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A calculation of the one-loop self-energy and vacuum-polarization corrections to the hyperfine splitting of
the 1s and 2s states in light H-like ions is carried out to all orders in the parameter Z�. Using the known values
for the Z�-expansion coefficients, the numerical data obtained are extrapolated from Z=5 and higher to Z
=0, 1, and 2, with the resulting accuracy being significantly better than in previous evaluations. Our calculation
shifts the theoretical value of the normalized difference of the 1s and 2s hyperfine-structure intervals in 3He+

by 0.056 kHz and improves its accuracy.

DOI: 10.1103/PhysRevA.72.052510 PACS number�s�: 31.30.Jv, 32.10.Fn, 12.20.Ds

INTRODUCTION

Hyperfine splitting of the ground state in light H-like sys-
tems, such as hydrogen, deuterium, tritium, and the helium-3
ion, has long been known experimentally with extremely
high precision. The present-day theory of the ground-state
hyperfine structure �hfs� is still far behind the experiment,
due to a relatively large contribution of the nuclear-structure
effects, which cannot be accurately calculated at present.
One of the possibilities to overcome this difficulty �1� is to
study the normalized difference �21=8�2s−�1s, where �1s
and �2s are the 1s and the 2s hfs intervals, respectively. A
large class of corrections to �1s and �2s �among them, all
lowest-order nuclear effects� are proportional to the nonrela-
tivistic electron density at the position of the nucleus �r=0�
and, therefore, do not contribute to the difference �21. Con-
sequently, the theoretical study of this difference can be per-
formed up to a much higher accuracy than that of �1s and �2s
separately.

The experimental value of the difference �21 is obtained
by combining results of two independent measurements of
�1s and �2s and is known less precisely than �1s. The best
accuracy is reached for the helium-3 ion in a combination of
two relatively old results �2,3�,

�21�
3He+� = 1 189.979�71� kHz. �1�

Recent progress was achieved in the measurement of �2s in
hydrogen �4� and deuterium �5�, which significantly im-
proved the corresponding experimental values for the differ-
ence �21.

The theory of hfs and, specifically, of the difference �21 in
light H-like atoms has recently been examined in detail in
Ref. �6�. It is demonstrated that one of the major uncertain-
ties in the theoretical prediction of �21�

3He+� stems from the
one-loop self-energy correction. The self-energy correction is
also responsible for a significant part of the theoretical un-
certainty for the ground-state hyperfine splitting in muonium
�7�.

The goal of the present investigation is to improve the
numerical accuracy of the one-loop QED correction for the

1s and 2s states in light H-like atoms. Our consideration will
be carried out to all orders in the parameter Z� �Z is the
nuclear charge number and � is the fine-structure constant�.
All-order calculations of the self-energy hfs correction in
H-like ions have been previously performed by numerous
authors �8–15�. Different evaluations are generally in good
agreement �except for the first two calculations; see the dis-
cussion in Ref. �14��. For high- and middle-Z ions, results for
this correction can be presently considered as well estab-
lished at the level of the experimental interest. In the low-Z
region, however, the experimental accuracy is much higher
and technical problems encountered in all-order calculations
are more demanding than for higher-Z ions. It would be
clearly preferable to perform a direct all-order calculation for
Z=1 and 2 with an accuracy significantly higher than the one
presently obtained from the Z� expansion, as was done for
the Lamb shift �16�. However, such a project has not been
realized yet. Blundell et al. �12� obtained the higher-order �in
Z�� contribution to the 1s self-energy correction for Z=1 by
extrapolating their numerical results for higher Z. Similar
procedure was employed in the investigation by two of us
�14� for the self-energy correction to the 1s and 2s hfs inter-
vals for Z=1 and 2.

The vacuum-polarization hfs correction was evaluated to
all orders in Z� in Refs. �8,17,18� �without the magnetic-
loop Wichmann-Kroll correction� and in Refs. �13,19� �com-
plete calculations�. However, the above studies were mainly
concerned with high- and middle-Z ions, so that little infor-
mation was provided about the behavior of the Wichmann-
Kroll part of the vacuum-polarization correction in the low-Z
region.

In the present work, we perform a calculation of the one-
loop self-energy and vacuum-polarization corrections to the
1s and 2s hfs intervals in H-like ions. The paper is organized
as follows. In Sec. I we evaluate the self-energy correction
by employing the additional-subtraction scheme �20� that im-
proves the convergence properties of the resulting partial-
wave expansion. In this way, we significantly increase the
accuracy of the numerical results for Z�5 as compared to
the previous evaluations. The vacuum-polarization correction
is evaluated in Sec. II. The higher-order one-loop QED con-
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tribution is inferred from our all-order results in Sec. III by
subtracting the known terms of the Z� expansion. Finally,
we discuss the experimental consequences of our calculation.

Relativistic units ��=c=m=1� are used throughout the
paper.

