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An analytical model for a dipole-bound anion �DBA� is proposed based on the exactly solvable three-
dimensional Schrödinger equation for the excess electron bound by dipole potential of the parent neutral
molecule �NM� in the Born–Oppenheimer approximation. The model gives reasonable analytical approxima-
tion for the dependence of the DBA binding energy on the NM dipole moment previously found numerically
by many authors. The cross section of one-photon photodetachment of DBA is calculated in explicit analytical
form. In the limit of high photon frequency, �, the calculated cross-section displays ��−2 behavior, which
agrees perfectly with the experimental data �Bailey et al., J. Chem. Phys 104, 6976 �1996��. At the threshold,
the cross section demonstrates Gailitis–Damburg oscillations. Numerical dependence is provided for the maxi-
mal value of the cross section as a function of the NM dipole moment and the binding energy of the excess
electron.
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I. INTRODUCTION

Considerable attention is presently payed to the so-called
dipole-bound anions �DBA�, i.e., molecular negative ions in
which the excess electron is bounded to the neutral molecule
�NM� due to its dipole moment �1,2�. As early as in 1947,
Fermi and Teller �3� and, later, Wightman �4� in their analy-
sis of meson capture by hydrogen atoms noted that a fixed
point dipole d�1.625 D�1 Debye�0.393 a.u.� can bind an
electron to infinitely many bound states. A number of subse-
quent studies taking into account the finite dipole effects
�5–8�, presence of a short-range repulsive core potential
�9,10�, rotational excitation �11–13�, polarization �14–17�,
and quadrupolar �14,15,18� interaction yield the critical di-
pole moment 2–2.5 D required to form DBAs of common
molecules �1,19�.

DBAs for experimental studies are created, for instance,
by proton �20,21� and H2

+ �22� abstraction reactions, hot cath-
ode electric discharge �23–25�, free electron attachment un-
der high-pressure nozzle expansion conditions, �26–29� and
charge transfer from Rydberg atoms �19,30,31�. Recently, a
new method of laser stimulated radiative attachment has
been proposed in Ref. �32�. The created DBAs are investi-
gated, e.g., by photoelectron spectroscopy �26–29,31,33�.

Large-scale ab initio calculations �see, for instance,
��29,34–42� and references therein� of a DBA structure were
used to study the effects of correlation, orbital relaxation,
dispersion, and charge-transfer interaction. However, despite
the increasing accuracy of such many-electron calculations,
simplified one-electron local model potentials have still been
proving their efficiency and suitability for large-scale com-
puter simulations, as well as for other analytical theories
��43� and references therein�.

While the structure of DBA is being studied very actively,
until recently, there have been no theoretical estimates of the
cross sections reported for photodetachment �PD� from DBA

�44–46�. From the theoretical point of view, the threshold
behavior of such cross sections is an interesting manifesta-
tion of different interactions felt by an outgoing photoelec-
tron �47�. In fact, the dipole potential of NM makes DBA an
intermediate case between the neutral atoms and atomic an-
ions. In the former case, the Coulomb interaction causes the
constant cross section value at the threshold, while in the
latter case the short-range �such as polarization or quadru-
pole� potentials do not affect the leading term of the well-
known Wigner threshold law for the PD cross section:

� � k2l+1 or � � ��� − Eb�l+1/2, �1�

where k and l are linear and angular momenta of the outgo-
ing electron, � is the photon frequency, and Eb is the binding
�threshold� energy.

Anomalous threshold behavior of PD from DBA was pre-
dicted theoretically to be caused by the dipole potential
which breaks the spherical symmetry resulting in the nonin-
teger l value in expression �1� �48,49�. Moreover, for above-
critical dipole moment, the threshold behavior of the PD
cross-section is closer to the Coulomb than to the short-range
case: At ��→Eb, it is almost constant with weak superim-
posed oscillations with �. Such oscillations were first pre-
dicted for electrons scattered from hydrogen atom excited
states �50�. They are due to the constant dipole moment of
excited states of the nonrelativistic hydrogen atom, as well as
the linear Stark effect. Similar oscillations were discussed for
single and double one-photon �51� and two-photon �52� PD
from the hydrogen anion and also for electron scattering on
polar molecules �53� �see also Ref. �47��.

