat-
tered particle falls off like e−t. This suggests the following
interpretation: Some fraction of the population makes the
transition to the quasibound state and decays from there with
a rate  into outgoing waves.  is thus interpreted as the
decay rate of the quasibound state.

Since �E��, the minimum duration of the incoming
pulse �t�� /�E is much shorter than the mean lifetime of
the quasibound state 1 / and the tail can easily be distin-
guished from the background scattered wave packet. In the
opposite limit, where �E��, the S-matrix is nearly con-
stant within �E and the scattering process leaves the tempo-
ral shape of the pulse almost unchanged.

For time-independent elastic scattering, conservation of
energy implies that the outgoing wave must have the same
energy as the incoming wave. This is not so simple in reso-
nance scattering of a short pulse. Here, the resonance plays
the role of an energy filter. Only incoming energies with
�E−Eres��� have a large probability to make the transition
to the quasibound state. Only these energies are found in the
exponential tail of the decaying wave function.

D. Resonances near threshold

While the consideration of pulsed scattering yields an in-
tuitive interpretation of the parameter  in terms of a decay
rate, one can show that for time-independent scattering the
parameter  in Eq. �15� can depend on the collision energy.
This is because,  is not merely a property of the quasibound
state. Instead, it describes the decay into outgoing waves, so
that the energy of the outgoing waves is important for . We
will now explain this in more detail.

The energy dependence of  is particularly strong near
threshold due to the centrifugal barrier. The centrifugal bar-
rier arises from the centrifugal potential

Vcentr =
�2l�l + 1�
2mredr

2 , �23�

which depends on l and vanishes for the s-wave. Competing
with the van der Waals potential −C6r−6, the centrifugal po-
tential dominates at large radius and the van der Waals po-

FIG. 1. A typical scattering resonance. �a� Scattering phase cal-
culated from Eqs. �17� and �18� for q=−cot 	l

bg=2 as a function of
the dimensionless energy �. The horizontal lines show 	l

bg and 	l
bg

+�, which are reached for �→ ±�. �b� Beutler-Fano profile for the
cross section calculated from Eq. �19� for the same resonance. The
horizontal line shows the background value.
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tential dominates at shorter radius. This results in a centrifu-
gal barrier of finite height, as shown in Fig. 2. Since the
centrifugal potential vanishes at large radius, it does not shift
the threshold energy.

With the centrifugal barrier, the energy dependence of 
near threshold can be understood as follows: For energies
below the height of the centrifugal barrier, population in a
quasibound state must tunnel through the centrifugal barrier
to decay into an outgoing wave. When the incoming energy
approaches threshold, so does the outgoing energy because
energy is conserved in time-independent elastic scattering.
Thus when approaching threshold, the distance through
which the particles must tunnel diverges. We thus expect that
 vanishes near threshold, at least for l�0.

A more quantitative way to show that  must vanish near
threshold is the following: When inserting the S-matrix Eq.
�15� into Eq. �9�, one finds that f l cannot vanish faster than
 /k. Equation �12� for f l therefore sets a limit on how fast 
must vanish. One can show that the following threshold law
applies �25�:

 �
k→0

O�k2l+1� . �24�

This is valid for all l, even if the potential has a long-range
tail following a power law V�r�
r−s �25�. Hence, for 2l�s
−3 we find that  vanishes even faster than kfl. For the decay
into s-waves, the physical meaning of this threshold law
arises from the density of final states, which is proportional
to k �see, e.g., Refs. �10,26��.

The Beutler-Fano profile for the cross section is typically
distorted for resonances near threshold by the energy depen-
dence of 	l

bg and , as well as by the factor k−2 in the uni-
tarity limit Eq. �11�. 	l

bg follows the usual threshold law

	l
bg �

k→0
kfl with f l following Eq. �12�. Note that for the mol-

ecule dissociation experiment in Sec. VI, k in Eq. �24� is the
wave vector of the outgoing wave.

E. Shape resonance in 87Rb

A shape resonance is a scattering resonance, which is
caused by a quasibound state behind some potential barrier.
In this section we discuss a specific example, namely the
d-wave shape resonance in the collision of two cold 87Rb
atoms. We assume that both atoms are initially prepared in
the lowest hyperfine state �f ,mf�= �1,1� of the electronic
ground state. This two-atom system has a quasibound
d-wave state localized behind the centrifugal barrier as
shown in Fig. 2. Also shown in Fig. 2 are the s-wave and
d-wave potentials and the highest-lying s-wave bound state.
The centrifugal potential raises the energy of the correspond-
ing d-wave state. In 87Rb the energy of this state lies below
the top of the centrifugal barrier, so that it is not pushed out
into the unconstrained continuum. But at the same time it lies
above threshold and can therefore decay into the continuum
by tunneling through the centrifugal barrier, so that it is a
quasibound state. Tunneling also allows incoming flux in a
scattering experiment to populate the state. Since the terms
in the interaction Hamiltonian that can change l are weak
�see Sec. IV C�, this quasibound d-wave state couples almost
exclusively to the d-wave continuum, so that a shape reso-
nance is caused for incoming d-waves, but no noticeable
resonance is caused for incoming s-waves.