I. SELF-ENERGY CORRECTION

In this section we describe the evaluation of the self-
energy hfs correction without any expansion in Z�. We start
with general formulas for the self-energy correction in the
presence of an additional perturbing potential �V. To the first
order in �V, the self-energy correction is given by the sum of
the irreducible, the reducible, and the vertex corrections �21�,

�ESE = �Eir + �Ered + �Ever. �2�

The irreducible part arises through a perturbation of the wave
function,

�Eir = ��a��0�̃�	a��a� + �a��0�̃�	a���a� , �3�

where �̃=�−�m, �m is the one-loop mass counterterm, � is
the one-loop self-energy function,

��	,x1,x2� = 2i��0�
−





d� ��

 G�	 − �,x1,x2���D����,x12� , �4�

G is the Dirac-Coulomb Green’s function G�	�= �	−H�1
− i0��−1, H is the Dirac-Coulomb Hamiltonian, D�� is the
photon propagator, ��= �1,��, and x12=x1−x2. The per-
turbed wave function is given by

��a� = 	
n

	n�	a �n��n��V�a�
	a − 	n

. �5�

The reducible part can be considered as a correction due to
the first-order perturbation of the binding energy,

�Ered = �	a�a��0
 �

�	
�̃�	�


	=	a

�a� , �6�

where �	a= �a��V�a�. The vertex part is given by

�Ever =
i

2�
�

−





d�

 	
n1n2

�n1��V�n2��an2�I����n1a�
�	a − � − 	n1

�1 − i0���	a − � − 	n2
�1 − i0��

,

�7�

where I���=e2����D�����.
The self-energy correction to hfs is given by the above

formulas, in which we should assume the perturbing poten-
tial to have the form of the Fermi-Breit interaction �the
nuclear magnetic moment is denoted by ��,

�V → Vhfs�r� =
�e�
4�

� · ��  r�
r3 , �8�

and the initial-state wave function �a� to be the wave func-
tion of the coupled system �electron+nucleus�,

�a� → �FMFIj� = 	
MIma

CIMIjama

FMF �IMI��jama� , �9�

where �IMI� denotes the nuclear wave function, �jama� is the
electron wave function, F is the total momentum of the atom,
and MF is its projection. Radial integrations over the nuclear
coordinates can easily be performed already in the general
expressions. One can show that formulas �3�–�7� yield cor-
rections to the hfs if we employ the perturbing interaction in
the form

�V�r� =
EF

4/3�Z��3

�r  ��z

r3 , �10�

where EF is the nonrelativistic Fermi energy, and consider
the initial-state wave function to be the electron wave func-
tion with the moment projection ma=1/2,

�a� = �ja 1/2� . �11�

A. Irreducible part

As follows from Eq. �3�, evaluation of the irreducible part
of the self-energy hfs correction implies a calculation of a
nondiagonal matrix element of the self-energy function and,
therefore, is very similar to the evaluation of the first-order
self-energy correction to the Lamb shift. Since our present
approach to this problem is somewhat different from the
standard potential-expansion method, we now give a short
description of the scheme used for the evaluation of a self-
energy matrix element.

Ultraviolet divergencies in the self-energy function �4� are
traditionally isolated by separating the first two terms in the
expansion of the bound-electron propagator G in terms of the
binding potential V,

G�E,x1,x2� = G�0��E,x1,x2� + G�1��E,x1,x2� + G�2+��E,x1,x2� ,

�12�

where G�0�= ��−H0�1− i0��−1 is the free Dirac Green’s func-
tion, G�1� is the first-order expansion term

G�1��E,x1,x2� =� dz G�0��E,x1,z�V�z�G�0��E,z,x2� ,

�13�

and G�2+� is the remainder. Representing G in the form �12�
leads to splitting the matrix element of the self-energy func-
tion into zero-potential, one-potential, and many-potential
parts �see Refs. �22–24� for details�,

�a��0�̃�	a��a� = �Ezero + �Eone + �Emany, �14�

with the mass-counterterm part naturally ascribed to the
zero-potential term.
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Modifications of the standard potential-expansion ap-
proach introduced in our previous investigation �20� concern
the many-potential term, which is given by

�Emany = 2i��
CLH

d�� dx1dx2D����,x12��a
†�x1���

G�2+��	a − �,x1,x2����a�x2� . �15�

The integration contour CLH consists of two parts, the low-
energy �CL� and the high-energy �CH� one. The low-energy
part extends from 	0− i0 to −i0 on the lower bank of the
branch cut of the photon propagator and from i0 to 	0+ i0 on
the upper bank of the cut. In order to avoid the appearance of
poles of the electron propagator near the integration contour,
each part of CL is bent into the complex plane if the calcu-
lation is performed for an excited state. The high-energy part
of the contour is CH= �	0− i
 ,	0− i0�+ �	0+ i0,	0+ i
�. The
parameter 	0 of the contour is chosen arbitrarily from the
interval 	0� �	a−	1s ,1+	a�, where 	1s is the ground-state
energy.

The function G�2+�=G−G�0�−G�1� that enters Eq. �15� is
not known in its closed form at present and, consequently,
evaluation of the many-potential term has to be performed by
expanding G �and, therefore, G�2+�� into eigenfunctions of
the Dirac angular momentum with the eigenvalue �. This
expansion will be referred to as the partial-wave expansion
in the following. Its convergence properties are of crucial
importance for the numerical evaluation of the self-energy
correction.

In our previous investigation �20�, it was demonstrated
that the convergence rate of the partial-wave expansion could
be significantly enhanced by separating from G�2+� a part that
is calculated in a closed form. It was found that in the region
x1�x2 the function G�2+� could be approximated by a sim-
pler function Ga

�2+� of the form

Ga
�2+��E,x1,x2� = G�0��E + �,x1,x2� − G�0��E,x1,x2�

− �
�

�E
G�0��E,x1,x2� , �16�

where

� =
2Z�

x1 + x2
. �17�

The above approximation can be obtained from the �exact�
potential expansion of G�2+�,

G�2+� = G�0�VG�0�VG�0� + G�0�VG�0�VG�0�VG�0� + ¯ ,

�18�

by neglecting the commutators �V ,G�0�� to all orders �or, in
other words, by expanding all binding potentials V�x� around
the point x=x1 or x=x2 and keeping only the first terms;
details can be found in Ref. �20��. After this approximation is
made, the series acquires the form of the Taylor expansion
and can be summed up in a closed form.

