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Resonance positions and lifetimes for flexible complex absorbing potentials
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By adding any complex absorbing potential (CAP) —iAV(F) to a system Hamiltonian, the corresponding
complex eigenvalues are analytical functions of X, E;(N). It is shown here that for a quite general flexible class
of CAP’s the real part of limy_,oE;(\) provides the resonance energy. The imaginary part of that limit is the
resonance width (i.e., inverse lifetime) in spite of the fact that Im £,(0)=0. The need for the Padé approxima-
tion within this approach is explained. Application to an illustrative numerical test case model Hamiltonian is
given. This method could open a gate for studying systems that could not be studied until now due to the
complexity of the numerical computations. In particular, one may in this way obtain resonance energies by a
modification, in a straightforward simple manner, of the widely used conventional methods that were devel-

oped for the calculations of bound states.
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I. INTRODUCTION

The resonance phenomenon appears in many different
fields of physics, chemistry, and technology. Let us briefly
mention « and B radioactive decay, atomic and molecular
autoionization, Auger spectroscopy, shape and Feshbach
resonances, the predesorption of atoms and molecules from
solid surfaces, above-threshold ionization, high-order har-
monic generation of atoms and molecules in strong laser
fields, and resonance tunneling transistors and diodes. An-
other example is the recent prediction of the intra-
Coulombic-decay phenomena [1] which have been con-
firmed by experiments [2]. In order to guide the experiments
there is also the need for the calculation of resonance
complex-energy surfaces to high accuracy [3]. As a last ex-
ample we can quote the calculation of resonance energies for
nuclear systems decaying via a three-body mechanism [4].

Resonance energies and lifetimes are associated with the
real and with the inverse of the imaginary parts of the com-
plex eigenvalues of the Schrodinger equation. Complex ei-
genvalues are obtained by imposing outgoing boundary con-
ditions on the corresponding eigenfunctions. The
consequence of these boundary conditions is that the reso-
nance wave functions diverge exponentially [5,6]. A com-
mon way to deal with this problem is to introduce complex
absorbing local potentials (CAP’s) on the edge of the grid.
This approach has been borrowed [7] from nuclear physics
[8,9] and can be applied to both scattering and resonance
problems. See for example [10] for an application to reso-
nances. A recent review on the use of CAP’s is in [11] with

*Permanent address: Laboratoire de Photophysique Moléculaire
du CNRS, Université de Paris-Sud, 91405 Orsay, France and
U.FR. de Physique Fondamentale et Appliquée, Université Pierre
et Marie Curie, 75231 Paris,
roland.lefebvre @ ppm.u-psud.fr

"Email address: chmilan @techunix.technion.ac.il

*Email address: nimrod@techunix.technion.ac.il

France. Electronic address:

1050-2947/2005/72(5)/052704(6)/$23.00

052704-1

PACS number(s): 03.65.Nk, 05.60.Gg, 61.14.D¢

references therein. For resonances this is made with two pur-
poses: (i) to make the wave function square integrable; (ii) to
avoid the reflection of running waves by the edge of the grid
which is used in the numerical calculation. Reflection-free
CAP’s have been devised in [12,13]. It has been proven [12]
that such CAP’s are associated with complex scaling trans-
formations that stand on a rigorous mathematical ground
[14-18]. Unfortunately they are not easy to implement for
large and complex systems. The flexible CAP’s which are
used in the present study are not reflection-free potentials.
They do not require the careful tailoring which is generally
both energy and range dependent (see for example [19-21]
for the case of a linear CAP). However it will be shown that
they can provide the desired information about resonances,
up to all significant digits of accuracy.

More than a decade ago it has been proposed [22] to
calculate resonance energies by the multiplication of the
Planck constant by exp(—i¢) or the reduced mass by
exp(2i¢). Such modifications produce a Hamiltonian which
for a one-dimensional situation is given by

2

fi >
H(r,¢) =~ 7 —exp(=2i)— 5+ V(r). (1)

For a vanishing asymptotic potential, the outgoing solution is

of the form exp(ilzr), with a modified wave number k given
by

K= zhizEexp(Ziqﬁ). (2)

The result is to induce a positive imaginary part in the
asymptotic wave number which in turn produces a damping
of the wave function. With the help of the Padé procedure,
the extrapolation of the complex eigenvalues obtained for
¢+ 0 to ¢=0 gives the resonance position and lifetime. The
present study goes along similar lines (cf. also [23]). A CAP
of the form V-, p=—iAr" for a one-dimensional system, with
N>0, is added to the Hamiltonian. The “puzzle” is as fol-
lows: how does it come that by using a Padé approximant to
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FIG. 1. The complex eigenvalues as functions of A\, as obtained
for the test-case study problem using 500 particle-in-a-box basis
functions (the box size is L;,,=30 a.u.). The parameter N\ was given
the values N\;=0.0004(j—1). Results differing by AA=0.004 are
shown as open circles. One reprentative value of N\ is shown. The
full circle stands for the results obtained from the application of the
Padé-approximation-extrapolation procedure.

compute limy_oE(\) the resonance complex eigenvalue is
obtained rather than the real eigenvalue which has been cal-
culated for A=07?