The partial-wave scattering phases and cross sections de-
termined from a coupled-channels calculation are shown in
Fig. 3 for zero magnetic field, B=0. The threshold law Eq.

�12� for the s-wave predicts that 	0 �
E→0

O�E1/2� and that �0

approaches some finite value for small E. This is the case for

FIG. 2. A quasibound state in the collision of two 87Rb atoms.
Potentials for the s-wave �dotted line� and the d-wave �solid line�
are shown as a function of radius. The centrifugal barrier for the
d-wave is clearly visible. In addition, the highest-lying s-wave
bound state �horizontal dotted line� and the corresponding d-wave
state �horizontal solid line� are shown. The d-wave state lies above
threshold �i.e., E�0�, so that it is only quasibound and gives rise to
a scattering resonance.

FIG. 3. Shape resonance for the scattering of two 87Rb atoms in
the hyperfine state �1,1� at B=0. �a� Scattering phases and �b� cross
sections are shown for the s-wave �dotted lines� and the d-wave
�solid lines�. The d-wave shape resonance is clearly visible. Other
partial waves yield no noticeable scattering in this energy range.
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small values of E, as is clearly seen in Fig. 3.
The d-wave scattering phase and the d-wave cross section

both show clear signatures of the shape resonance. In con-
trast to the general discussion above, 	2

bg decreases consider-
ably over the width of the resonance. As a consequence, 	2
increases by noticeably less than �. From the threshold law

Eq. �12� with s=6, one expects �2
bg �

E→0
O�E3�, which leads to

a strong asymmetry of the resonance in the cross section
merely from the change in the background value. The addi-
tional inherent asymmetry of the Beutler-Fano profile is
small for this resonance because �q��1.

The position and width of the shape resonance can be
read-off from Fig. 3�a�. The inflection point of 	2�E� lies at
Eshape=kB�273 �K. According to Eq. �18�, the slope at the
inflection point is d	2 /dE=2/ ���, which yields 
=17 MHz.

While a coupled-channels calculation is needed to obtain
Fig. 3, one can already make a rough estimate for  if only
Eshape and C6=4707 a.u. �27� are known �1 a.u.=9.573
�10−80 J m6�. To this end, we approximate the potential as
V=Vcentr−C6r−6, which is a good approximation at large ra-
dius. With this, we first calculate the tunneling probability in
the WKB approximation for a spherical wave at energy Eshape
and obtain 25%. Alternatively, the tunneling probability can
be calculated analytically using a near-threshold approxima-
tion as discussed in Ref. �28�. Equation �57� in Ref. �28�
yields 23%. Second, we consider a classical particle with
mass mred released at rest at the outer classical turning point
of the quasibound state. In the potential V=Vcentr−C6r−6, this
particle will roll down to r=0 in 6.3 ns. The approximative
treatment of the potential is reasonable, because most of the
time is spent near the outer turning point, where V=Vcentr
−C6r−6 is a good approximation. We assume that the particle
is simply reflected at r=0 so that the round-trip time is
12.6 ns. We thus obtain �0.25/ �12.6 ns�=20 MHz, which
is quite close to the above result.

All other hyperfine levels of the electronic ground state of
87Rb have a similar shape resonance with almost the same
energy and lifetime. The first experimental observation of
this quasibound state had been made in a photoassociation
experiment �29�. For the hyperfine state �2,2�, this shape
resonance was recently investigated in two scattering experi-
ments �30,31�. Other atomic species also have shape reso-
nances in cold collisions, as measured, e.g., in Refs. �32–38�.

IV. MAGNETICALLY TUNABLE FESHBACH
RESONANCES

A. General

In many scattering experiments, the particles have internal
degrees of freedom, such as spin. For each spin state, there is
a different potential. These potentials are referred to as the
scattering channels. We consider the situation sketched in
Fig. 4, where we picked two channels with different thresh-
old energies. We assume that the incoming flux has the spin
configuration of the lower channel and that the energy of the
incoming flux is below the threshold of the upper channel. In
this situation, no flux can emerge in the upper channel for

energetic reasons. This channel is therefore energetically
closed, while the entrance channel is always open. If the
entrance channel is the only open channel, then a two-body
collision cannot be inelastic, i.e., the spin states before and
after scattering must be identical.

A Feshbach resonance arises if incoming flux in the open
channel is resonant with the energy of a bound state in a
closed channel. We call this bound state involved in the Fes-
hbach resonance the “molecular state.” For the resonance to
occur, the interaction Hamiltonian must be able to flip the
spins, in order to cause transitions between the two channels.
These spin flips lead to decay of the molecular state into
unbound open-channel states, so that the molecular state is
only quasibound.