It should be noted that the idea of commuting the poten-
tial V outside was first proposed by Mohr �25�, who proved
that this procedure does not influence the asymptotic ultra-

violet behavior of the one-potential term �we recall that ul-
traviolet divergences originate from the region x1�x2 in
configuration space�. Later it was also demonstrated �26,27�
that all ultraviolet divergences in the one-loop self-energy
correction could be identified by isolating several terms of
the power-series expansion of the potential V and the
reference-state wave functions �a around the point x1=x2.
The distinct features of the present approach compared to the
previous studies are that this expansion is carried out to all
orders in the potential V and that the result is written in a
closed form.

The function Ga
�2+� is expressed in terms of the free

Green’s function and can be easily evaluated. We thus write
�Emany as a sum of two terms,

�Emany = �Emany
sub + �Emany

remd . �19�

The subtraction term �Emany
sub is obtained from the high-

energy part of Eq. �15� by the substitution G�2+�→Ga
�2+�. The

second term �Emany
remd is the remainder. The subtraction term is

evaluated numerically in its closed form �i.e., without any
partial-wave expansion�, whereas the remainder yields a rap-
idly converging partial-wave expansion. Further details of
the numerical procedure for the evaluation of the one-loop
self-energy correction can be found in Ref. �20�.

B. Reducible part

The reducible part is defined by Eq. �6�. Using the defi-
nition of the self-energy function and employing the contour
CLH for the integration over �, we write the expression in the
form

�Ered = 2i��	a�
CLH

d�� dx1dx2D����,x12�

 �a
†�x1���
 �

�	
G�	 − �,x1,x2�


	=	a

���a�x2� .

�20�

Ultraviolet �UV� and infrared �IR� divergences present in this
expression can be conveniently isolated by separating the
Green’s function G into three parts,

G�E� = G�0��E� + G�a��E� + �G�E� − G�0��E� − G�a��E�� ,

�21�

where G�a� incorporates the part of the spectral decomposi-
tion of the bound-electron propagator with 	n=	a,

G�a��E,x1,x2� = 	
�a

�a�x1��a
†�x2�

E − 	a�1 − i0�
, �22�

and �a denotes the momentum projection of the states �a in
this expression. The terms on the right-hand side of Eq. �21�
substituted in Eq. �20� give rise to the splitting of �Ered,
correspondingly, into three parts:

�Ered = �Ered
�0� + �Ered

�a� + �Ered
many. �23�

In this sum, the term �Ered
�0� contains all UV divergences. It is

calculated in momentum space in a way similar to that for
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the zero-potential part of the first-order self-energy correc-
tion. UV-divergent terms are covariantly isolated; they dis-
appear when combined with the free-propagator contribution
in the vertex part. The term �Ered

�a� contains all IR divergences
present in the reducible part. �IR divergences of this type are
sometimes also termed as the reference-state singularities.�
These divergences are regularized by employing the photon
propagator with a finite photon mass �. The limit �→0 can
be taken when �Ered

�a� is combined with the corresponding
contribution from the vertex part.

The term �Ered
many is finite. Contributions of such type are

frequently encountered in all-order QED calculations. Usu-
ally, they are evaluated in coordinate space after expanding
into an infinite partial-wave series. In the present investiga-
tion, we modify the standard scheme in order to achieve a
better convergence of the partial-wave expansion, analo-
gously to that for the irreducible part. We thus separate
�Ered

many into two parts,

�Ered
many = �Ered

sub + �Ered
remd. �24�

The remainder term �Ered
remd is obtained from �Ered

many by re-
placing the standard subtraction �G�E�−G�0��E�−G�a��E�� by
�G�E�−G�0��E+��−G�a��E�� in the high-energy part of the
expression. The remaining difference �G�0��E+��−G�0��E��
gives rise to the subtraction term �Ered

sub. More explicitly, the
subtraction term is written as

�Ered
sub = 2i��	a�

CH

d�� dx1dx2D����,x12�

 �a
†�x1���
 �

�	
�G�0��	 − � + �,x1,x2�

− G�0��	 − �,x1,x2��

	=	a

���a�x2� , �25�

where � is given by Eq. �17�. This expression is calculated
in its closed form in coordinate space. The calculational for-
mulas are immediately obtained from the corresponding ex-
pressions for the subtraction term for the first-order self-
energy correction �20�. The remainder term is calculated by a
partial-wave expansion. Due to the additional subtraction in
the high-energy part, the convergence properties of this
partial-wave expansion are much better than in the standard
approach.