Experiments for the dipole effects in the threshold behav-
ior of a PD cross section have been actively discussed
�54–57�. Nevertheless, there are other experimental aspects
of PD measurements on DBA which require theoretical de-
scription. The frequency dependence of PD was measured in
Ref. �33�. DBA lifetimes measured in Ref. �45� are attributed
to PD induced by background thermal black-body radiation.

Recently, �46� one-electron calculations of PD from DBA
were performed in the framework of the Drude oscillator*Electronic address: zon@niif.vsu.ru
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model, which was used as a pseudopotential of NM. In this
work, we consider a DBA as an electron moving in a point
dipole potential. Below, we develop an analytical theory ex-
plaining some features of frequency-dependent DBA PD.
While most experimental photoelectron spectra are recorded
at a constant photon frequency �, Ref. �33� reports the pho-
todetachment rate ��−2 for high �. Such behavior is differ-
ent from the PD cross section ��−7/2 in atoms �58� and
��−3/2 in atomic negative ions �59�, and can be explained
using the proposed analytical technique. Our model also im-
plies the above-mentioned oscillatory behavior of the cross-
section near threshold.

In Sec. II, we start from the full Hamiltonian which in-
cludes the interaction of a rotating NM with the excess elec-
tron and briefly describe separation of the angular variables
in two opposite limiting cases; Born-Oppenheimer approxi-
mation �BOA� �Sec. II A� and inverse BOA �IBOA� �Sec.
II B�. The radial wave functions are constructed in Sec. III
with separate consideration of bound states �Sec. III A� and
scattering states with necessary asymptotics �Sec. III B�. The
general expressions for the PD cross section are given in Sec.
IV.

II. GENERAL FORMALISM AND ANGULAR FUNCTIONS

We assume that the NM remains in one of its vibrational
states and its rotational state is determined by its angular
momentum, j. We choose a NM-fixed reference frame
�� ,� ,�� with the �-axis directed along the NM dipole mo-
ment d, which is considered to be a point dipole �60�. Then,
the Hamiltonian of the excess electron moving in the field of
the rotating NM is

Ĥ = Ĥrot + Te + V�r,cos 	� . �2�

The rotational Hamiltonian,

Ĥrot = b� ĵ�
2 + b� ĵ�

2 + b� ĵ�
2, �3�

includes the rotational constants b� ,b�, and b�. For a
symmetric-top NM, we have b�=b�, and the expression �3� is
reduced to

Ĥrot = b� ĵ
2 + �b� − b�� ĵ�

2. �4�

The kinetic energy,

Te =
�2

2mer
2

d

dr
�r2 d

dr
� +

�2l̂2

2mer
2 , �5�

of the excess electron and its interaction,

V�r,cos 	� = −

 cos 	

r2 , �6�

with the rotating NM includes the electron radius vector, r,
whose direction is determined by the spherical angles �	 ,��
in the molecule-fixed frame. The dimensionless dipole mo-
ment 
=2me	e	d /�2=0.786 d�D� ,e and me are the electron
charge and mass, respectively.

The solution of Schrödinger equation with the Hamilto-
nan �2� can be found as a sum over the channels correspond-
ing to different NM states:

� = 

Jcl

RJcl�r�Jcl
JM; �7�

Jcl
JM = 


Mcm

CJcMclm
JM BKcMc

Jc ���Ylm��,�� , �8�

where the eigenfunctions of the rotational NM Hamiltonian
�3�

BKcMc

Jc ��� =�2Jc + 1

8�2 

�c

bKc�c
DMc�c

Jc* ��� , �9�

are expressed as linear combinations of the Wigner D func-
tions which are eigenfunctions of the symmetric-top rota-
tional Hamiltonian �3�; they depend on the corresponding
Euler angles, �. Since the �-projection, �c, of the NM an-
gular momentum, Jc, is not conserved for an asymmetric-top
NM, the corresponding wave function �9� contains a sum
over �c and depends on the quantum number Kc, which can
be obtained by diagonalization of the Hamiltonian �3�. For
symmetric-top-type-NM, one has bKc�c

=�Kc,�c
.