The potentials shown in Fig. 4 schematically represent
Born-Oppenheimer potentials for the collision of two alkali-
metal atoms. The potentials have a long-range van der Waals
tail, a deeply bound region due to the exchange interaction,
and a repulsive part at very short radius due to the Coulomb
interaction of the nuclei and a repulsive exchange interaction
of the overlapping electron clouds. The energies in Fig. 4 are
not to scale. For 87Rb, for example, the dissociation energy
of the singlet potential is kB�5750 K �39�, whereas the hy-
perfine splitting between the different thresholds is kB
�0.33 K. Each potential has many bound states. For clarity,
only one of them is shown in Fig. 4.

The general treatment of scattering resonances given in
Sec. III is also applicable to Feshbach resonances. In particu-
lar, one can show that the S-matrix is again given by Eq.
�15�. To obtain this result, one often uses a formalism based
on Green’s functions and projection operators introduced by
Feshbach �40,41�, in order to clearly separate the open-
channel and closed-channel subspaces. For a discussion of
this formalism in the context of ultracold gases see, e.g., Ref.
�26�.

In the collisions of cold alkali-metal atoms, there are typi-
cally many Feshbach resonances. The molecular state is a
vibrationally highly excited state. For homonuclear mol-
ecules, the radiative decay rates into lower vibrational states
are negligible due to lack of an electric dipole moment. But

FIG. 4. Scheme of a Feshbach resonance. The interaction
Hamiltonian can cause transitions between the closed channel and
the incoming flux in the open channel. A Feshbach resonance oc-
curs when the energy of the incoming flux matches the energy of a
closed-channel quasibound state.
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in a dense sample, inelastic collisions of the molecule with
another atom or molecule can lead to significant rates for
vibrational deexcitation. These processes are neglected in
this paper.

Feshbach resonances in the collisions of cold atoms differ
substantially from most scattering resonances in other fields
of physics, insofar as the energy of the molecular state can be
tuned noticeably by applying an external magnetic field B.
The tunability arises from the different magnetic moments of
the different channels. If this difference is, say, one Bohr
magneton, a magnetic field of 1000 G creates a shift of kB
�0.07 K. Therefore low temperatures of the incoming flux
are needed, otherwise thermal broadening would render this
shift insignificant.

Let Bres denote the magnetic field, at which the energy of
the molecular state matches the open-channel threshold.
Then the magnetic-field dependence of the energy Eres, at
which the Feshbach resonance occurs, can be approximated
linearly by

Eres�B� = �B − Bres��� �25�

as long as �B−Bres� is not too large. �� denotes the differ-
ence in the magnetic moments of the two channels. �� can
be positive or negative. If B approaches Bres, then Eres→0,
i.e., the Feshbach resonance occurs at energy zero. A small
correction to Eq. �25� is necessary if B is very close to Bres.
This correction is typically of the order of �B �see below�.
This so-called resonance shift is neglected in the discussion
in the present paper. But it is included in our coupled-
channels calculations.

For Eres�B��0 the molecular state is truly bound, which
means that the state cannot decay. When varying B so that
Eres increases, dissociation abruptly sets in at Eres�B�=0.
Therefore the low-energy edge of the continuum is called
dissociation threshold.

An interesting situation arises, if one ramps B through Bres
in the direction such that Eres moves from above to below
threshold. This converts the molecular state from quasibound
to truly bound. If incoming atomic flux is present during the
ramp, then population that was transiently in the molecular
state during scattering while above threshold, will remain in
the state after the threshold is crossed. Thus long-lived mol-
ecules can be produced. These can later be dissociated at will
by ramping B back through Bres. This technique was used in
several recent experiments to produce ultracold molecules
from ultracold atomic gases �1–9�. Between the association
and the dissociation, the atomic and the molecular cloud can
be spatially separated by applying a Stern-Gerlach field.

We emphasize the difference between a Feshbach reso-
nance and a shape resonance. A shape resonance occurs in
single-channel scattering. The quasibound state is typically
localized behind the centrifugal barrier. It could theoretically
become a truly bound state by increasing the potential depth,
but experimentally, one can usually not tune its energy. A
Feshbach resonance is a multichannel resonance. The quasi-
bound state has a spin configuration other than the incoming
flux. The energy of the quasibound state can be tuned with a
magnetic field and this state can become a truly bound state
by tuning its energy below the open-channel threshold. De-

spite their differences, both types of resonances have in com-
mon that there is a quasibound state above threshold. More-
over, both types of resonances are well described by the
same Breit-Wigner expression for the S-matrix Eq. �15�.

B. Low-energy Feshbach resonances

As discussed in Sec. II D, s-wave scattering usually domi-
nates at low energies. If the magnetic field is held near a
Feshbach resonance at Bres, then the low-energy scattering is
affected, of course. According to Eqs. �12� and �24�, 	0 and 
both vanish like O�k� for k→0. One can thus linearize the
tangent in Eq. �18�, yielding 	0

res� tan 	0
res=� / �2�Eres−E��.