C. Vertex part

Rewriting expression �7� for the vertex part of the self-
energy hfs correction in terms of the bound-electron propa-
gators, we obtain

�Ever = 2i��
CLH

d�� dx1dx2dx3�a
†�x1���

 G�	a − �,x1,x2��V�x2�G�	a − �,x2,x3�

 ���a�x3�D����,x13� . �26�

UV and IR divergences present in this expression can be
conveniently isolated by the following separation:

G�VG = G�0��VG�0� + G�a��VG�a�

+ �G�VG − G�0��VG�0� − G�a��VG�a�� . �27�

This separation, being substituted into Eq. �26�, gives rise to
the following three parts of �Ever:

�Ever = �Ever
�0� + �Ever

�a� + �Ever
many. �28�

Only the first term in this sum is UV divergent. UV diver-
gences in �Ever

�0� are covariantly isolated by employing a
momentum-space representation; they disappear when com-
bined with the corresponding contribution from the reducible
part �see, e.g., Ref. �10��. The second term �Ever

�a� is IR diver-
gent. In order to retain its finite part, we consider it together
with the corresponding contribution from the reducible part,

�Ever
�a� + �Ered

�a� =
i

2�
�

CLH

d�
1

�� − i0�2

 � 	
�a��a�

�a���V�a���aa��I����a�a�

− 	
�a�

�a��V�a��aa��I����a�a� , �29�

where a� and a� denote the intermediate states with 	n=	a
and with the momentum projection �a� and �a�, respectively.
The integration over � can be carried out analytically, which
leads to an explicitly finite result. Sometimes it is more con-
venient to calculate this contribution directly according to
Eq. �29� �as long as the contour CLH is employed for the
integration over �, this expression is suitable for the numeri-
cal evaluation�.

The third term �Ever
many does not contain any divergences

and is calculated in coordinate space after expanding into a
partial-wave series. We note that an additional subtraction,
similar to the one introduced for the reducible part, does not
improve the convergence properties of the partial-wave ex-
pansion in this case. This is due to the fact that a significant
contribution to the partial-wave expansion terms originates
from the first-order commutator �V ,G�0��. In order to achieve
a significant improvement, one needs to separate the com-
plete contribution of the vertex with one magnetic and one
Coulomb interaction. Such contribution was evaluated in a

TABLE I. Individual contributions to the self-energy hfs correction for Z=10, in units of the function Dn
SE defined by Eq. �30�.

�Eir �Ered
�0� +�Ever

�0�
�Ered

�a� +�Ever
�a�

�Ered
many �Ever

many Total

1s −0.263902 1.896440 −0.002385 −1.607827 −0.185180 −0.162853�1�
2s −0.223649 3.433554 0.176267 −1.878883 −1.649848 −0.142559�3�
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closed form for the self-energy correction to the g factor
�28,29� using the explicit form of the interaction with the
constant magnetic field. In the case of the self-energy hfs
correction, we are presently unable to obtain a closed repre-
sentation for this term. Nevertheless, the partial-wave expan-
sion for �Ever

many is converging significantly faster than that
for �Eir

many and �Ered
many, so that the enhanced convergence

achieved for the irreducible and reducible parts results finally
in a significant improvement of the total accuracy of the
calculation.

D. Numerical results

The one-loop radiative corrections to the hyperfine split-
ting are conveniently represented in terms of the dimension-
less function Dn defined as

�E =
EF

n3

�

�
Dn�Z�� , �30�

where n is the principal quantum number. The self-energy
and vacuum-polarization parts of the function Dn�Z�� will be
in the following referred to as Dn

SE�Z�� and Dn
VP�Z��, respec-

tively.
The numerical results for individual contributions to the

self-energy hfs correction for the 1s and 2s states and Z
=10 are presented in Table I. The calculation was performed
for the point nuclear model and in the Feynman gauge. In

Table II we list the final results for the self-energy hfs cor-
rection for H-like ions with Z varying from 5 to 30. A com-
parison of the results of different theoretical evaluations for
this correction in the low-Z region is given in Table III.

As can be seen from Table III, the present calculation
improves the numerical accuracy of the self-energy hfs cor-
rection by about an order of magnitude for the 1s state and
even more for the 2s state, as compared to our previous
calculation �14�. This progress is due to the additional sub-
traction scheme employed in the present work for the evalu-
ation of the irreducible and reducible parts of the correction.
In order to illustrate the improvement in the convergence
properties of the partial-wave expansion introduced by this
scheme, in Figs. 1 and 2 we plot the dependence of the
absolute value of the individual terms of the partial-wave
series on the expansion parameter ��� within the standard
potential-expansion approach and within the present subtrac-
tion scheme. �The parameter � is the Dirac angular-
momentum eigenvalue of one of the electron propagators in
the vertex function.� Figures 1 and 2 represent this compari-
son for the irreducible and reducible parts, respectively.

As a result of the improvement achieved, we were able to
eliminate completely the uncertainty arising from termina-
tion of the partial-wave expansion in the irreducible and re-
ducible parts. Still, there remains the partial-wave expansion
of the many-potential vertex term �Ever

many, which has to be
terminated and properly extrapolated to infinity. �In actual
calculations the summation was terminated at ���=40.� The
error due to this extrapolation yields one of the main uncer-
tainties of our numerical evaluation �the other source of un-
certainty is the stability of numerical integrations.� Fortu-
nately, the partial-wave expansion of �Ever

many is monotonic
and relatively well converging �not worse than 1/ ���3 for all
Z�5�, and so the uncalculated tail of the expansion can be
estimated reasonably well.

II. VACUUM-POLARIZATION CORRECTION

The vacuum-polarization hfs correction can be conve-
niently split into two parts, the so-called electric- and
magnetic-loop contributions. The electric-loop part origi-
nates from the diagrams with the hfs interaction attached to
the external electron line, whereas the magnetic-loop one
comes from the diagram with the hfs interaction attached to
the vacuum-polarization loop. These contributions are also
traditionally separated into the Uehling and Wichmann-Kroll

TABLE II. The self-energy hfs correction for the n=1 and 2
states of light H-like ions.