The spherical functions Ylm depend on the angles �� ,�� of
the electron in the space-fixed frame �x ,y ,z�. Due to the sum
with over Clebsch–Gordan coefficients C with the
z-projections, Mc and m of the NM and electron angular
momenta, Jc and l, correspondingly, the angular functions
Jcl

JM describe the states with total DBA angular momentum,
J, and its z-projection, M. The sum over the electron orbital
momentum, l, �so called l mixing� is caused by nonspherical
symmetry of the MN potential V in Eq. �2�. However for a
point dipole potential �6�, one has RJcl�r��A�JclR�Jc

�r� with
the l-mixing coefficients, A�Jcl, independent of r �60�. The
quantum number � arises instead of the angular momentum,
l, due to this mixing, see Eq. �14� below.

A. Born-oppenheimer approximation

Wavefunction �7� in the previous section has a quite com-
plicated analytical form. More simple expressions for it can
be obtained in two limiting cases. The first case, BOA, takes
place when the NM rotation is slow compared to the electron
motion. Quantitatively, the difference between the energy
levels of the NM states with neighboring Jc values in BOA is
small compared with the difference between the electron lev-
els, so that we can consider the radial function R�Jc

�r�
�R��r� to be independent of Jc. It is convenient to transfer
to the molecule-fixed frame according to

Ylm��,�� = 

�

Dm�
l* ���Yl��	,�� . �10�

Since the �-projection, �, of the electron angular momentum
is conserved in BOA, one can choose the A�Jcl coefficients,
so that only one term with �=� would remain in the sum of
the expression �10� after its substitution into the Eq. �7�.
Indeed, such an operation is well known as the transition
form the Hund’s d wave functions �8� to the Hund’s d wave
functions �see Eq. �12� below�, and plays an important role
in multichannel quantum defect theory �61�. Assuming
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A�Jcl = �− 1�l+�Cl,−�;J,�+�c

Jc�c a�l
���. �11�

and using properties of Clebsch–Gordan coefficients and
Wigner functions, we obtain

� = DKcM�
J ���R��r�Z���	,�� , �12�

DKcM�
J ��� =�2J + 1

8�2 

�c

bKc�c
DM �c+�

J* ��� ,

Z���	,�� = 

l

a�l
���Yl��	,�� , �13�

where the BOA dipole-spherical angular functions Z�� sat-
isfy the equation

�− l̂2 + 
 cos 	�Z�� = �Z��. �14�

Together with the l-mixing coefficients, a�l
���, the dipole-

spherical functions Z�� depend on the eigenvalue � of the
operator �14�, and �→ l�l+1� , l=0, 1,… for d→0. This
three-diagonal eigenvalue problem was studied in numerous
works. The functions Z�� were used as early as in Debye’s
works on the Stark effect for polar molecules �62�. The same
functions were used in the analysis of the critical binding
dipole moment in DBA �7� without studying the radial func-
tions. In Refs. �63,64� these dipole-spherical functions were
applied to Rydberg states in polar molecules. Recently, these
functions were used in calculations of oscillator strengths in
excimer molecules in Refs. �65,66� and in strong-field PD of
atomic anions �67�. Some properties of a�l

��� coefficients and
Z�� functions, including their plots, are presented in Refs.
�65,67�.

Note that for a symmetric-top NM, the wave functions D
are reduced to the Wigner D functions and the Hund’s case b
�or, in other words, BOA� functions �12� take the form

� =�2J + 1

8�2 DM�
J* R�Z�� �15�

with the conserving �-projection, �=�c+�, of the total
DBA angular momentum, J.

B. Inverse Born–oppenheimer approximation

While BOA is good for calculations of ground state bind-
ing energy of DBA, for some phenomena, such as rotational
autodetachment �22,68,69�, non-BOA effects are important.
The opposite limiting case, IBOA, corresponds to Hund’s
case d and it is fulfilled when the excess electron moves far
away �r�10..100 Å� from NM, and its motion can be con-
sidered slow compared to the NM rotation �not to vibration,
see the begining of Sec. II�:

Eb� 2bj , �16�

where b is of order of NM’s rotational constants. For a very
weakly bound �e.g., to an excited state� DBA with Eb
�10 cm−1, and a heavy NM �b�10 cm−1� in high-
momentum �j�10� state, condition �16� could take place.

Thus, in IBOA, only one term remains in Eq. �7� corre-
sponding to the conserving NM angular momentum j �60�.
Wave functions similar to Jcl

JM �8�, without l mixing, were
used, e. g., in description of dipole coupling channels �49�
and rotational autodetachment of DBA �68,69�.