The definition of the scattering length Eq. �13� then yields

a = abg −
�

2Eres
lim
k→0



k
. �26�

Since  �
k→0

O�k�, this expression is well defined. Inserting
Eq. �25� for Eres one obtains

a = abg�1 −
�B

B − Bres
 , �27�

where the �magnetic-field� width of the Feshbach resonance
is defined as

�B =
�

2abg��
lim
k→0



k
. �28�

 is always positive, while �� and abg can be positive or
negative, independent of each other. Therefore �B can be
positive or negative.

Low-energy scattering in the vicinity of a Feshbach reso-
nance can thus be described analytically with only three pa-
rameters abg,Bres ,�B. The resulting pole and zero in the total
cross section �=8�a2 result from interference between
background scattered and resonantly scattered wave, just like
in the Beutler-Fano profile. Various experiments �42–48�
with ultracold atoms observed the behavior predicted by Eq.
�27�.

For sufficiently small k, Eq. �28� can be solved for .
Inserting E=�2k2 / �2mred�, one obtains the threshold law for
the decay rate

 =
2�B��

�2 abg
�2mredE . �29�

Recently, this behavior was also experimentally observed
with ultracold atoms �10,11�.

C. Selection rules

As mentioned above, one requirement for a Feshbach
resonance is that the interaction Hamiltonian must be able to
flip the spins to make transitions between the two relevant
channels. This section deals with this issue in more detail.

At large radius, the spins of two colliding ground-state
alkali-metal atoms are specified in terms of the hyperfine
quantum numbers �f1 ,mf1� and �f2 ,mf2� of the two atoms.
Together with l ,ml ,E one obtains a complete set of quantum
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numbers. The atomic hyperfine spins can be added, yielding
the total spin F� = f�1+ f�2. The corresponding quantum numbers
are F ,mF.

At shorter radius, the exchange interaction Vex is the
dominant term in the interaction Hamiltonian, so that the
spins of the valence electrons are coupled to a total electronic
spin S�; and the singlet �S=0� and triplet �S=1� potentials
differ drastically. Hence, the hyperfine quantum numbers
f1 ,mf1 , f2 ,mf2 are not good quantum numbers at short radius.
When writing Vex as a matrix in the hyperfine basis, it there-
fore has large off-diagonal elements, which means that tran-
sitions between different hyperfine states are possible. Vex is
spherically symmetric and thus conserves l ,ml. For incoming
s-waves, Vex can therefore cause Feshbach resonances only if
the molecular state is an s-wave state. Since Vex creates only
forces internal to the system, the total angular momentum
l�+F� is conserved. Since ml is conserved, mF is conserved,
too.

In addition, there are much weaker terms in the interac-
tion Hamiltonian. The strongest of these terms is the spin-
spin interaction Vss, which is the sum of the magnetic dipole-
dipole interaction of the valence electrons and the second-
order spin-orbit interaction for the valence electrons. Vss can
change l ,ml because it is not invariant under spatial rota-
tions. It causes transitions according to the selection rules
�l=0 or ±2 and ��ml��2. For incoming s-waves, Vss can
therefore cause Feshbach resonances for d-wave molecular
states. Since Vss is much weaker than Vex, the resulting inter-
channel coupling is typically also much weaker. Hence, Fes-
hbach resonances caused by Vss are usually much narrower
than those caused by Vex. Since Vss creates only internal
forces, the total angular momentum l�+F� is again conserved.

Even weaker terms in the Hamiltonian can cause other
narrow Feshbach resonances, such as in 133Cs near 20 Gauss,
where an incoming s-wave is coupled to a g-wave molecular
state �49�. �l is always even for the Feshbach resonances in
atomic collisions, because the interaction Hamiltonian con-
serves parity. The only fundamental interaction that does not
conserve parity is the weak interaction, but that is negligible
here.

When an external magnetic field B� is applied, the total
angular momentum l�+F� is no longer conserved, because the
external field creates external forces. We consider only the
case where B� points along the z axis, so that rotational sym-
metry around the z axis implies the conservation of ml+mF.
Note that if the magnetic field is strong, f1 , f2 are no longer
good quantum numbers at large radius.

V. RESONANCES WITH MANY PARTIAL WAVES

A. S-matrix

In this section, we consider the case where a quasibound
state couples to unbound states in more than one partial
wave. Again, a Breit-Wigner form is obtained for the
S-matrix �see p. 411 in Ref. �18��

S = Sbg�1 −
iA

E − Eres + i�/2
 , �30�

where Sbg and A are matrices and 1 is the identity matrix.
While this is often discussed in the context of resonances

with couplings between different channels, we here use it for
resonances that involve different partial waves. We assume

that Sbg is diagonal and define ll�=ei�	l
bg−	l�

bg
�All� /�. We thus

obtain

Sll� = ei�	l
bg+	

l�
bg��	ll� −

i�ll�

E − Eres + i�/2
 . �31�

Note that this reduces to Eq. �15� in the single partial-wave
case, where ll�=	ll�	ll0

and l0 denotes the one partial wave
that has a resonance.

