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Resonant formation of the muonic molecule dt� in t� atom collision with condensed H-D-T targets is
considered. A specific resonance correlation function, which is a generalization of the Van Hove single-particle
correlation function, is introduced to calculate the resonant-formation rate in such targets. This function is
derived in the case of a polycrystalline harmonic solid. Also, a general asymptotic form of the resonance
correlation function for high momentum transfers is found, which is valid for any solid or dense-fluid
hydrogen-isotope target. Numerical calculations of the rates are performed for solid hydrogen isotopes at zero
pressure, using the isotropic Debye model of a solid. It is shown that condensed-matter effects in resonant
formation are strong, which explains some unexpected experimental results. In particular, the resonance pro-
files are affected by large zero-point vibrations of the hydrogen-isotope molecules bound in the considered
crystals, even for high ��1 eV� collision energies. This is important for explaining the time-of-flight measure-
ments of the dt�-formation rate, carried out at TRIUMF. The calculated mean values of the formation rate in
solid D-T targets, for fixed target temperatures and steady-state conditions, are in good agreement with the PSI
and RIKEN-RAL experiments.
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I. INTRODUCTION

A theoretical study of the resonant formation of the
muonic molecular ion dt� in condensed hydrogen-isotope
targets is the main subject of this paper. Formation of dt� in
collision of a t� atom with a hydrogen-isotope molecule is a
key process of muon-catalyzed fusion ��CF� in a D-T mix-
ture. This phenomenon has attracted particular interest be-
cause one muon can catalyze more than 100 fusions �1–4�
according to the reaction

dt� → 4He + n + �− + 17.6 MeV.

Investigation of the �CF cycle in hydrogen-isotope targets is
also important for studies of various phenomena in atomic,
molecular, and nuclear physics �see reviews �5–7��.

Resonant dt� formation is due to the presence of a
loosely bound state of dt� �1� with the rotational quantum
number J=1, the vibrational quantum number v=1, and the
binding energy �Jv=11�−0.63 eV. Theoretical methods for
calculating the resonant-formation rates have been developed
over many years �see, e.g., Refs. �8–16��. These methods,
taking into account resonant formation in t� collisions with
one or several molecules, show good agreement with the
experimental data for dilute gaseous targets. However, such a
theory is unable to explain various phenomena found in ex-
periments with dense fluid and solid hydrogen-isotope tar-
gets. This concerns a nonlinear dependence of the formation
rate on the target density �4,17�, puzzling temperature effects
�18�, and the resonance profiles determined by the time-of-

flight experiments �19–22�. Therefore, it is necessary to con-
sider an influence of many-body effects on muonic-molecule
formation. In particular, different collective phenomena can
significantly change this process, which one can expect
knowing their role in resonant neutron absorption by nuclei
bound in condensed matter �23,24�.

Condensed-matter effects in resonant neutron absorption
can be expressed in terms of the incoherent correlation func-
tion �24�, which was introduced by Van Hove �25� for the
description of incoherent neutron scattering. This function
depends on the energy and momentum transfer to a given
target and on the target properties. Application of the classi-
cal correlation function to resonant absorption phenomena is
possible only if a change of the target-particle mass due to
absorption can be neglected. This is a good approximation
for neutron absorption by much heavier nuclei, at any colli-
sion energy.

It is also possible to adapt the Van Hove formalism to
resonant muonic-molecule formation in a condensed target.
However, the mass of an impinging muonic atom is compa-
rable with that of a hydrogen-isotope molecule. Therefore,
application of the usual correlation function to such a process
gives good results only at lowest collision energies
��10 meV�, when the molecule is strongly bound in a target
during formation process.

A first estimation of the low-energy dt�-formation rates
in solid molecular deuterium, using the standard correlation-
function formalism, was performed by Fukushima �26�. He
performed an ab initio calculation of lattice dynamics to de-
termine the correlation function and demonstrated an impor-
tant role of phonon processes in resonant dt� formation. His
calculation was limited to high target pressures ��10 kbar�,
where molecular hydrogen-isotope solids become classical
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crystals. However, in �CF experiments, only zero or low
pressure ��10 kbar� have been applied. In such conditions,
solid-hydrogen targets are quantum crystals characterized by
large amplitudes of zero-point vibration of hydrogen mol-
ecules in lattices. As a result, a special approach is necessary
to solve lattice dynamics �27,28�. Owing to this fact and to a
rough estimation of the transition-matrix elements for dt�
formation, the results of Ref. �26� are about 5 times greater
than the rates determined in experiments �2,4�. Moreover, the
temperature dependence of the calculated formation rate, for
a D2 molecule bound in solid D-T, is opposite to what has
been recently seen in the RIKEN-RAL experiment �18�.