For the point-dipole potential �6� in both limiting cases,
BOA and IBOA, the expression in Eq. �7� is effectively re-
duced to a single-channel radial function multiplied by the
appropriate angular function. The latter has a simpler form in
the BOA case, so all of the following results—which are not
so sensitive to the dependence of the electron wave function
on the angular variables—will be formulated for the BOA
case.

III. RADIAL FUNCTIONS AND ENERGY SPECTRUM

The radial functions satisfy

1

r2

d

dr
�r2dR

dr
� −

�

r2R +
2meE

�2 R = 0, �17�

for both BOA and IBOA; the difference between them is
included in �.

A. Bound states

Wave functions R���r� of bound states are solutions to Eq.
�17� for E=−1/2�2�2 /me with decreasing asymptotics
R���r�→0 at r→�. Therefore, to a normalization factor,
N��, they equal McDonald functions ��70�, Vol. 2�:

R���r� =
N��
�r

K���r� �
r→�

N��� �2�r
�1/2

e−�r,

� = �� + 1/4. �18�

For small r, we have

K���r� �
r→0

�

2 sin���� ��r/2�−�

��1 − ��
−

��r/2��

��1 + ��� . �19�

One can see from Eq. �19� that for the real index, �, these
functions diverge at r→0 where the point dipole approxima-
tion is inadequate, so the existence �or absence� of binding
electron states for ��−1/4 when � is real, is determined by
the behavior of the NM potential at small r.

If we consider the binding to NM caused only by its point
dipole moment, then these dipole-bound states arise for �
�−1/4 when � is imaginary. It is easy to see that �=−1/4
corresponds to the above cited critical value d=1.625 D. As-
suming �=is in Eq. �19�, we calculate the normalization fac-
tor N�� to obtain

R���r� = �2 sinh �s

�s
�1/2 �

�r
Kis��r� ,

s = �	�	 − 1/4, � � − 1/4. �20�

One can notice from Eq. �19� that for small r the functions
R���r� �20� demonstrate oscillatory behavior
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R���r� �
r→0

−
���sin�
s��r��

	��1 + is�	�s sinh �s
, �21�


s��r� = s ln��r/2� − arg ��1 + is� , �22�

that differs significantly from the wave functions of an elec-
tron in zero-range potential, which describes the outer elec-
tron in atomic anions �59�.

Note also another interesting property of function �20�:
For any E�0, they satisfy the boundary conditions imposed
on bound state wave functions, i.e., their values are bounded
both at r→0 and r→�, independently of E�0. In other
words a continuous and unlimited from below spectrum of
bound states arises in the field of a point dipole with
��−1/4. In this sense, it is a unique case in quantum me-
chanics excluding a more trivial case, such as quasicontinu-
ous spectra of bound states of an electron in a macroscopic
potential box. Such behavior of bound states, so-called “fall
into the center” �71�, is accompanied by nonorthogonality of
the wave functions corresponding to different energies.

However, this problem is interesting only from math-
ematical point of view, and connected with the singularity of
the Sturm–Liouville problem �17� at r=0. Physically, it
means that the point dipole model is not valid at small r
�r0, where r0 is some characteristic dimension of NM. Ac-
cording to general principles of quantum mechanics �71�,
this phenomenological MN “radius” is related to character-
istic energy of the excess electron as E��2 /mer0

2 �see Eq.
�24� below�. Similar parameters were introduced in various
one-electron DBA models �14,19,68� to regularize the singu-
lar point dipole �or polarization� potential at small r. Such
regularization can be achieved, for instance, by considering
the NM as an extended dipole �7�, or by taking into account
some short-range repulsive core potential �9,10,43�. We use
the simplest regularization model of the nonpenetrated core
with the radius r0. In practical applications, r0 is of the order
of Bohr radius, and in this domain the final result is not
sensitive to a particular choice of r0.

The boundary condition in this model reads as R���r0�
=0, so the bound state spectrum is expressed in terms of
discrete �n�s� values determined by roots of the McDonald
function:

Kis��n�s�r0� = 0. �23�

For �r0�1, we can use Eq. �21� to obtain the energies of
bound states:

Ens = −
�n

2�s�
2me

= −
2�2

mer0
2exp�−

2�n

s
+

2

s
arg ��1 + is�� ,

n = 1,2,… . �24�

Note that a formula such as Eq. �24�, describes the spec-
trum of high-excited states of an electron for various regu-
larizations of the dipole singularity �72–74�. Similar expres-
sion can be obtained �75� with the help of self-conjugated
expansion of the operator �17� rather than using the above
regularization.