We assume that there is only one quasibound state that
causes the resonance. Hence, the matrix A is of rank 1 �see p.
406 in Ref. �18��. Combined with unitarity and symmetry of
the S-matrix, this implies that all ll� are real and that they
fulfill

ll�
2 = lll�l�, �32�

 = �
l

ll. �33�

We will see in Eq. �43� that the decay rate into the lth partial
wave is given by ll. This quantity cannot be negative. The
threshold law Eq. �24� applies to each diagonal element ll.
The total decay rate  is the sum of the partial decay rates.

This situation explicitly allows coupling between different
partial waves, so that �Sll���	ll�. In particular, �Sll��1 and
the scattering phases 	l can be complex. The S-matrix is still
unitary and the number of particles is conserved. But the
unitarity limit Eq. �11� for �l known from spherically sym-
metric potentials can be exceeded here, because flux can be
redistributed between partial waves.

When calculating the partial-wave components of the to-
tal cross section, one finds an expression that closely re-
sembles a Beutler-Fano profile

�l = �l
bg�� + Re�Q��2 + �1 + Im�Q��2

�2 + 1
�34�

with � and �l
bg from Eqs. �16� and �21� and with the complex

number

Q = −
1

sin 	l
bg�

l�

ei	
l�
bgll�

�2l� + 1

�2l + 1
. �35�

While Q is a lengthy expression, the key result is that it is
independent of �. Hence, �l is a fairly simple function of
energy, namely the product of a parabola and a Lorentzian,
just like for the normal Beutler-Fano profile. The full-width
at half-maximum �FWHM� of the Lorentzian as a function of
E is � just like in the single partial-wave case. But the
minimum of �l can be above zero and the maximum can be
above or below the unitarity limit. In the single partial-wave
case �ll�=	ll�	ll0

�, one obtains Q= �−i−cot 	l
bg�	ll0

and Eq.
�34� reduces to the normal Beutler-Fano profile Eq. �19�.
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B. Combination of a shape resonance and a Feshbach
resonance in 87Rb

We apply this formalism to 87Rb with both atoms entering
in the hyperfine state �1,1�. This is the absolute ground state
for atomic 87Rb so that inelastic two-body collisions cannot
occur. This system has a Feshbach resonance at Bres
=632.45 G �27� with �B=1.3 mG �11�. The corresponding
molecular state is a d-wave state, which is coupled to incom-
ing s-, d-, and g-waves by the spin-spin interaction �see Sec.
IV C�. For the energy range considered here, g-wave scatter-
ing is negligible. Weaker terms in the Hamiltonian can
couple to even higher partial waves, but that is also negli-
gible here.

Figure 5 shows the s- and d-wave components of the total
cross section, �0 and �2 with ml=0 �see below�, for different
values of the magnetic field B. These results were obtained
from a coupled-channels calculation. One can clearly see the
narrow Feshbach resonance sitting on top of the background,
which is modulated due to the broad shape resonance already
known from Fig. 3. The energy Eres, at which the Feshbach
resonance occurs, can be tuned with the magnetic field ac-
cording to Eq. �25�.

 in Eq. �31� denotes the total decay rate of the molecular
state. The decay rate of the other quasibound state that
causes the shape resonance does not explicitly occur in Eq.
�31�, because the open-channel physics including the shape
resonance is contained in the energy dependence of 	l

bg and
ll�.

When moving Eres�B� through the shape resonance, the
form of the cross sections �l near the Feshbach resonance
changes, as seen in Fig. 5. For Eres�B��Eshape, the Feshbach
resonance increases the cross sections on the low-energy side
of the Feshbach resonance and reduces the cross sections on
the high-energy side. For Eres�B��Eshape this is reversed.
This is because when moving E through the shape resonance,
	2

bg changes by almost �, as seen in Fig. 3�a�. This phenom-
enon is called q-reversal, see, e.g., Ref. �50�.

We now discuss, why ml=0 for all outgoing partial waves.
As mentioned in Sec. IV C, rotational symmetry around B,
which points along the z axis, implies that ml+mF is con-
served. Since the incoming channel has mF=2, ml=0, all
outgoing channels must have mF+ml=2. For energetic rea-
sons, mF=2 is the only possible spin state for the outgoing
flux, so that all outgoing waves must have mF=2, ml=0.
Note that during the collision, couplings to all states with
mF+ml=2 are possible. This is a necessary ingredient, since
the molecular state is an almost pure mF=4, ml=−2 state.

Note that in the case of the above-mentioned resonance
near 632 G, Vss is required for the molecules to decay, since
ml has to change by +2 for both the outgoing s- and d-wave,
leading to comparable amplitudes for both partial waves. If
the molecular state were an s-wave state instead, Vss would
still couple it to the outgoing d-wave, but the much stronger
Vex would create a strong coupling to the outgoing s-wave,
resulting in a very small outgoing d-wave fraction. Con-
versely, if the molecules had l=2, ml=0 they could decay
into the outgoing d-wave by the strong Vex since l and ml
would not need to change. For decay into the outgoing
s-wave, the much weaker Vss would be needed as l would
need to change by −2 and the population of this partial wave
would therefore be strongly suppressed as compared to
population in the d-wave. Such resonances do exist, e.g., in
87Rb at 551.47 G and 831.29 G �27�. Unfortunately, these
two resonances are so narrow ��B�0.2 mG each�, that cre-
ating molecules at these resonances is difficult.