The standard correlation function, which had been rigor-
ously derived for a perfect gas, for a harmonic lattice, and for
any system in the high-energy limit �25�, was then applied
for the description of resonant dd�-formation in condensed
deuterium at lowest energies �29�. The correlation function
for solid polycrystalline D2 was evaluated using the Debye
model of an isotropic solid. The model parameters, such as
the Debye temperature and the lattice constants, were taken
from the available data including quantum-crystal effects
�27,28�. Therefore, the results of Ref. �29� are valid also for
zero- or low-pressure solid deuterium. Since the dd� reso-
nances for a free D2 molecule are very narrow, their profiles
were assumed to have the �-function shape. In Ref. �29� also
a rough estimate of the dd�-formation rate for high energies
was given. This estimate did not take into account a change
of the target mass. However, such an approach is sufficient
for the description of muon-catalyzed dd fusion in solid deu-
terium, when the role of low-energy resonances is dominant
due to very fast d� deceleration to energies below 10 meV.
In particular, the time spectra of dd-fusion products calcu-
lated in Ref. �29� are in good agreement with the data taken
at TRIUMF �30�.

The explanation of experiments concerning resonant dt�
formation in condensed hydrogen isotopes requires a signifi-
cant extension of the theoretical framework developed in
Ref. �29� for dd� formation. First, profiles of the dt� reso-
nances for an isolated target molecule are much wider than
those for the dd� case. Thus, they are described by the Breit-
Wigner function with considerable width �9,31�. Second, the
time-of-flight experiments using energetic ��1 eV� beams of
t� atoms �20–22� require knowledge of accurate formation
rates at energies much greater than 10 meV. In this case, a
change of the target-particle mass, connected with the re-
placement of a hydrogen-isotope molecule by a much
heavier muonic-molecular complex with the dt� ion inside,
cannot be neglected. In particular, inclusion of this change
gives the correct recoiling mass in the limit of high t� en-
ergy. This is why the dt�-formation rate cannot be expressed
in terms of the standard correlation function. As we show
below, the Van Hove formalism can, however, be applied to
higher-energy dt� formation if a special resonance correla-
tion function that includes the discussed mass change is in-
troduced. This function is much more complicated than the
classical correlation function used in Refs. �24,26,29�. How-
ever, we have found solutions for some important cases.

In Sec. II, a brief description of resonant dt� formation in
an isolated hydrogen-isotope molecule and some basic for-
mulas are given. A method for calculating the dt�-formation

rates in condensed targets, for the Breit-Wigner profiles and
for any collision energy, is presented in Sec. III. In particular,
the resonance correlation function is defined and then de-
rived in the case of harmonic polycrystalline hydrogen iso-
topes, for low and intermediate collision energies. At high
energies, this function takes a general simple form, which is
valid for any hydrogen-isotope target—solid, liquid, or gas-
eous. Assuming zero resonance widths and neglecting the
mass change of the target molecule in the formation process,
the rates derived below coincide with the formulas for dd�
formation obtained in Ref. �29�. Some results of numerical
calculations for dt� formation in low-pressure hydrogen-
isotope solids are presented in Sec. IV. A full set of energy-
dependent transition-matrix elements has been calculated for
free molecules HD, D2, and DT, which establishes the input
for estimating the dt�-formation rates in condensed hydro-
gen isotopes. The dt�-formation rates for some typical solid
targets are shown as functions of the t� kinetic energy and
target temperature. In particular, contributions from different
resonances to the total formation rates and influence of the
ortho-D2 and para-D2 concentration in a target on the forma-
tion rates are considered. A comparison of the calculated
mean rates with experimental results is performed.

II. RESONANT FORMATION IN A FREE MOLECULE

First we consider resonant formation of dt� in the follow-
ing reaction:

�t��F + �DC��iKi

I → ��dt��Jv
S cee��fKf

,

C = H,D, or T and c = p,d, or t ,

where DC is a free molecule in the initial rotational-
vibrational state ��iKi� with total nuclear spin I. This spin is
taken into account for DC=D2. The t� atom has total spin F
and a center-of-mass �c.m.� kinetic energy �. The molecular
complex ��dt��cee� is created in the rotational-vibrational
state �� fKf�, and the molecular ion dt�, which plays the role
of a heavy nucleus of the complex, has total spin S. This
process takes place due to the presence of a loosely bound
state of dt� with rotational number J=1 and vibrational
number v=1. The binding energy ��Jv=11��0.63 eV released
in the above reaction is transferred to rotational-vibrational
degrees of freedom of the created molecular complex
��dt��cee�. The resonance condition is fulfilled when � takes
a specific value �if

0 . This is the so-called Vesman’s mecha-
nism of muonic-molecule formation, introduced in Ref. �8�
for the dd� case. In the Vesman model, the resonance width
is infinitely small, so that the resonant-formation rate has the
Dirac delta function profile.