Z D1
SE�Z�� D2

SE�Z��

5 0.174 026 �2� 0.181 940 �2�
6 0.106 815 �2� 0.117 124 �2�
7 0.039 476 �2� 0.052 265 �2�
8 −0.027 933�1� −0.012 626�2�
9 −0.095 379�1� −0.077 559�3�
10 −0.162 853�1� −0.142 559�3�
12 −0.297 905�1� −0.272 913�1�
15 −0.501 056�1� −0.470 078�1�
20 −0.843 572�1� −0.807 153�1�
25 −1.196 242�2� −1.162 717�2�
30 −1.566 491�3� −1.547 535�2�

TABLE III. Comparison of the results of different calculations of the self-energy hfs correction for the 1s
and 2s states in light H-like ions, in terms of Dn

SE�Z��.

Z=5 Z=10 Z=20 Reference

1s 0.174 026�2� −0.162 853�1� −0.843 572�1�
0.174 028�20� −0.162 860�20� −0.843 588�15� �14�
0.174 05�1� −0.162 83�1� −0.843 56�1� �12�
0.174 1�1� −0.162 8�1� �13�

2s 0.181 940�2� −0.142 559�3� −0.807 153�1�
0.181 96�10� −0.142 51�10� −0.807 16�6� �14�
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�WK� parts. The WK part is suppressed by a factor of �Z��2

as compared to the Uehling contribution and can often be
regarded as a small correction for low-Z ions.

The Z� expansion of the one-loop vacuum-polarization
hfs correction reads

Dn
VP�Z�� = �Z��b10 + �Z��2�Lb21 + b20�

+ �Z��3�Lb31 + Fn
VP�Z��� , �31�

where the function Dn
VP is related to the energy shift as de-

fined by Eq. �30�, L=ln��Z��−2�, and the function Fn
VP incor-

porates all higher-order terms, Fn
VP�Z��=b30+Z��¯�. The

first expansion coefficients up to b31 stem from the Uehling
part of the vacuum-polarization correction; they are given by
�see Refs. �30–32� and references therein�

b10�ns� =
3�

4
, �32�

b21�ns� =
8

30
, �33�

b20�1s� =
34

225
−

8

15
ln 2, �34�

b20�2s� = −
247

450
, �35�

b31�ns� =
13�

48
. �36�

Higher-order coefficients starting with b30 arise from both
the Uehling and WK contributions; only their Uehling part is
presently known.

The Uehling part of the one-loop vacuum-polarization hfs
correction can easily be calculated numerically; some results
can be found, e.g., in Refs. �13,19�. In the case of the point
nucleus, this contribution was evaluated also analytically
�6,33�. For completeness, we recalculate it in the present
work. The corresponding contributions to the higher-order
remainder Fn

VP�Z�� for the point nuclear model are listed in
the first and second columns of Table IV for the 1s and 2s
states, respectively. The results presented are in agreement
with the previous calculations of this correction.

The WK part of the vacuum-polarization hfs correction is
more difficult to calculate. This refers especially to the
magnetic-loop WK contribution. As outlined in Ref. �19�,
this correction is divergent in the point-dipole approximation
for the nuclear magnetization distribution. A finite result for
this correction is obtained if an extended nuclear magnetiza-
tion distribution is employed. It should be also taken into
account that the magnetic-loop WK interaction contributes to

FIG. 1. The absolute magnitude of the individual terms of the
partial-wave expansion for the irreducible part of the self-energy hfs
correction �Z=5� for the 1s state �the upper graph� and for the 2s
state �the lower graph�, within the standard potential-expansion
scheme �filled dots� and with the additional subtraction employed in
the present work �open dots�. Plotted are the contributions to the
function Dn�Z�� as a function of the absolute value of the relativ-
istic angular momentum parameter �. A discontinuity of the curve
on the upper graph around ���=19 is due to the change of the sign
of the contributions to D1�Z��.

FIG. 2. The same as in Fig. 1, but for the reducible part of the
self-energy hfs correction.
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the measured value of the nuclear magnetic moment �34�. In
order to prevent double counting, the corresponding contri-
bution should be subtracted from the magnetic-loop WK part
of the vacuum-polarization hfs correction. Practical calcula-
tions �13,19� show that, after such a subtraction, the
magnetic-loop WK correction depends weakly on details of
the nuclear magnetization distribution and has a finite limit
in the point-dipole approximation.

The results of our numerical evaluation of the electric-
and magnetic-loop WK contributions for the 1s and 2s states
of light H-like ions are listed in Table IV, in terms of the
higher-order remainder Fn

VP�Z��. The electric-loop WK cor-
rection was calculated for the point nuclear model by em-
ploying the analytical-approximation formulas for the WK
potential from Ref. �35�. The relative accuracy of this ap-
proximation is considered by the authors to be not worse
than 10−4 for all Z up to Z�=0.95. As an independent test of
the accuracy of this approximation in the low-Z region, we
checked that it reproduces well the first two terms of the Z�
expansion of the WK correction to the Lamb shift. The
magnetic-loop WK correction was calculated for the point-
dipole nuclear magnetization model by using a code devel-
oped in our previous investigation �19�. A comparison given
in Table IV demonstrates good agreement of our numerical
values with the 1s results of Ref. �13� for Z=10 and 18.

III. HIGHER-ORDER ONE-LOOP QED CORRECTION

One of the goals of our investigation is to improve the
accuracy of the one-loop QED correction for Z=1 and 2,
these being the most interesting cases from the experimental
point of view. The present approach does not employ the Z�
expansion and, therefore, our numerical results do not suffer
from omission of the higher-order terms, as is the case with
the perturbative Z�-expansion approach. But on the other
hand, technical problems do not presently allow us to per-

form a direct numerical evaluation for Z=1 and 2 with a
sufficient accuracy. In the present work, we employ an indi-
rect method used previously in Refs. �12,14�. By subtracting
the known terms of the Z� expansion from the all-order re-
sults for higher values of Z, we identify the higher-order
remainder and then extrapolate it to Z=1 and 2.