C. Extracting the partial decay rates

The S-matrix for the above situation was numerically cal-
culated on a fine grid in the E-B-plane, in order to extract the
decay-rate matrix ll� and the background scattering phases
	l

bg as defined in Eq. �31�. The extraction of the 	l
bg is easy,

because they contain only the open-channel physics. This
does include the shape resonance, so that the 	l

bg depend on
energy, but it does not include the Feshbach resonance, so
that the 	l

bg depend hardly on the magnetic field. The values
of 	l

bg�E� can therefore simply be read off from the S-matrix
for pretty much any B sufficiently far away from the Fesh-
bach resonance. Since the open-channel physics is almost
independent of B, the result for 	l

bg is essentially the same as
shown for B=0 in Fig. 3�a�.

FIG. 5. Combination of a shape resonance and a Feshbach reso-
nance for scattering of 87Rb in state �1, 1�. The partial-wave com-
ponents �l of the total cross section are shown for the s-wave �dot-
ted line� and the d-wave �solid line�. The magnetic field B is held at
various values above the Feshbach resonance at Bres�632 G. The
Feshbach resonance is much narrower than the shape resonance. By
changing B, the position of the Feshbach resonance can be tuned
through the shape resonance.
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As discussed in the context of Eq. �24�, the decay-rate
matrix of the molecular state ll� depends on energy. But it
depends hardly on the magnetic field. Hence, the extraction
of ll��E� from the numerical results for S�E ,B� is also fairly
easy. To this end, we take the modulus squared of Eq. �31�
for l� l� and insert Eq. �25�, yielding

�Sll��
2 =

l�l� �2ll�
2 �E�/��2

�− B + Bres + E/���2 + �22�E�/�2���2 . �36�

Considered as a function of B at constant E, this is simply a
Lorentzian. We fit this to the numerical results for
�S02�E ,B��2 at constant E and obtain three fit parameters
�02�E� /���, ��E� /���, and �Bres+E /���. A combination
of the results of the last fit parameter for various values of E
yields Bres=632.3 G and ��=kB�224 �K/G=3.33�B with
the Bohr magneton �B. The deviation between the theoretical
and experimental value for Bres is no problem, as long as the
comparison between experiment and theory is performed in
terms of B−Bres.

Knowing ��, one obtains �02�E�� and �E�. Using Eqs.
�32� and �33�, one easily obtains 00�E� and 22�E�, except
for the ambiguity of which is which. This can easily be re-
solved by inspection of the diagonal elements of S�E ,B�. In
addition, inspection of the off-diagonal elements of S�E ,B�
yields the sign of 02�E�, which is

02 = 20 = − �0022 �37�

for all E in the present calculation. Thus, the complete
decay-rate matrix ll��E� is extracted. The partial decay rates
00�E� and 22�E� of the molecular state are shown in Fig. 6.

In order to demonstrate the quality of the fit, the results of
the coupled-channels calculation are compared to the fit
curves in Fig. 7. Parts �a� and �b� show modulus squared and
phase of the S-matrix elements, respectively. For clarity,
some quantities that are trivially related to the others are not
shown. Symmetry and unitarity of the S-matrix imply S20
=S02, �S00�2= �S22�2=1− �S02�2, and arg S02= ��+arg S00

+arg S22� /2. All curves shown in Fig. 7 are well described by
only four parameters 	0

bg, 	2
bg, 02, and . The excellent

agreement between the fit and the coupled-channels results
demonstrates that the Breit-Wigner form Eq. �31� is a very
good approximation.

VI. MOLECULE DISSOCIATION

A. General

In this section, we discuss the decay of the molecular state
as observed in Ref. �16�. As already described at the end of
Sec. IV A, molecules are formed by ramping B through Bres.
A Stern-Gerlach field then removes the incoming flux from
the spatial region of interest and finally the molecules are
dissociated by jumping B above Bres and holding it there at a
fixed value. For further experimental details, see Refs.
�3,16�.

Due to conservation of energy during the decay, the mean
energy of the outgoing wave is given by

E = Eres�B� �38�

with Eres from Eq. �25�. Due to the finite lifetime of the
molecular state, the energy of the outgoing wave has a width
of �.