In the case of resonant dd� formation, the rates calculated
using Vesman’s model agree very well with experiments
�32,33�. On the other hand, the assumption of the �-function
profile for dt� resonances has led to inconsistency with ex-
periments in gaseous D-T targets performed at low tempera-
tures �3,4,34,35�. The measured rates are much greater than
the theoretical predictions based on the Vesman model. It has
been pointed out by Petrov �9� that the dt� resonances
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should have broader Breit-Wigner profiles, owing to a finite
lifetime of the complex. At low temperatures, this leads to
significant contributions to the formation rates �36� from the
subthreshold resonances �if

0 �0. Thus, in a general free-
molecule case, the resonance-formation rate takes the follow-
ing form �in atomic units e=	=me=1� �9,11�:


�iKi,�fKf

SF = NmolBif�Vif����2
�S

�� − �if
0 �2 +

1

4
�S

2

, �1�

where Nmol is the number density of hydrogen-isotope mol-
ecules in the target. The natural width �S of a given reso-
nance is equal to the sum of the effective fusion rate 
 f and
the total rate 
bck

S of back decay of the complex �13,37,38�:

�S = 
 f + 
bck
S . �2�

The transition-matrix element Vif��� and resonance energy
�if

0 are defined in Ref. �13�. The factor Bif is given as

Bif =
2S + 1

3�2F + 1�
qd,

where qd=1 for asymmetric molecules DC and qd=2 for D2.
Equation �1� was employed in Refs. �16,39� for the cal-

culation of the dt�-formation rate in a diluted D2 gas, which
led to agreement with the experimental data �35�.

III. RESONANT FORMATION IN A CONDENSED TARGET

A. Method of calculation

When the formation of a muonic molecule takes place in
a dense target, it is necessary to take into account interac-
tions of an impinging muonic atom with more than one mol-
ecule. In particular, energy transfer to many molecules is
possible, which results in a quasiresonant character of the
formation process. A quasiresonant mechanism of dt� for-
mation was first considered in Ref. �10�, for triple collisions
t�+D2+D2, in order to explain the nonlinear dependence of
the dt�-formation rate on the target density. In this case,
formation is possible even if the resonance condition is not
strictly fulfilled, because the energy excess in the t�+D2
system is transferred to a neighbor molecule. The three-body
reactions and broadening of the resonance profiles were then
discussed in Refs. �12,15,31,36�. If the target is condensed, it
is indispensable to also take into account the influence of
collective molecular motions on quasiresonant formation,
which was shown in Ref. �29� for the dd� case. A scheme of
quasiresonant dt� formation in t� collision with a condensed
D2 target at kinetic energy � is presented in Fig. 1. Energy
balance, including energy transfer � to a target, is shown for
a subthreshold resonance corresponding to the vibrational
transition �i=0→� f =2. Since the target molecule and the
complex ��dt��dee� are bound, the corresponding resonance
energy �if is different from the “free” resonant energy �if

0 ,
characterized by the same set of quantum numbers.

Reasoning similar to that presented in Ref. �29� leads to
the following formula for the dt�-formation rate in a con-
densed target:


�iKi,�fKf

SF = NmolBif�Ai0,fn�2
�S

�� + E0 − �if
0 − Ẽn�2 +

1

4
�S

2

, �3�

where the matrix element Ai0,fn is expressed by the energy-
dependent matrix element Vif��� calculated for a free mol-
ecule,

Ai0,fn = �ñ�exp�ik · Rl��0	Vif��� . �4�

The eigenvalues of the initial H and final H̃ Hamiltonians of
the target, corresponding to the eigenstates �0	 and �ñ	, are

denoted by E0 and Ẽn, respectively. The vector k stands for
the initial momentum of the t� atom. Resonant dt� forma-
tion takes place in t� collision with the lth molecule DC.
The vector Rl shows the position of its mass center in the
target frame �see Fig. 2�. A change of the target Hamiltonian

H
H−H̃ is due to replacement of molecule DC by the
complex ��dt��cee�. It can be shown that H is expressed
by the molecular-kinetic-energy operator �29�

H = − �
1

2MDC
�Rl

2 , � 
 1 −
MDC

Mcplx
�

1

2
, �5�

where Mcplx is the mass of the complex and MDC is the mass
of the molecule DC. A small contribution to H due to

FIG. 1. �Color online� Energy balance for quasiresonant forma-
tion of dt� in a D2 molecule bound in a condensed target.