It occurs that the expression �24� is quite accurate even
for the lowest state n=1 since �1�s� differs by less than 5%
from the value determined by the Eq. �23� for 0�s�4.58
corresponding to 1.625 D�d�35.88 D.

In the Fig. 1, the expression �24� with n0=1 is compared
with the experimental data. It is seen that for a number of
molecules, the NM radius is limited to a reasonable range:
r0=0.2..2 Å.

B. Continuum states

Radial wave functions Rk��r� of continuum states satisfy
Eq. �17� for E=1/2�2k2 /me�0. For the below-critical di-
pole values, ��−1/4, the radial function,

Rk��r� =�2�k

r
J��kr� , �25�

is proportional to the Bessel function J��kr� with the real
index �=��+1/4 since the second linearly independent so-
lution, J−��kr�, is not regular at r=0. For the above-critical
dipole values, ��−1/4 due to the fall into center of the
wave function, Rk���r� can be an arbitrary combination of
two Bessel functions J±is�kr� of imaginary index is
= i�	�	−1/4. To fix the coefficients of such combination, one
should choose a regularization of the singular dipole poten-
tial. A natural way to do it consists in choosing Rk���r� to be
k independent at small r�r0 �78�. Assuming kr0 to be small
enough, and choosing the wave function to be real, it yields
for ��−1/4:

FIG. 1. Electron binding energy, Eb, as function of the dipole
moment, d. Experimental �filled circles� and theoretical ab initio
�open circles� values for Pivaldehyde �1�, Butanal �2�, Acetaldehyde
�3�, 2-Butanone �4�, TFMB �5�, Cycloxexanone �6�, Acetone �7�,
Cyclobutanone �8�, Metacrylonitrile �9�, Acetonitrile �10�, Ni-
tromethane �11�, Piridazine �12�, Thymine �13�, Adenine �14�, Eth-
ylene Carbonate �15�,Vinylene Carbonate �16�, Imidazole �17�, For-
mamide �18�, HCN �19� are taken from Ref. �15� �1�–�6� �8�–�14�,
�17�–�19�, Ref. �76� �7�, Ref. �77� �15 and 16�. The curves are
calculated according to Eq. �24� with r0=0.5 a.u. �upper curve� and
r0=3 a.u. �lower curve�.
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Rk��r� = i
Nk�

2�r
���1 − is��kr0/2�isei�J−is�kr�

− ��1 + is��kr0/2�−ise−i�Jis�kr�� , �26�

Nk� =
�2�k

	��1 + is�	
�sin2�� + 
s�kr0�� + sinh2��s/2��−1/2,

�27�

where 
s��r� is defined by Eq. �22� and � is determined by
the regularization of the dipole singularity at r→0. For the
simplest nonpenetrated core model Rk��r0�=0, so for kr0

�1, one easily finds �=0. This value is used thereafter.
The normalization of radial functions �26� is chosen to

satisfy the standard condition adopted in scattering theory
�71�:

�
0

�

r2Rk��r�Rk����r�dr = 2���k − k�� .

Then the asymptotic �r→�� behavior of the continuum
wavefunctions is given by

Rk��r� �
r→�

2

r
sin�kr −

��

2
+
�

4
� ,

tan � = − tanh��s/2�tan�s ln�kr0�� , �28�

One can see that for the above-critical dipole Nk� in Eq.
�27� demonstrates oscillatory behavior without constant limit
at r0→0. The same behavior at k→0 is responsible for the
above mentioned Gailitis-Damburg oscillations �50�. At the
same time, for complex wave numbers k= i�, this normaliza-
tion factor

Ni�� =
�2�i�

	��1 + is�	
�sin �
s��r0��sin �
s��r0� + �s��−1/2

�29�

tends to infinity exactly at the discrete spectrum points �24�.
This is not suprising since the wave function normalized
according to the Eq. �28� is expressed in terms of the S
matrix, �75� and should therefore have peculiarities at the
discrete spectrum points k= i�n.