Let us first introduce the puzzle by an illustrative numeri-
cal example. In Sec. III the solution is presented, supported
by a proof that with any V,p=—iAr"' added to the Hamil-
tonian, the resonance wave functions become square inte-
grable. We show that this statement holds for any value of
A #0 when N>0. However, the resonance wave functions
decay and vanish exponentially at the edge of the grid only
for A=A\, where the critical value of A\ is basis-set or grid
dependent. As the basis set is closer to completeness or the
grid gets larger A, gets smaller values. We then explain why,
with the help of the Padé approximation, the resonance po-
sitions and widths can be computed. In Sec. IV we apply the
method presented in this paper to cases where a Gaussian
basis set is used. The ability of using a Gaussian basis set in
applying the method presented here is very important in view
of its possible use in electronic structure calculations of
many electron systems. In Sec. V we conclude.

II. THE PUZZLE

As a test-study model Hamiltonian we have chosen I:I(r)
=-0.5d*/dr*+(r*/2-0.8)exp(-0.17*) which has been used
before to check new theories and computational methods for
calculating resonances [24-27]. In this model Hamiltonian
the potential consists of a well embedded between two po-
tential barriers of equal heights. The potential supports only
one bound state and two isolated narrow resonances that are
located below the top of the potential barriers. In Fig. 1 we
show the complex eigenvalues E(\) that were obtained for
the highest of the two resonances from the diagonalization of
a complex symmetric 500 X 500 matrix. The associated wave
function is symmetric with respect to inversion. The matrix
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elements are given by Heyp(i,j)=(i|H(r)—ir[j) where |i)
and |j) are particle-in-a-box functions. Here the box size is
L,,.=30 a.u. Six-figure accuracy is required. A continuous
curve is obtained for E(\) where Im[E(\)]=0 for A=0. Ten
values of E(N) are selected for A;=0.004+0.0002(j-1)
where j=1,2,...,10. These values are used to build the Padé
approximant

4
E Pj7\j
=0

Epage\) = ——5—— (3)

1+ 2 qi)\i
i=1

such that

E(N)) = Epaae(N,))- “4)

For more information on the use of Padé approximants
see [22,28]. The extrapolation to A=0 provides the result that
is labeled by a full circle in Fig. 1,

HmEp,(\) =po=1.327212-i0.015448 1  (5)
A—0

while complex rotation provides 1.327 197-i0.015447 3
[24]. The puzzle is clear. Why does the Padé approximant
provide a point which is not embedded on the curve E(N)?
How does it come about that the resonance position and
width (inverse lifetime) are obtained with such high accu-
racy?

III. THE SOLUTION OF THE PUZZLE
AND ITS IMPLICATION FOR NUMERICAL
CALCULATIONS OF RESONANCES

As a step toward the solution of the puzzle we present in
Fig. 2 the complex eigenvalues as functions of the CAP
strength parameter N for two box sizes: L,,,=30 a.u. (the
previous calculation) and L, =40 a.u. The parameter \ is
given values 0.0002(i— 1) where i=1,2,...,151. The solid line
which is shown in Fig. 2 describes the corresponding com-
plex eigenvalues that would be obtained if there was no con-
straint due to the finiteness of the box size. These are called
the “numerically exact values.” It is important to note that
these values are obtained by applying the complex scaling
transformation to the Hamiltonian with a CAP, i.e., when
H(r)—ﬂfl(r exp(i6))—inrMexp(i6N). Upon complex scaling
the resonance wave functions become well localized in space
(i.e., square integrable) even for A=0. The numerical exact

results are compared with the results obtained when ﬁ(r)

— H(r)-ix? (no complex scaling transformation is applied
here). As one can see from Fig. 2, for sufficiently large val-
ues of A the results obtained for the different basis sets coa-
lesce with the exact numerical values. The coincidence for
A=\, is due to the fact that we are dealing with bound states
in both cases (with and without complex rotation) and that
although here the eigenvalue is complex, it is known that
complex rotation does not affect bound states eigenvalues.
Moreover, the critical value of N\ for which

052704-2



RESONANCE POSITIONS AND LIFETIMES FOR...