First we summarize the results obtained for the one-loop
self-energy hfs correction within the perturbative
Z�-expansion approach. The corresponding Z� expansion
reads

Dn
SE�Z�� = a00 + �Z��a10 + �Z��2�L2a22 + La21 + a20�

+ �Z��3�La31 + Fn
SE�Z��� , �37�

where the function Dn
SE is related to the energy shift as de-

fined by Eq. �30�, L=ln��Z��−2�, and Fn
SE is the remainder

containing all higher-order terms, Fn
SE�Z��=a30+Z��¯�.

The results presently available for the expansion coefficients
are �see Refs. �32,36,37� and references therein for earlier
studies�

a00�ns� =
1

2
, �38�

a10�ns� = �ln 2 −
13

4
� , �39�

a22�ns� = −
2

3
, �40�

a21�1s� = −
8

3
ln 2 +

37

72
, �41�

a21�2s� = a21�1s� −
8

3
ln 2 +

7

2
, �42�

TABLE IV. Individual contributions to Fn
VP�Z�� for the 1s and 2s states of light H-like ions.

Z

Uehling Electric-loop WK Magnetic-loop WK

1s 2s 1s 2s 1s 2s

1 7.231 9.546 −0.117 −0.117

2 7.337 9.651 −0.120 −0.119

5 7.587 9.901 −0.128 −0.125

10 7.947 10.282 −0.138 −0.133 −0.699�2� −0.706�2�
−0.139a −0.697a

12 8.092 10.441 −0.142 −0.136 −0.701�2� −0.709�2�
14 8.240 10.609 −0.145 −0.138 −0.703�2� −0.714�2�
16 8.394 10.788 −0.149 −0.141 −0.705�2� −0.718�2�
18 8.556 10.978 −0.153 −0.145 −0.707�2� −0.723�2�

−0.154a −0.706a

20 8.725 11.182 −0.156 −0.148 −0.712�2� −0.732�2�
22 8.904 11.401 −0.160 −0.151 −0.717�2� −0.740�2�
24 9.093 11.635 −0.164 −0.155 −0.725�2� −0.752�2�

aReference �13�.
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a20�1s� = 17.122 339 . . . , �43�

a20�2s� = a20�1s� − 5.221 233�3� , �44�

a31�ns� = �5

2
ln 2 −

191

32
� . �45�

For the a30 term, there is a preliminary result �38� for the 1s
state, a30�1s�=−15.9�1.6�, and a partial result �6,39� for the
difference �21, a30�2s�−a30�1s�=7.92.

The higher-order self-energy remainder Fn
SE can be in-

ferred from our all-order numerical data. The corresponding
results for the function F1

SE�Z�� and the difference F21
SE�Z��

�F2
SE�Z��−F1

SE�Z�� are plotted on the upper graphs of Figs.
3 and 4, respectively. We note that both F1

SE�Z�� and
F21

SE�Z�� have a rapidly varying structure in the low-Z region.
In order to demonstrate this more clearly, we subtract their
“linear” part �obtained by a global linear fit�, with the corre-
sponding plots presented on the middle graphs of Figs. 3 and

4. The behavior observed apparently indicates that logarith-
mic terms to order ��Z��4EF enter with large coefficients,
which complicates extrapolation considerably.

Now we would like to extrapolate our results for the
higher-order remainder to the lower values of Z, namely, Z
=0, 1, and 2. For this purpose we employ a procedure similar
to the one recently described in detail in Ref. �40�. The ex-
trapolated value of a function at Z=z0 is obtained in two
steps. First we apply an �exact� linear fit to each two con-
secutive points from our data set and store the resulting value
at Z=z0 as a function of the average abscissa of the points
involved in the fit. Then we perform a global parabolic least-
squares fit to the set of data obtained and take the fitted value
at Z=z0 as a result.

We tested this procedure for variation of the logarithmic
contribution to the next-to-leading order and found it rather
stable. However, in order to take into account the presence of
such contribution explicitly, we modify the procedure de-
scribed above as follows. First, we approximate our numeri-
cal data by a function f�Z� of the form

FIG. 3. The higher-order remainder of the 1s
self-energy hfs correction F1

SE as a function of the
nuclear charge number �the upper graph�; F1

SE

with its linear part �obtained by a global linear fit�
subtracted �the middle graph�; F1

SE with its next-
to-leading contribution �obtained by a least-
squares fit� subtracted �the lower graph�. The nu-
merical values of the coefficients c1 and c2 are
c1=14.83 and c2=2.08.
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f�Z� = c0 + �Z���c1 ln�Z�� + c2 + �Z��c3� �46�

with free coefficients ci, which are determined by a least-
squares fit similar to the one described in Ref. �41�. Then we
use the values obtained for c1 and c2 in order to define a
modified higher-order remainder function as

F̃n
SE�Z�� = Fn

SE�Z�� − �Z���c1 ln�Z�� + c2� . �47�

The numerical results for this function are plotted on the

lower graphs of Figs. 3 and 4. The function F̃n
SE is much

flatter in the low-Z region than Fn
SE and, therefore, is more

suitable for the extrapolation. We obtain our final results ex-

trapolating the function F̃n
SE by means of the procedure de-

scribed above. The numerical values of the higher-order self-
energy remainder obtained in this way are given in the first
line of Table V. In the next three lines of the table, we
present the results of the previous evaluations �12,14,38�.
The numerical values obtained for the function F21

SE in this
work fall slightly outside the error bars ascribed to our pre-
vious results �14�, as a consequence of the logarithmic con-
tribution to the next-to-leading order being apparently much
larger than it was assumed in our former work. Our present
values for the function F1

SE are in a marginal agreement with
the result by Blundell et al. �12� and deviate by 1.5� from
the preliminary result by Nio �38�.