Assuming k= i� in Eq. �26�, we obtain

Ri���r� = iNi��

	��1 + is�	

2�r
�sin�
s��r0��Kis�− �r�

− i sin�
s��r0� + i�s�Kis��r�� , �30�

where it is easy to see that the term with Kis�−�r� vanishes at
�=�n since 
s��nr0�=�n �24� and Ri���r� is proportional to
the bound state wave function �20�, as expected.

The wave functions of the final state with the asymptotics
of ingoing �−� or outgoing �+� wave are

�k
�±��r� = 


��

Ak��
�±� Rk��r�Z����,�� , �31�

with coefficients Ak��
�±� chosen to satisfy the following

asymptotic relation at r→�:

�k
�±� � exp�ik r� +� f�k̂, r̂�

f*�− k̂, r̂�
� exp�±ikr�

r
, �32�

where k̂=k /k , r̂=r /r. Requiring the scattering amplitude,

� f�k̂, r̂�

f*�− k̂, r̂�
� = lim

r→�
re�ikr��k

�±��r� − ei k·r� ,

to be finite at r→� with the help of the standard plane wave
expansion �71�

exp�ikr� �
4�

kr


l�

ilsin�kr − �l/2�Yl�
* �k̂�Yl��r̂�

and the asymptotics �28� of the radial functions, one finds

Ak��
�±� = ±

2�i

k
Z�,��

* ��k̂�e�i��+�/4� �33�

in a way similar to that used in Ref. �63� for estimation of
electron scattering on polar molecular cathion, where some
additions to the Rutherford formula were deduced.

IV. GENERAL EXPRESSIONS FOR PHOTODETACHMENT
CROSS SECTION

In dipole approximation, the differential PD cross section
for the electron transition from the initial state, 	����, to the
final 	k� state due to absorption of a photon with the fre-
quency � and the unit polarization vector � is �79�:

d������→ k;�� =
e2mek�

2��2c
	����	�r · ��	k�	2d�k.

�34�

Here, �k is the solid angle of the outgoing electron wave
vector, k and the dipole matrix element is

����	�r · ��	k� =� R���r�Z���r̂��r·���k
�−��r�dr . �35�

For the photon polarization parallel ��= ẑ� and perpendicular
��= x̂ , ŷ� to the dipole direction, integrating over the angular
variables � and 	 in the matrix element �35� yields

����	z	k� = 

��

Ak���
�−� B���

�0 Q����;k��0� ,

����	y	k� = i����	x	k� ,

����	x	k� =
1
�2



q=±1



��

Ak���+q
�−� B���

�q Q����;k��+q� � ,

�36�

where
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B���
�q = 


ll�

�2l� + 1

2l + 1
�1/2

a�l
���a��l�

��−q�Cl�0 10
l0 Cl��−q 1q

l� ,

Q����;k��+q� � = �
r0

�

r3R����r�Rk�
�+q� �r�dr , �37�

with the �-dependency of � explicitly specified. Through this
dependence, the radial integral Q��� ;k��� depends on the
incident photon polarization.

After integration of Eq. �34� over d�k with the help of
Eqs. �33� and �36�, we obtain the PD cross section for the
photon polarized parallel and perpendicularly to the dipole
moment correspondingly:

�x,y����;�� =
�e2me�

�2kc



��,q=±1

	B���
�q Q����;k��+q� �	2,

�z����;�� =
2�e2me�

�2kc


��

	B���
�0 Q����;k����	2. �38�

Formula �38� has a form of channel sum over partial cross
sections. Each channel is characterized by �� value, similar
to the orbital quantum number value l specifying the partial
cross section in the spherically symmetric case. After aver-
aging over the NM dipole moment, which is equvalent to
chaotic orientation of DBA in the initial state, we have

����;�� =
1

3 

�=x,y,z

�����;�� . �39�

Similar to the case of spherically symmetric systems �e.g.,
atoms�, expression �39� does not include any dependence of
the incident photon polarization �79�. However, unlike the
atomic case, it includes the matrix elements of two types
�z��x=�y determined by Eq. �36� and cannot be expressed
through a single “reduced” matrix element.