-0.01—

-0.02 —

Im E(})

-0.03—

-0.04 —

1 L 1 L 1 L
-0.05 4
1.3 1.31 1.32 133 1.34

Re EQ)

FIG. 2. The complex eigenvalues for CAP strength parameters
\;=0.0002(j—1) that were obtained from the diagonalization of a
500X 500 complex symmetric matrix. Two types of particle-in-a-
box basis functions are used. One set of basis functions is associ-
ated with a box size L;,,=30 a.u. and produces the energies shown
by the open circles. The other set of energies shown by the open
squares are associated with L,,, =40 a.u. The arrows select repre-
sentative values of N. The solid line describes the so-called numeri-
cally exact results described in the text. R stands for the resonance
position.

|Ebasis set(x > )\c) - Eexact()\)| =€, (6)

where € is practically equal to zero (i.e., all significant digits
are zero), depends on the set of basis functions used in the
calculation. As L;,, gets a larger value, provided a large
enough number of basis functions is used to get converged
results, the value of A, is smaller. Figure 3 gives additional
evidence of this behavior for a linear CAP and a propagation
technique which allows one to go to extremely large box
sizes. This shows that as the basis set gets closer to com-
pleteness the numerical exact complex eigenvalues will be
obtained even for infinitesimally small values of . This is an
interesting result. Within the framework of the complex scal-
ing method a resonance wave function becomes square inte-
grable only when the scaling parameter (i.e., rotational angle
0) gets values that are larger than a critical value 6, given by
(for a zero threshold energy) tan(6,)=-Im E,,/Re E,, (see
the reviews in [16,18]). In contrast the critical value of the
relevant parameter in the present approach can go to zero.
Later we will discuss the fact that the quadratic CAP —i\r?
changes the asymptote of the resonance wave function to be
a square-integrable function in a way very similar to that
suggested before by Zel’dovich and his co-workers [6].

The answer to the question of why by using Padé approxi-
mants we get the resonance complex eigenvalue rather than
the real eigenvalue that was obtained in our numerical cal-
culation when A=0 is as follows: when A=\, and Eq. (6)
holds, the Padé approximation cannot be sensitive to the dif-
ferences (if any) between the complex eigenvalues which
were obtained by either the CAP with A=\, or with these
same values of A and complex rotation. Another way of ask-
ing the question is this: Why does the extrapolation by the
Padé method give the value of E,,,.(A=0)=E,,, and not the
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FIG. 3. The complex eigenvalues as functions of the strength
parameter \;=0.0002(j—1) of a linear CAP with j=1,.2,...,151.
Three box sizes are used: L,,=160 (circles), 200 (squares), and
400 (diamonds) in a.u. A propagation+matching technique deter-
mines the energies. Note the kink along the curve for L, =160. All
curves merge finally with the almost straight line leading to the
resonance position. The larger the box size, the sooner the merging
occurs. The arrows select representative values of \. A Padé ap-
proximant is to be built on the energies belonging to the straight
line. These energies do not depend on the box size. The approxi-
mant generates the resonance energy symbolized by R.

value of Ej, g s(A=0) which is a real number? The informa-
tion about “kinks” and other abrupt changes of E(N<<\,) is
embedded in the high-order derivatives of E(A>\_). Using a
first-order perturbation argument we will show below that
E,.ue(\) ~ E,.,+ NAE. The extrapolation to A=0 follows the
smooth linearly A-dependent function and the resonance
complex eigenvalue is obtained. This is the explanation to
the puzzle as presented in Sec. II.

A simple argument showing that when CAP’s of the form
—iNr¥9 are included in the Hamiltonian the resonance wave
functions become square integrable can be given within the
semiclassical approach. The semiclassical wave function
with outgoing behavior can be written

V’%exp(zfr k(r’)dr’). (7)

W (r) ~

The local wave number k(r) is

k(r) = [2m(E = V(r) + iNFM) ]2, (8)

For large r, for the calculation of the integral, we approxi-
mate k(r) as

K(r) ~ \2m(iNP) Y2 = (14 0) (mA) V22, 9)
This gives

’ 2
f k(r’)dr’~m(m)\)”2(1+i)rw+2)/2. (10)

The introduction of this integral and of the local wave
number into the semiclassical form of W(r) gives
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FIG. 4. The integral S(\\)=|[54"2"W, o(x;\)dx]| as a function
of N when 500 particle-in-a-box basis functions have been used as a
basis set.