FIG. 2. �Color online� Quasiresonant dt� formation in t�-atom
collision with a bound molecule DC.
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replacement of the DC center of mass by that of the complex
is neglected here.

Averaging the rate �3� over the distribution �n0
of the ini-

tial target states at a given temperature T and summing over
the final target states leads to


�iKi,�fKf

SF = NmolBif�Vif�2�S

� �
n,n0

�n0

��ñ�exp�ik · Rl��0	�2

�� + E0 − �if
0 − Ẽn�2 +

1

4
�S

2

.

The above equation can be written down in integral form


�iKi,�fKf

SF = NmolBif�Vif�2�S�
n,n0

�n0
��ñ�exp�ik · Rl��0	�2

� �
−�

�

dE
��E − Ẽn + E0�

�� − �if
0 − E�2 +

1

4
�S

2

.

Now we use a time variable t to eliminate the � function
in the above equation and then we introduce time-dependent
operators, which are well-known in scattering theory �40,41�.
Applying the Fourier expansion of the � function one obtains


�iKi,�fKf

SF =
1

2�
NmolBif�Vif�2�S�

−�

�

dt�
n,n0

�n0
��ñ�

�exp�ik · Rl��0	�2 exp�it�Ẽn − E0��

� �
−�

�

dE
exp�− iEt�

�� − �if
0 − E�2 +

1

4
�S

2

,

which, after integration over E, gives


�iKi,�fKf

SF = NmolBif�Vif�2�
−�

�

dt exp− it�� − �if
0 �

−
1

2
�S�t���

n,n0

�n0
�0�exp�− ik · Rl��ñ	

��ñ�exp�itẼn�exp�ik · Rl�exp�− itE0��0	 . �6�

The matrix element in Eq. �6� can be written as follows:

�ñ�exp�itẼn�exp�ik · Rl�exp�− itE0��0	

= �ñ�exp�itH̃�exp�ik · Rl�exp�− itH��0	 = �ñ�

�exp�itH̃�exp�− itH�exp�itH�exp�ik · Rl�exp�− itH�

��0	 = �ñ�exp�itH̃�exp�− itH�exp�ik · Rl�t���0	 ,

where Rl�t� denotes the Heisenberg operator,

Rl�t� = exp�itH�Rl exp�− itH� ,

defined for all l and t.
Employing the identity �n�ñ	�ñ�=1 in Eq. �6� we obtain a

general expression for the quasiresonant formation rate:


�iKi,�fKf

SF = 2�NmolBif�Vif�2Sres�k,� − �if
0 � , �7�

where Sres is the resonance response function defined as

Sres�k,� − �if
0 � 


1

2�
�

−�

�

dt exp− it�� − �if
0 � −

1

2
�S�t��

� Yres�k,t� . �8�

Function Yres�k , t� denotes here the following resonance cor-
relation function:

Yres�k,t� 
 �exp�− ik · Rl�0��exp�itH̃�

�exp�− itH�exp�ik · Rl�t��	T, �9�

where �¯	T stands for the quantum-mechanical and statisti-
cal averaging at temperature T.

When substituting H̃=H and �S=0 into Eqs. �8� and �9�,
the function Sres coincides with the usual incoherent response
function Si �25,42�, which describes incoherent neutron scat-

tering in condensed matter. The approximation H̃�H is
valid when the mass of the absorbed particle is much smaller
than the mass of a target atom or molecule. This is a common
and adequate approach when neutron absorption by a much
heavier nucleus is considered. However, the mass of a
muonic hydrogen atom is comparable to that of a hydrogen-

isotope molecule. Thus, the difference �5� between H̃ and H
cannot be neglected in muonic molecule formation.