The radial integral �37� involving wave functions �20� and
�26� or �25� depends weakly on the r0 due to the r3 factor in
the integrand. Thus, one can calculate the integral from r
=0 and use Eq. 7.7�31� of Ref. �70�, Vol. 2� to express the
radial integrals in terms of Gaussian hypergeometric func-
tions:

Q���;k��� =
iNk��

�2 � sinh �s

2�s
�1/2

���1 − is�

 ��r0/2�is�Mis,−is����

− �s� ↔ − s���, � � − 1/4, �40�

=
2

�2� k sinh �s

s
�1/2���

Eb
− 1���/2

 Mis,�����, � � − 1/4; �41�

Mis,���� =

���
2

+
is

2
+

3

2
����

2
−

is

2
+

3

2
�

��1 + �� 2F1��2 +
is

2
+

3

2
,
�

2

−
is

2
+

3

2
;1 + �;1 −

��

Eb
� �42�

=Gis,�� Eb

��
�−��+3−is�/2

2
F1��2 −

is

2
+

3

2
,
�

2
−

is

2
−

1

2
;1

− is;
Eb

��
� + �s ↔ − s�; �43�

Gis,� =

���
2

−
is

2
+

3

2
���is�

���
2

+
is

2
−

1

2
� . �44�

We used the energy conservation law

k2

�2 =
��

Eb
− 1, �45�

and Eqs. 2.10�3,5� of the �Ref. �70�, Vol. 1.�

V. RESULTS AND DISCUSSION

The frequency dependence of the PD cross section is pre-
sented in Fig. 2 for Eb=11.5 meV and different dipole mo-
ments. The same frequency dependence for d=6 D and dif-
ferent Eb values is given in Fig. 3. Note again that the cross
section does not tend to zero at the threshold, i.e., at
�� /Eb=1 �see discussion in Sec. V B�.

One can see from Figs. 2 and 3 that a typical PD cross
section dependence on photon frequency, �, has a maximum
whose width decreases with an increase in d or Eb. The
value, �m, of this maximum shows a complex nonmonotonic
dependence on the binding energy, Eb, and the NM dipole
moment, d. Some examples of such a dependence are given
in Figs. 4 and 5.

Our simple analytic model agrees well, at least within the
order of value, with the recent numerical calculations based

FIG. 2. Cross section of PD as function of photon frequency for
different dipole moments d=5D �solid line�, d=6D �dashed line�,
and d=7D �dashed-dotted line�; r0=3 a.u. ,Eb=11.5 meV.
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on the Drude oscillator model �46�. The comparison with
their results is given in the Figs. 6 and 7; the values of Eb and
d are equal to those used in Ref. �46�. We note that our Fig.
4 is also in agreement with the �m�1/Eb dependence de-
scribed in Ref. �46�.

As can be seen from Eq. �38�, the ���� dependence is
determined by Q factors �37� multiplied by �� /k�. Since the
analytical expressions for Q factors �40� and �41� in terms of
hypergeometric functions are quite complicated, we study
two limiting cases below; high frequencies �!Eb /� and
threshold frequencies ��Eb /�, in which both the hypergeo-
metric functions in Eqs. �42� and �43� correspondingly have
zero argument and therefore are equal to unity:

2F1�a,b;c;z → 0� → 1. �46�

It should be noted that both limits considered below are
determined by the specific behavior of electron wave func-
tion in the dipole NM potential at small r �high �� and large
r �threshold ��. Therefore, these results cannot be obtained
by perturbative methods �e.g., in Born approximation�.

A. High frequencies

Consider first the below-critical dipole channels,
���−1/4. Assuming �� /Eb→� in Eqs. �43� and �41� with
the help of Eq. �46�, we obtain

Q���;k��� �
�→�

	Gis,��	
4Eb

�2�
�k sinh �s

s

 cos�s ln���/Eb − arg Gis,��� . �47�

For the above-critical dipole channels, ���−1/4, one ob-
tains more complicated expressions of the type �47� contain-
ing several combinations of cosines with amplitudes and
phases involving G±is,±is�. However, one can neglect the
�-dependence of these cosines due to a slow variation of
logarithms. Then we obtain from Eq. �38�, the following
asymptotic behavior of PD cross section at high frequencies:

�x,y,z���;�� �
�→�

�−2. �48�

This dependence differs from PD cross sections in s states of
atomic negative ions �������−3/2�, but agrees with the ex-
perimental data �33� for DBA. The difference from the zero-
range potential model is caused by the 1/�r behavior of
wave functions �20� in the small r domain that is different
from the 1/r behavior of the wave functions in the zero-
range potential.