2i

W(r) ~ (mN) V41 + 1) 12104 <+
() ~ (mA)™ (1 + )75 Texpl + =

(m)\) 1/2r(N+2)/2>

2
X ——=(m\ 172 (N+2)/2) ) 11
eXP( N+2(m ) (11)

The second exponential factor ensures asymptotic damp-
ing for any real positive value of N with N>0. The case for
N=1 is treated more fully in the Appendix. As \ gets smaller
values the suppression of the natural exponential growth of
the resonance wave function happens at larger distances from
the origin. Therefore, for a given basis set the suppression of
this growth happens when N\ gets values which are larger
than a critical value. In Fig. 4 we present the integral S(\)
=|[H=20p 2 (x;N)dx| as a function of X when 500 particle-
in-a-box basis functions have been used. As one can see the
wave function becomes localized in the interaction region
when A >\.~0.014. This value of A\, is in good agreement
with the results presented in Fig. 2.

In this context we should mention the Zel’dovich normal-
ization of resonance wave functions. To make the resonance
wave function square integrable, Zel’dovich [6] suggested
multiplying the resonance wave functions by a Gaussian
exp(—or?), where after the calculations of expectation values
the limit of 0— 0 is carried out; namely, the inner product is
defined not as (V,,,|¥,,,) but as (¥, |lexp(—or?)|¥,,,) when
o—0*. Our results for a quadratic CAP are in this spirit as
one can see from Eq. (11) with N=2, where %(m)\)”2 stands
for o.

There are two additional aspects of the method which are
worth explaining. One deals with a different way to calculate
the energies called numerically exact in previous sections.
The other is to account for the almost linear behavior with
respect to A when A is close to zero. When A=0 the expo-
nential growth of the resonance wave function prevents the
use of the basis set method. This problem is avoided if we
complex scale the Hamiltonian H(r)—ineY by exp(if). In
such a case for A=0 we get the converged resonance com-
plex eigenvalue. When A # 0 the wave function is already a
square-integrable function. These energies coincide numeri-
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cally, as already stated, with those obtained for #=0 and X\
=\.. These energies can also be obtained as Padé approxi-
mants starting from values of A somewhere along the nearly
straight line and extrapolating toward A=0.

To explain the close-to-linear behavior we choose here as
a zeroth-order Hamiltonian

Hy=H-ie”, (12)

where € is taken as an arbitrarily small positive number, such
that

I:IO\Pres = Eresq,res . (1 3)

The perturbation is taken as Vyp=—iA". The complex
A-dependent energy is given by

Eexacr()\) = Eres - l)\E(C}f)XP + E (_ i)\)nE(Cr‘gP’ (14)
n=2

where

E¢\p= f W, (VP o (P)dr. (15)

It should be stressed that instead of the conventional scalar
product we use here the so-called ¢ product [24]. Because
even with a very small e the function W,,(r) decays expo-
nentially [cf. Eq. (11)] the integral is finite. From this pertur-
bational analysis it results that a nearly linear dependence of
the complex eigenvalue associated with the resonance energy
with respect to A is expected. Figures 2 and 3 strongly sup-
port this conclusion.

IV. RESONANCES WITH THE HELP OF FLEXIBLE CAP’S
WITH A GAUSSIAN BASIS SET

In order to apply the method presented here, i.e., calculat-
ing resonances by using flexible CAP’s with the help of Padé
approximants, to molecules or to many-electron quantum
dots, it is very important to show that we can use Gaussian
basis functions. Most if not all of the widely used packages
for electron structure calculations incorporate Gaussian func-
tions as a basis set in order to simplify the calculations of the
Hamiltonian matrix elements. For the one-dimensional test-
case study model Hamiltonian of the previous sections we
use even-tempered Gaussians as a basis set. That is, ¢;(x)
=exp(—aye~'x?) where j=1,2,...,N. In Fig. 5 we present
the complex eigenvalues as obtained by solving the general
eigenvalue problem det{Hq, p—E(N)S]=0, where Hyp is the
Hamiltonian matrix and S is the Gaussian overlap matrix.
Here 60 Gaussians were used as a basis set. The results pre-
sented in Fig. 5 clearly show that due to the use of the lo-
calized even-tempered Gaussian basis functions the complex
eigenvalues are converged and become basis-set independent
for A=\, when A\, is about ten times larger than before when
particle-in-a-box basis functions were used. The conclusion
is clear. When Gaussian basis functions are used the method
is applicable but the flexible CAP strength parameter should
get sufficiently large values. The Padé procedure is applied
to the energies calculated for X;=0.03+; 0.0001. The results

052704-4



RESONANCE POSITIONS AND LIFETIMES FOR...