Proceeding as in the case of the quasiresonant
dd�-formation process �29� we obtain the following expres-
sion for the partial width ��fKf,�iKi

SF of back decay of the com-
plex:

��fKf,�iKi

SF = 2�Aif � d3k

�2��3 �Vif����2S̃res�k,�if
0 − �� , �10�

where S̃res denotes the function �8� calculated for the initial
state �ñ	, with �S set to zero. The factor Aif for the t�+DC
system is

Aif = �
2Ki + 1

3�2Kf + 1�
qd,

in which �=qd=1 for C�D. In the D2 case, �= 2
3 for even Ki,

�= 1
3 for odd Ki, and qd=2.
In order to compare the calculated formation rates with

experiments, the summed formation rate 
Ki

F ��� is intro-
duced:


Ki

F = �
�f,Kf,S


�iKi�fKf

SF , �i = 0. �11�

It is convenient to define the effective formation rate 
̄Ki

F ���
that gives dt fusion. The fusion probability depends on back
decay of the created complex. This process competes with
deexcitations of the complex that lead finally to dt fusion. If
the lifetime of the complex ��1 ns� is much shorter than its
rotational relaxation time, back decay takes place from the
initial state Kf. When these times are comparable, it is nec-
essary to include back decay also from lower rotational states
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of the complex. In particular, in the limit of very fast rota-
tional relaxation, back decay from the ground rotational state
Kf =0 is dominant. Such a situation occurs in dense targets,
where interactions of the complex with neighboring mol-
ecules lead to fast rotational deexcitation. Calculations pre-
sented in Refs. �37,38� show that rotational relaxation of the
complex, via scattering on neighboring hydrogen-isotope
molecules, is fast at liquid hydrogen density. The effective
formation rate is then


̄Ki

F = �
Kf,S


�iKi�fKf

SF Pfus
S , �i = 0, �12�

where Pfus
S is the fusion fraction,

Pfus
S = 
 f/�S,

and the total back-decay rate 
bck
S in Eq. �2� is given by


bck
S = �

F�

�SF�, �SF� = �
�i�

�
Ki�,Kf=0

�
�fKf,�i�Ki�
SF� .

It is assumed here that the vibrational level � f of the complex
is not changed during its lifetime. Estimates of vibrational
relaxation for the muonic molecular systems in condensed
targets have not been performed yet. However, the available
data �28� concerning the �=1→0 relaxation time, for H2 in
solid �8 �s� and liquid �12 �s at 14.2 K� hydrogen, suggest
that such times are much greater than the lifetime of a
muonic-molecular complex.

B. Formation in a solid in the strong-binding limit

Evaluation of the resonance response function Sres is dif-
ficult, in the general case. The first problem is that the op-
erators Rl�t�, H, and H in Eq. �9� do not commute �29�.
However, when muonic molecule formation takes place at
energies significantly smaller than the mean kinetic energy
ET of molecule DC, the perturbation operator �5� is suffi-
ciently well approximated by its mean value

H � �0�H�0	 = − ���Rl

2 /�2MDC�	T = − �ET 
 �if � 0.

�13�

Using this approximation in Eq. �9� we obtain

Yres�k,t� � exp�it�if��exp�− ik · Rl�0��exp�ik · Rl�t��	T

= exp�it�if�Yll�k,t� .

Thus, the function Yres reduces to the standard incoherent
correlation function Yll�k , t� �42� multiplied by the factor
exp�it�if�. This factor describes the variation of the mean
target energy due to its mass change. Hence, the formation
rate �7� can be written as follows:


�iKi,�fKf

SF = NmolBif�Vif�2�
−�

�

dtYll��,t�exp− i�t −
1

2
�S�t�� ,

�14�

where the momentum transfer � and the energy transfer � to
the target are given as

� = k, � = � − �if . �15�

The resonance energy �if in the condensed target is now

�if = �if
0 + �if . �16�

This energy is shifted by �if �0, compared to the free-
molecule resonance energy �if

0 .
Similarly, the back-decay width �10� in the strong-binding

limit can be expressed in terms of the incoherent response
function Si introduced by Van Hove �25�. As a result, Eq.
�10� takes the simpler form

��fKf,�iKi

SF� = 2�Aif � d3k

�2��3 �Vif����2S̃i�k,��� , �17�

in which

�� = �̃if − �, �̃if = �if
0 + �̃if �18�

and

�̃if 
 �ñ�H�ñ	 = − �Mcplx/MDC − 1�ẼT � 0, �19�

where ẼT is the mean kinetic energy of the complex in the

condensed target. The tilde in S̃i denotes that the response
function is calculated for a target with a bound muonic-
molecular complex.

For a perfect gas or a harmonic solid composed of par-
ticles with mass MDC, the standard correlation function
needed for evaluation of Eq. �14� takes a simple Gaussian
form �25,42�

Yll��,t� = exp− ��t�
�2

2MDC
� . �20�

For a solid with a cubic Bravais structure, the function ��t� is
�25�

��t� = �
0

�

dw
Z�w�

w
�coth�1

2
�Tw��1 − cos�wt�� − i sin�wt�� ,

�21�

where Z�w� is the normalized density of vibrational states of
the solid and �T= �kBT�−1 �kB is Boltzmann’s constant�.