FIG. 3. Cross section of PD as function of photon frequency for
different bound energies of the DBA: Eb=20 meV �solid line�, Eb

=15 meV �dashed-line�, Eb=10 meV �dashed-dotted line�; r0

=3 a.u. ,d=6 D.

FIG. 4. Cross section maximal value, �m, as function of the
binding energy, Eb, of the excess electron for different dipole mo-
ments d=5 D �solid line�, d=6 D �dashed line�, and d=7 D
�dashed-dotted line�; r0=3 a.u.

FIG. 5. Cross section maximal value, �m, as function of the NM
dipole moment, d, for different binding energies Eb=6 meV
�dashed-dotted line�, Eb=12 meV �solid line�, Eb=16 meV �dashed
line�, and Eb=20 meV �dotted line�; r0=3 a.u.

FIG. 6. Cross section of PD as a function of photon frequency
for HCN− anion: Present work �solid line� and Fig. 4�a� of Ref. �46�
�dashed line�.
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The �−2 behavior �48� of ���� is obtained from �→�
limit of integral �37�, where we assumed r0=0. Since in the
limit of high �→�, the integral is determined by small r
domain, asymptotics �48� is valid for not very high �, pro-
vided that the de Broglie wavelength of the excess electron is
larger than the effective core radius: k��2me� /��1/r0.
Assuming r0�1 Å, the frequencies ��3 eV used in Ref.
�33� obey this condition. Actually, for higher frequencies,
ionization of the inner electronic shells becomes more prob-
able than detachment of the dipole-bound electron.

B. Threshold behavior

At threshold frequencies, i.e., in the �→Eb /� �or k→0�
limit, our analytical expressions agree with the general
threshold laws of atomic and molecular physics �47�.

Since, due to relation �46�, the Mis,� values in Eq. �42� are
frequency-independent at the threshold, the � dependence of
PD cross section is determined by the normalization factors
of the continuum state wave functions. For the below-critical
channels, ��−1/4 from Eqs. �41�, �45�, and �38�, one ob-
tains

�x,y,z���;�� �
�→Eb/�

��� − Eb��, �49�

where � is the minimal below-critical value of �� involving
into the channel sum �38�. Dependence �49� has a form of the
Wigner law �1� at noninteger l considered for molecules in
Refs. �48,49�. Note that the limit of small dipole moment d
→0 leads to a spherically symmetric, i.e., atomic potential
and the eigenvalue �→ l�l+1� with an integer l. Then, ac-
cording to Eq. �20�, we have �= l+1/2, and Eq. �49� is re-
duced to the Wigner law �1�.

For the above-critical channels, oscillatory behavior of
�x,y,z��� ;�� at threshold arises due to the normalization fac-
tor �27� in a way analogous to the Gailitis-Damburg oscilla-

tions, as can be seen from Fig. 8 inset. However, such non-
monotonic behavior of the PD cross section near the
threshold can hardly be resolved experimentally because of
NM rotation �47�.

Figure 8 shows the oscillating threshold behavior of the
PD cross section �z��� when the incident radiation is polar-
ized along the dipole direction. For the perpendicular polar-
ization, the cross section tends to zero at threshold according
to Wigner’s law, since no above-critical channels enter sum
�38� for 	�	�0 �the first value ��−1/4 arises for 	�	=1 at
d�9.646 D�.

VI. CONCLUSION

We proposed the simple analytical theory for DBA with
the NM modeled by the point dipole with nonpenetrating
core in the BOA. Our approach gives an analytic expression
�24� for binding energy of the excess electron in DBA, which
is in accord with the numerical calculations reported previ-
ously �15,77�. The nonperturbative analytical theory of DBA
PD was developed. For threshold frequencies of incident ra-
diation, this theory gives the well-known Gailitis–Damburg
oscillations, while for high frequencies the PD cross section
demonstrates �−2 behavior in agreement with the experiment
�33�.
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FIG. 7. Cross section of PD as a function of photon frequency
for HNC− anion: Present work �solid line� and Fig. 6�a� of Ref. �46�
�dashed line�.

FIG. 8. Cross section of PD for acetonitrile DBA. The inset
shows the Gailitis-Damburg oscillations of the cross section near
threshold. Eb=12 meV;r0=3 a.u. Solid line corresponds to d
=3.9 D, dashed line corresponds to d=4.3 D
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