-0.02—

-0.04 —

Im E(L)

-0.06 —

-0.08 —

0.1+

L L L P R I
129 13 131 132 1.33 134 1.35
Re EQY)

FIG. 5. The complex eigenvalues as a function of the CAP
strength parameter A, with \;=0.0001(j—1). The basis set consists
of 60 even-tempered Gaussian functions. The continuous line stands
for the numerically exact results obtained with complex rotation. A
comparison of these results with those displayed in Fig. 2 shows
that for the even-tempered Gaussian basis set the complex eigen-
values converge more slowly than for the particle-in-a-box basis
functions since the critical value of \ is about ten times larger. The
arrow selects a representative value of A. R stands for the resonance
position.

are given in Table I, calculated with the continued fraction
procedure [28]. The results are of good quality only when
both polynomials in the ratio have equal degrees (M +N even
in the table). There is no obvious explanation for this behav-
ior. The good stability of results for this choice can serve as
a criterion.

V. CONCLUDING REMARKS

It is shown here that the exponentially diverging reso-
nance wave functions become square integrable when any
complex absorbing potential —iNr*¥ with N=0 is added to the
system Hamiltonian. For a multidimensional Hamiltonian the
CAP should be written —iA/". This happens even when X\
gets infinitesimally small values. Because the integration
range or the basis sets are necessarily finite N should in prac-
tice exceed a critical value A, to produce the so-called exact
N-dependent energies. The value of A\, starts to decrease as
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the calculation is made more accurate by extending the inte-
gration range and E(\,) gets closer to the resonance energy.
However, another route to estimate the resonance positions
and lifetimes is to apply the Padé approximation which
bridges the gap between A=\, and A=0. This approach
might be found most attractive when one wishes to compute
resonances with the help of widely used conventional nu-
merical packages that were developed for the calculations of
bound states.

APPENDIX: ASYMPTOTIC BEHAVIOR OF A WAVE
FUNCTION WITH A LINEAR IMAGINARY POTENTIAL

The wave equation with a linear imaginary potential is (in
a.u.)

<_ Li+v(r)—i>\r—E>‘If(r)=0- (A1)

2m ar?

For large r, after V(r) has vanished, the wave equation be-
comes locally

( ! i—i)\r—E)\If(r):O. (A2)

B %o"r2

A change of variables is made to bring it to a standard form:

7= (Zm)\)l/3(ir + E) (A3)
A
giving
&
((9_Z2 —Z)‘I’(Z) =0. (A4)

This equation has for solutions the Airy functions Ai(z)
and Bi(z) [29]. For r—oo, we can use the expressions of
Ai(z) and Bi(z) for a large modulus of z [Egs. (10.4.59) and
(10.4.63) of [29]]:

11
AZ(Z) — _/:Z_l/4€_(2/3)z3/2’ (AS)
2 \,’77
. U sem»
Bi(z) ~ =z "e . (A6)

N

For large r, z is dominated by the first term. We have:

TABLE I. Extrapolated energies with the Padé procedure applied to the energies obtained with a Gaussian
basis. A continued-fraction method [28] is used here. M is the degree of the polynomial in the denominator
while N is for the numerator. For M +N even M =N, while for M+N odd M=N+1.

M+N Re(Egg) Im(Eges) M+N Re(Egy,) Im(Eg,,)

2 1.32552093 —0.0157077128 9 1.32716684 —0.0176695815
3 1.3155404 —0.0255419827 10 1.32571199 —0.0158415378
4 13256868 —0.0157609616 11 1.32828364 —0.0134598865
5 1.31687519 —0.0184641115 12 1.32572353 —0.0158482468
6 1.32571613 —0.0158047955 13 1.32543153 -0.0122016644
7 1.32959555 —0.0197172829 14 1.32563783 —0.0158178091
8 1.32571468 —0.0158431948
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2~ (mN) V2P - 1). (A7)

This gives for the asymptotic forms of Ai(z) and Bi(z)

. 11 E\~V4 232 1(273) ) V2302
Ai(z) ~ ——=\ir+—- o~ 2i3)r77 +(213)(mN) , (A8)
2 N )\

. 1 E\4 202 _(273) (ma) 2,312
Bi(z) ~ =\ir+ N eI =23 T (A9)
N
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We observe that Ai(z) is a progressive wave function run-
ning to the left, with a diverging factor for r— 400, while
Bi(z) is running to the right and is damped. Thus Bi(z) is the
function with the correct boundary condition. A linear imagi-
nary potential produces a localization of the wave function.
Another route to this result is to use semiclassical theory.
This is done in the text for a CAP of the general form —i\r".
For N=1 one recovers exactly the result given by the Airy
function.
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