Molecular hydrogen-isotope solids at low pressure, used
for studies of muonic atoms and molecules, are quantum
molecular crystals. They have the fcc or hcp polycrystalline
structure, for which Eq. �21� is a fair approximation �27,28�.
As a result, we obtain the so-called phonon expansion for the
low-energy dt�-formation rate in a harmonic crystal:


�iKi,�fKf

SF = 2NmolBif�Vif�2 exp�− 2W�

�� �S

�2 +
1

4
�S

2

+ 2��
n=1

�

g�n���
�2W�n

n! � , �22�

in which

g�1�w� =
1

2�
�

−�

�

dz
�S

z2 +
1

4
�S

2

g1�z + w,T� ,
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g�n�w� = �
−�

�

dw�g�1�w − w��gn−1�w�� �23�

and

g1�w� =
1

����
Z�w�

w
�nB�w� + 1� ,

gn�w� = �
−�

�

dw�g1�w − w��gn−1�w�� ,

�
−�

�

dwgn�w� = 1. �24�

The exponent 2W of the Debye-Waller factor exp�−2W�, fa-
miliar in the theory of neutron scattering, is

2W��2� =
�2

2MDC
���� =

�2

2MDC
�

0

�

dw
Z�w�

w
coth�1

2
�Tw� ,

where ���� stands for the limit of ��t� at t→�. The function
nB�w� denotes the Bose factor

nB�w� = �exp��Tw� − 1�−1.

The Breit-Wigner term in the expansion �22� describes
recoil-less resonant formation. The sum with higher powers
of 2W corresponds to quasiresonant muonic molecule forma-
tion with simultaneous phonon creation or annihilation. In
particular, the term with n=1 describes formation connected
with the creation or annihilation of one phonon. In the
strong-binding limit 2W�1, only a few of the lowest terms
in the expansion �22� are significant. The phonon expansion
�22� is more general than an analogous expansion in Ref.
�24�, which includes the Breit-Wigner factor only in the non-
phonon term. This factor should be taken into account also in
the phonon terms unless the natural resonance width is much
smaller than the maximum crystal frequency. For 2W�1, the
approximation �13� and Eq. �22� are no longer valid.

Let us note that an analogous phonon expansion for S̃i can
be applied for estimating the back-decay rate. However, such
an approach is valid only if the main contribution to the
integral in Eq. �17� comes from small k.

C. Formation in the weak-binding limit

When the incident momentum of a muonic atom is large
�2W�1�, the formation time of a muonic molecule is short
compared to the characteristic time scale of dynamic re-
sponse of the bulk target. Thus, the contribution to the re-
sponse function �8� from short times is dominant. As a result,
it is sufficient to keep only linear terms in t while evaluating
the asymptotic form of the correlation function Yres�k , t�. In
calculations, we shall use the following operator relation:

exp�Â�exp�B̂� = exp�Â + B̂ + Ĉ� , �25�

where

Ĉ =
1

2
�Â,B̂� +

1

12
†�Â,B̂�,B̂‡ +

1

12
†�B̂,Â�,Â‡

+
1

24
�†�B̂,Â�,Â‡,B̂� + ¯ .

The operator Ĉ=0 only if Â and B̂ are commuting operators.
The operators H and H do not commute �29� and the

operator Ĉ in the expression

exp�it�H + H��exp�− itH� = exp�itH + Ĉ�

turns out to be a sum containing higher powers of t. Since in
this approximation we restrict ourselves to terms linear with

respect to t and to the parameter ��
1
2 , the operator Ĉ in the

above relation can be neglected. Thus, the correlation func-
tion takes the form

Yres�k,t� = �exp�− ik · Rl�0��exp�itH� � exp�ik · Rl�t��	T.

�26�

Now we involve the basic approximation

Rl�t� � R�0� + �Pl/MDC�t , �27�

where Pl denotes the momentum operator of the lth mol-
ecule. This approximation is valid for short times. After sub-
stitution of Eq. �27� into Eq. �26� and multiple use of Eq.
�25� we have

Yres�k,t� � exp�it
k2

2Mcplx
��exp�− it�

Pl
2

2MDC
��

T

� �exp�it
k · Pl

Mcplx
��

T
.