Note the difference between this dissociation experiment
and time-independent elastic scattering, for time-independent
scattering, the energy of the outgoing wave must be identical
to the energy of the incoming wave, whereas in the decay
experiment described here the energy of the outgoing wave
is adjusted with B. In the decay experiment, the energy of the
outgoing wave of up to kB�500 �K is typically much larger
than the energy of the incoming wave with E�kB�1 �K,

FIG. 6. Decay rates of the molecular state for the 632 G Fesh-
bach resonance in 87Rb. The partial decay rates into the s-wave
�dotted line� and d-wave �solid line� are shown. The d-wave shape
resonance obviously has a drastic effect on the d-wave decay rate.

FIG. 7. Fitting to the S-matrix elements. Results from the
coupled-channels calculation �circles� are shown versus magnetic
field B for a fixed energy of kB�255 �K. The fit curves �solid
lines� are hardly visible, because they agree so well with the
coupled-channels results.
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from which the molecules were originally formed. This is
possible because the magnetic-field ramp makes the Hamil-
tonian explicitly time dependent, so that energy is not con-
served in a simple-minded fashion. Ultimately, the additional
energy in the outgoing wave comes from the power supply
that creates the magnetic-field ramp.

In the decay experiment, the original incoming wave has
such low energy, that only incoming s-waves are relevant.
This implies that ml=0 for the incoming wave. As discussed
in Sec. V B, this implies that all outgoing partial waves must
also have ml=0. And again, only s- and d-waves are impor-
tant for the dissociation in the energy range considered here.

B. Connection between scattering and decay

The decay experiment is closely related to the scattering
experiment discussed in Secs. V B and V C. The link can be
established by inspection of the scattering wave function,
which is obtained from the combination of Eqs. �5� and �22�,

�l�
�+��r�� �

r→�

�− 1�l�e−ikr

r
Yl�0��� −

eikr

r
�
l=0

�

Sll�
bgYl0���

−
eikr

r
�
l=0

�

Sll�
resYl0��� . �39�

The first term is the incoming wave, the second term is the
background scattered wave and the third term is the reso-
nantly scattered wave. The resonantly scattered part consists
of population that made the transition to the molecular state
and then decayed back to the open channel. In the decay
experiment in Ref. �16�, the Stern-Gerlach field removed the
incoming wave and along with it the background scattered
wave. Hence, these two terms must be removed to describe
the decay experiment

�decay�r�� �
r→�

−
eikr

r
�
l=0

�

Sll�
resYl0��� . �40�

This crucial step makes the connection between scattering
and dissociation.

From Eq. �31� one obtains

Sll�
res = − ei�	l

bg+	
l�
bg�

i�ll�

E − Eres + i�/2
. �41�

Inserting this and Eq. �37� into Eq. �40� and choosing l�=0
yields

�decay�r�� �
r→�eikr

r

i�ei	0
bg�00

E − Eres + i�/2

� �ei	0
bg�00Y00 − ei	2

bg�22Y20���� . �42�

We abbreviate

�l =
ll


, �43�

	rel = 	2
bg − 	0

bg, �44�

and obtain

�decay�r�� �
r→�

g̃�r,E����0Y00 − ei	rel��2Y20���� , �45�

where g̃�r ,E� is the radial wave function. The time-domain
version thereof g�r , t� is related to g̃�r ,E� by a Fourier trans-
form.

Equation �33� implies that �0+�2=1 so that �l is the
branching ratio for decay into the lth partial wave. 	rel is the
relative phase between the two partial waves. The above
definitions of �l and 	rel do not explicitly depend on E. But
they do involve ll��E� and 	l

bg�E�. The energy dependence
of these quantities within the width of the resonance � is
negligible, so that one can simply evaluate these quantities at
E=Eres�B�.

In conclusion, we showed how the dissociation of ultra-
cold molecules into more than one partial wave is related to
a scattering experiment. This makes it possible to use
coupled-channels calculations for scattering experiments to
analyze dissociation experiments, such as the one in Ref.
�16�. The analysis in Ref. �16� shows that the experiment
agrees well with the theory described here.
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APPENDIX: POLES OF THE S-MATRIX

Analytic continuation

Insight into scattering resonances can be gained in a very
general formalism that makes no use of the specific form of
the potential. The starting point is the observation that the
S-matrix is typically an analytic function of k. The key idea
is then to consider the analytic continuation of S�k� into the
complex k-plane. One can show that this continuation is
unique, but cannot always cover the whole complex plane.
The physical meaning of k as the magnitude of the wave
vector requires it to be real and non-negative. But the con-
tinuation into the complex plane will offer additional physi-
cal insight, as we will see in the following. For simplicity, we
consider only a spherically symmetric single-channel poten-
tial in this appendix. More details about the topics discussed
in this appendix can be found in Ref. �18�.

In this discussion, one usually considers the Jost function

f̃ l�k� instead of the S-matrix. Like the S-matrix, the Jost func-
tion is also defined by the coefficients in the scattering state
Eq. �5�, but with a different normalization

�l�r� �
r→���− 1�l f̃ l�k�

e−ikr

r
− f̃ l

*�k*�
eikr

r
Yl0��� . �A1�

The Jost function also has a unique analytic continuation into

the complex k-plane. For most potentials, f̃ l�k� is analytic
everywhere in this plane, except for the negative imaginary

axis. Note that f̃ l�k� and f̃ l
*�k*� cannot both vanish for the
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same value of k. As a consequence, f̃ l�k� cannot vanish if k is
real.