The Uehling part of the vacuum-polarization hfs correc-
tion is given in the next line of Table V. The numerical
values are taken from Table IV for Z=1 and 2 and from Refs.
�6,33� for Z=0. The electric-loop WK correction for Z=1
and 2 was calculated directly in Sec. II; the corresponding
numerical value for Z=0 was obtained by a simple extrapo-
lation. Extrapolation was also employed in order to obtain
the results for the magnetic-loop WK part of the vacuum-
polarization correction presented in the table. The error bars
specified are obtained under the assumption that the logarith-
mic contribution to the next-to-leading order enters with a
coefficient of about 2.

We now turn to the experimental consequences of our
calculation. As demonstrated in Ref. �6�, the higher-order
self-energy correction is one of the major sources of uncer-
tainty of the theoretical prediction for the normalized differ-
ence of the hfs intervals �21=8�2s−�1s for the 3He+ ion. Our
present calculation changes the theoretical value of this cor-
rection by −0.056 kHz �as compared to our former result
�14�� and improves its accuracy by a factor of 2. The result-
ing value of the one-loop QED contribution that incorporates
all orders in Z� starting with the constant term to order
��Z��3EF for the 3He+ ion is given in the first line of Table
VI. In the next lines of the table, we give the total theoretical

FIG. 4. The same as in Fig. 3 but for the difference F21
SE=F2

SE

−F1
SE. The numerical values of the coefficients c1 and c2 are c1

=28.26 and c2=36.85.

TABLE V. One-loop higher-order QED correction. SE denotes the self-energy contribution, Ue the Ue-
hling part, WK-EL the electric-loop WK part, and WK-ML the magnetic-loop WK part.

F1�0�� F1�1�� F1�2�� F21�0�� F21�1�� F21�2�� Reference

SE −13.2�4� −13.8�3� −14.1�3� 8.4�5� 7.6�4� 7.2�3�
−12.0�2.0� �12�
−14.3�1.1� −14.5�7� 6.5�8� 6.3�6� �14�

−15.9�1.6� �38�
Ue 7.06 7.23 7.34 2.32 2.32 2.31

WK-EL −0.11 −0.12 −0.12 0.00 0.00 0.00

WK-ML −0.69�15� −0.69�12� −0.69�7� 0.00 0.00 0.00

Total −6.9�4� −7.4�3� −7.6�3� 10.7�5� 9.9�4� 9.5�3�
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value for the difference �21�
3He+� taken from Ref. �6�, this

value modified by the present calculation, and the corre-
sponding experimental result. As can be seen from the table,
our calculation increases the deviation of the theoretical pre-
diction from the experimental value from 0.9� to 1.6�.

It should be noted that our numerical results for all cor-
rections at Z=1, except for the one for the magnetic-loop
WK contribution, can be directly applied to the hyperfine
splitting in muonium. Our calculation of the magnetic-loop
WK correction does not hold for muonium since it involves
a regularization by an extended magnetization distribution of
the nucleus and a subtraction of the related contribution to
the measured value of the nuclear magnetic moment. In the
case of muonium, the nucleus is substituted by a pointlike
muon and the regularization should be performed by a finite
mass of the muon rather than by a finite size.

SUMMARY

In the present investigation, we carried out an all-order �in
Z�� calculation of the one-loop QED correction to the hy-

perfine splitting of the 1s and 2s states in light H-like ions.
This calculation significantly improved the accuracy of this
correction, as compared to the previous evaluations. By sub-
tracting the known terms of the Z� expansion and extrapo-
lating the remainder to lower values of Z, we obtained the
results for the higher-order remainder for Z=0, 1, and 2. Our
calculation shifts the theoretical value of the normalized dif-
ference �21 of the 1s and 2s hfs intervals in 3He+ by
0.056 kHz and slightly improves its accuracy.

Note added. Recently, we learned that the result of Ref.
�6� quoted in Table VI as “�21, old theory” contained an
error due to a misprint in the expression for the nuclear mag-
netic moment. The corrected value �which includes a more
conservative than in �6� estimate of the uncertainty
of the self–energy correction� is -1 190.083�150� �S. G.
Karshenboim and V. G. Ivanov, e-print hep–ph/0507322�.
Consequently, the entry “�21, new theory” in Table VI be-
comes -1190.139�55�, which deviates by 1.8� from the ex-
perimental value.

ACKNOWLEDGMENTS

This work was supported in part by RFBR �Grant No.
04-02-17574� and by DFG. A.N.A. and V.A.Y. acknowledge
support from the “Dynasty” foundation and from INTAS
�Grants No. YS 03-55-960 and No. YS 03-55-1442�. G.P.
acknowledges financial support from BMBF and GSI.

�1� M. M. Sterheim, Phys. Rev. 130, 211 �1963�.
�2� H. A. Schluessler, E. N. Fortson, and H. G. Dehmelt, Phys.