Since the argument of the second exponential is small, we
can use the following approximation:

�exp�− it�
Pl

2

2MDC
��

T
� exp�− it�� Pl

2

2MDC
�

T
�

= exp�it�if� ,

which involves the resonance-energy shift �13�. Substitution
of the above equations into Eq. �8�, with the definitions �16�
and �15� taken into account, leads to

Sres��,�� =
1

2�
�

−�

�

dt exp− i�t −
1

2
�S�t� + it

�2

2Mcplx
�

� �exp�it
� · Pl

Mcplx
��

T
. �28�

When the motion of the molecule DC is well described by an
isotropic harmonic potential, the Bloch identity

�exp Q̂	T = exp� 1
2 �Q̂2	T� �29�

may be applied for the operator Q̂ which is a linear combi-
nation of the Bose creation and annihilation operators. Since
the momentum Pl can be expressed by such operators �see,
e.g., Ref. �42��, we have
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�exp�it
� · Pl

Mcplx
��

T
= exp�−

1

4
res

2 � ,

res
2 =

2

Mcplx
2 ��� · Pl�2	T. �30�

In the case of cubic symmetry,

��� · Pl�2	T = 1
3�2�Pl

2	T,

and this is a fair approximation even for other lattices. Thus

res
2 =

2

3Mcplx
2 �2�Pl

2	T =
8

3

MDC

Mcplx
� Pl

2

2MDC
�

T

�2

2Mcplx
,

which finally gives the following Doppler width:

res = 2�2

3

MDC

Mcplx
ET�R, �31�

with the recoil energy

�R = �2/�2Mcplx� . �32�

In the case of a solid hydrogen target, the mean kinetic en-
ergy of a bound molecule equals

ET = 3
2�

0

�

dwZ���w�nB��� + 1
2� . �33�

This energy is much higher than ET= 3
2kBT for a correspond-

ing Maxwellian gas, unless the temperature is sufficiently
high. In particular, for a low-pressure solid or liquid deute-
rium, ET�5 meV �43� due to large zero-point motion of the
D2 molecules. The effective target temperature Teff corre-
sponding to ET is then defined as

Teff 
 2
3kB

−1ET. �34�

For the solid-D2 case considered here, Teff�40 K.
Substitution of Eqs. �30� and �32� into Eq. �28� leads to

Sres��,�� =
1

2�
�

−�

�

dt exp− i�� − �R�t −
1

2
�S�t� −

1

4
res

2 t2� .

�35�

Then, applying the convolution theorem for the Fourier
transform of a product, we obtain the asymptotic form of the
resonance response function:

Sres��,�� =
1

2�3/2

�S

res
�

−�

� dz

z2 +
1

4
�S

2

�exp− � z + � − �R

res
�2� . �36�

By virtue of Eq. �36�, the formation rate �7� takes the form


�iKi,�fKf

SF = NmolBif�Vif�2
�S

res
��

��
−�

� dz

z2 +
1

4
�S

2

exp− � z + � − �R

res
�2� ,

�37�

in the weak-binding limit. This equation is similar �apart
from the muonic-molecule factor NmolBif�Vif�2� to the expres-
sion for resonant absorption of neutrons in a gas target, ob-
tained by Bethe and Placzek �44�. However, the resonance
width �31� and recoil energy �32� take into account the
change of the target particle mass in the absorption process,
which is neglected in their work.

In the limit �S→0, Eqs. �36� and �37� tend to the follow-
ing expressions:

Sres��,�� =
1

res
��

exp− �� − �R

res
�2� �38�

and


�iKi,�fKf

SF = 2��NmolBif�Vif�2
1

res
exp− �� − �R

res
�2� ,

�39�

respectively. The function �38� has the Gaussian form, iden-
tical with that used for the description of incoherent scatter-
ing at large energies. However, the Doppler width �31� and
the recoil energy �32� in Sres are different from the corre-
sponding variables

R = 2�2
3ET�R �40�

and

�R = �2/�2MDC� , �41�

which determine the asymptotic form of the standard inco-
herent response function Si �42�. The function �38� tends to
Si if the approximation Mcplx�MDC is valid. In the case of
muonic molecule formation, this is only a rough approxima-
tion.

Equation �38� can be used for the evaluation of the back-
decay rate if large final momenta give the main contribution
to the integral �10�. After integration over direction of k in
Eq. �10�, with the asymptotic function �38� inserted, one ob-
tains

��fKf,�iKi

SF� =
Aif

�3/2̃res

�
0

�

dkk2�Vif����2exp− ��� − �R�

̃res
�2� ,

�42�

where �� is defined by Eq. �18�. The parameters ̃res and �R�
are calculated from Eqs. �31� and �32�, using the substitu-

tions MDC↔Mcplx and ET→ẼT.
Let us note that Eqs. �36� and �38� are general since they

are derived in the impulse approximation �27� without using
specific properties of a given target, apart from the single
parameter ET. Therefore, they are valid for liquid and dense
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gaseous hydrogen isotopes. They can also be used for de-
scribing resonant absorption processes other than muonic
molecule formation, when the mass change cannot be ne-
glected. In such a case, �S should be replaced by the appro-
priate resonance width.