The S-matrix is easily obtained from the Jost function,

Sll��k� =
f̃ l

*�k*�

f̃ l�k�
	ll�. �A2�

The Kronecker symbol comes from our assumption of
spherical symmetry. If k is real, this implies �Sll��

2=	ll�, i.e.,
unitarity.

Note that the S-matrix has a pole at k if f̃ l�k�=0. In other
words, poles of the S-matrix correspond to zeros of the Jost
function. If k is real, the Jost function cannot vanish, so that
all zeros of the Jost function must lie either in the upper
half-plane, i.e., Im�k��0, or in the lower half-plane, i.e.,
Im�k��0. We will now discuss what the physical meaning of
the zeros of the Jost function is. This depends on the half-
plane, in which the zero is.

Bound states

For complex values of k, Eq. �A1� has one term that in-
creases exponentially for large r, and one term that decreases
exponentially. We assume that there is a point k0 in the upper

half-plane with f̃ l�k0�=0. Here, Eq. �A1� has only one term.
This term falls off exponentially, because we assumed that k0
is in the upper half-plane. Hence, Eq. �A1� is a normalizable
eigenstate of the Hamiltonian. In other words, this is a bound
state.

The bound-state energy is �2k0
2 / �2mred�. Since the Hamil-

tonian is Hermitian, this energy must be real. Since k0 is in
the upper half-plane, it follows that k0= i� with � real and
positive. The bound-state energy is then −�2�2 / �2mred�. Con-
versely, one can show that if the Hamiltonian has a bound
state with angular momentum l and energy −�2�2 / �2mred�,
then f̃ l�i��=0.

To summarize, bound states have a one-to-one correspon-
dence to poles of the S-matrix in the upper half of the com-
plex k-plane. All these poles must lie on the imaginary axis.

Resonances

We now investigate what happens if the Jost function van-
ishes at a point k0 in the lower half-plane. Again, the first
term in Eq. �A1� vanishes, but this does not result in a nor-
malizable eigenstate, because the remaining term increases
exponentially for large r. Unlike before, k0 does not have to
lie on the imaginary axis.

The Jost function can thus have a large number of zeros
everywhere in the lower half-plane. Most of them are usually
uninteresting. The only interesting ones are those, which lie
close to the positive real axis because they can create reso-
nances, as we will show now. The correspondence between
resonances and zeros of the Jost function in the lower half-
plane is not so clear-cut one-to-one as in the case of bound

states. Still, when considering only those poles that lie close
to the positive real axis and when ignoring some rather spe-
cial cases �see p. 241 in Ref. �18��, one can think of this
correspondence as being one-to-one.

The linear approximation further below is usually made in
terms of energy, rather than k. Obviously, one can substitute

E=�2k2 / �2mred� and obtain f̃ l�E�. Care must be taken, be-
cause the transition from k to E is a two-to-one mapping, so

that f̃ l�E� is a function on a two-sheeted Riemann surface.
Im�k��0 corresponds to the first sheet of E �also called
physical sheet� and Im�k��0 corresponds to the second �or
unphysical� sheet of E.

If f̃ l�k0�=0 with k0 in the lower half-plane, then f̃ l�E� has
a zero on the unphysical sheet at E0=�2k0

2 / �2mred�. We as-

sume that f̃ l�E� has a simple zero at E0, so that near E0 we
can use a linear approximation

f̃ l�E� � c�E − E0� �A3�

with a nonzero value of c= ��df̃ l /dE��E0
. We already men-

tioned that k0 must lie just slightly below the positive real k
axis to create a noticeable resonance. This implies that E0
also lies just slightly below the positive real E axis. Hence,
there is some interval on the positive real E axis, where Eq.
�A3� is a good approximation. From Eq. �A2�, one obtains

Sll �
c*�E − E0�*

c�E − E0�
�A4�

for E in this interval on the real axis. We abbreviate the
prefactor that is independent of E as

Sll
bg =

c*

c
�A5�

and we split E0 into its real and imaginary part

E0 = Eres − i
�

2
. �A6�

Here, Eres and  must be positive, because we assumed that
the zero of the Jost function lies slightly below the positive
real k axis. We thus obtain the Breit-Wigner expression

Sll � Sll
bg�1 −

i�

E − Eres + i�/2
 . �A7�

The real and imaginary parts of E0 are thus identified as the
position and the width of the resonance.

With this approach to the Breit-Wigner form, Sll
bg and 

are independent of E. If the resonance is narrow, i.e.,  is
small, then this is a good approximation. Broader resonances
can be included in the formalism by allowing Sll

bg and  to
depend on E. For a very broad resonance, the background
scattering phase can change considerably over the width of
the resonance, and it becomes questionable whether one re-
ally should regard this as a resonance.
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