Rev. 187, 5 �1969�; Phys. Rev. A 2, 1612 �1970�.
�3� M. H. Prior and E. C. Wang, Phys. Rev. A 16, 6 �1977�.
�4� N. Kolachevsky, M. Fischer, S. G. Karshenboim, and T. W.

Hänsch, Phys. Rev. Lett. 92, 033003 �2004�.
�5� N. Kolachevsky, P. Fendel, S. G. Karshenboim, and T. W.

Hänsch, Phys. Rev. A 70, 062503 �2004�.
�6� S. G. Karshenboim and V. G. Ivanov, Eur. Phys. J. D 19, 13

�2002�.
�7� P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1 �2005�.
�8� H. Persson, S. M. Schneider, W. Greiner, G. Soff, and I.

Lindgren, Phys. Rev. Lett. 76, 1433 �1996�.
�9� V. A. Yerokhin and V. M. Shabaev, Pis’ma Zh. Eksp. Teor. Fiz.

63, 309 �1996� �JETP Lett. 63, 18 �1996��.
�10� S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. A

55, 1857 �1997�.
�11� V. A. Yerokhin, V. M. Shabaev, and A. N. Artemyev, e-print

physics/9705029.
�12� S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. Lett.

78, 4914 �1997�.
�13� P. Sunnergren, H. Persson, S. Salomonson, S. M. Schneider, I.

Lindgren, and G. Soff, Phys. Rev. A 58, 1055 �1998�.
�14� V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 64, 012506

�2001�.
�15� J. Sapirstein and K. T. Cheng, Phys. Rev. A 63, 032506

�2001�.
�16� U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. Lett. 82,

53 �1999�.
�17� V. M. Shabaev, M. Tomaselli, T. Kühl, A. N. Artemyev, and V.

A. Yerokhin, Phys. Rev. A 56, 252 �1997�.
�18� V. M. Shabaev, M. B. Shabaeva, I. I. Tupitsyn, V. A. Yerokhin,

A. N. Artemyev, T. Kühl, M. Tomaselli, and O. M. Zherebt-
sov, Phys. Rev. A 57, 149 �1998�; 58, 1610 �1998�.

�19� A. N. Artemyev, V. M. Shabaev, G. Plunien, G. Soff, and V. A.
Yerokhin, Phys. Rev. A 63, 062504 �2001�.

�20� V. A. Yerokhin, K. Pachucki, and V. M. Shabaev, Phys. Rev. A
72, 042502 �2005�.

�21� V. M. Shabaev, Phys. Rep. 356, 119 �2002�.
�22� N. J. Snyderman, Ann. Phys. �N.Y.� 211, 43 �1991�.
�23� S. A. Blundell, Phys. Rev. A 46, 3762 �1992�.
�24� V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 60, 800

�1999�.
�25� P. J. Mohr, Ann. Phys. �N.Y.� 88, 26 �1974�.
�26� P. Indelicato and P. J. Mohr, Phys. Rev. A 46, 172 �1992�.
�27� P. Indelicato and P. J. Mohr, Phys. Rev. A 58, 165 �1998�.
�28� V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev.

Lett. 89, 143001 �2002�.
�29� V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. A

69, 052503 �2004�.
�30� T. Kinoshita and M. Nio, Phys. Rev. Lett. 72, 3803 �1994�.
�31� S. M. Schneider, W. Greiner, and G. Soff, Phys. Rev. A 50,

TABLE VI. Normalized difference of the hfs intervals �21

=8�2s−�1s for the 3He+ ion, in kHz.

Higher-order QED correction −0.594�19�
�21, old theory −1 190.068�64� �Ref. �6��
�21, new theory −1 190.124�55�
�21, experiment −1 189.979�71� �Refs. �2,3��

YEROKHIN et al. PHYSICAL REVIEW A 72, 052510 �2005�

052510-10



118 �1994�.
�32� S. G. Karshenboim, Z. Phys. D: At., Mol. Clusters 36, 11

�1996�.
�33� S. G. Karshenboim, V. G. Ivanov, and V. M. Shabaev, Zh.

Eksp. Teor. Fiz. 117, 67 �2000� �Sov. Phys. JETP 90, 59
�2000��.

�34� A. I. Milstein and A. S. Yelkhovsky, Phys. Lett. B 233, 11
�1989�; Zh. Eksp. Teor. Fiz. 99, 1068 �1991� �Sov. Phys. JETP
72, 592 �1991��.

�35� A. G. Fainshtein, N. L. Manakov, and A. A. Nekipelov, J.
Phys. B 24, 559 �1991�.

�36� K. Pachucki, Phys. Rev. A 54, 1994 �1996�.

�37� M. Nio and T. Kinoshita, Phys. Rev. D 55, 7267 �1997�.
�38� M. Nio, in Quantum Electrodynamics and Physics of the

Vacuum, edited by G. Cantatore, AIP Conf. Proc. No. 564
�AIP, Melville, NY, 2001�, p. 178.

�39� S. G. Karshenboim, in The Hydrogen Atom. Precision Physics
of Simple Atomic Systems, edited by S. G. Karshenboim et al.
�Springer, Berlin, 2001�, p. 335.

�40� E.-O. Le Bigot, U. D. Jentschura, P. J. Mohr, P. Indelicato, and
G. Soff, Phys. Rev. A 68, 042101 �2003�.

�41� V. G. Ivanov and S. G. Karshenboim, in The Hydrogen Atom.
Precision Physics of Simple Atomic Systems �Ref. �39��, p.
637.

ALL-ORDER RESULTS FOR THE ONE-LOOP QED… PHYSICAL REVIEW A 72, 052510 �2005�

052510-11