D. Formation in a solid at intermediate energies

The formation rate calculated according to the asymptotic
form �37� is very inaccurate unless 2W�1. In particular, this
concerns the contribution to the rate from recoil-less forma-
tion, which is important at low energies. Therefore, at 2W
�1, it is reasonable to represent the formation rate as a sum
of the exact recoil-less Breit-Wigner term from Eq. �22� and
the phonon contributions that we obtain below in the impulse
approximation. Using Eqs. �25� and �29�, it can be shown
that the relation

Yll
res�k,t� � Yll�k,t�exp�it�if�exp��it −

2

3
��

+ 2�ETt2� k2

2MDC
� �43�

is valid in this approach. Inserting Eqs. �20� and �43� into Eq.
�8� we have

Sres��,�� =
1

2�
�

−�

�

dt exp�− it� −
1

2
�S�t� + − ��t� + i�t

−
2

3
��� + 2�ETt2� �2

2MDC
� . �44�

Substituting the approximation ��t��−it+ 2
3ETt2 for short

times into Eq. �44� and integrating over t yields the
asymptotic form �36� of the response function. However, we
now expand Eq. �44� in powers of �2:

Sres��,�� =
1

2�
exp�− 2W��

n=0

�
�2W�n

n!

��
−�

�

dt exp�− i�t −
1

2
�S�t���F�t��n,

F�t� = 1 + i
1 + �

����
t −

2

3

�1 + ��2

����
ETt2. �45�

The function gn is defined by Eq. �24�. The integral over t is
estimated using the exponential approximation to the func-
tion F:

F�t� � exp�x�, x �
it

��

−
1

2
�

2 t2, �46�

where x contains only leading terms in t and

�� 

Mcplx

MDC
����, �

2 

4

3

MDC

Mcplx

ET

��

−
1

��
2 .

Then, integration in Eq. �45� by using the convolution theo-
rem leads to

Sres��,�� = exp�− 2W�� 1

2�

�S

�2 +
1

4
�S

2

+ �
n=1

�

gn���
�2W�n

n! � ,

�47�

where

g1��� =
1

2�
�

−�

�

dz
�S

z2 +
1

4
�S

2

Z�z + ���
z + ��

��nB�z + ��� + 1�, �� =
�

1 + �
,

and, for n�2,

gn��� =
1

�2��3/2

�S

n1/2�
�

−�

�

dz
1

z2 +
1

4
�S

2

� exp �z + � − n/���2

2n�
2 � .

The first term of Eq. �45� has been replaced in Eq. �47� by
the exact Breit-Wigner term. Also, the one-phonon �n=1�
contribution to Sres is replaced here by a more accurate term
depending on g1. The function g1 is calculated by substitut-
ing the exact function ��t� for a harmonic solid into Eq. �44�.
Every multiphonon term in Eq. �47� is represented by the
convolution of the Breit-Wigner profile with a Gaussian ob-
tained using Eq. �46�. It thus follows that


�i,Ki,�f,Kf

SF = NmolBif�Vif�2 exp�− 2W�

�� �S

�2 +
1

4
�S

2

+ 2��
n=1

�

gn���
�2W�n

n! � . �48�

The form of this expansion is similar to that of Eq. �22�,
derived in the strong-binding limit. However, the functions
gn are obtained in the impulse approximation and they are
different from the corresponding functions g�n given by Eq.
�23�. For the one-phonon term, we have g1���=g�1����,
which is the direct result of using the exact ��t� in derivation
of g1. Thus, Eqs. �48� and �22� give the same rate at smallest
energy transfers. At large �, when many multiphonon terms
are important, the target response no longer displays a rich
structure. The rate �48� therefore tends to the simpler form
�37�, which is characterized by the recoil energy �32� with
the correct mass Mcplx.

In the limit �S→0, the rate �48� takes the form


�iKi,�fKf

SF = 2�NBif�Vif�2 exp�− 2W�

����� + �
n=1

�

gn��,T�
�2W�n

n! � , �49�

with the expansion coefficients
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g1��� =
Z����

��

�nB���� + 1� ,

gn��� =
1

�2�n�1/2�

exp �� − n/���2

2n�
2 �, n � 2.

The contribution from intermediate final momenta to the
back-decay rate �10� can be calculated analogously.

IV. RESULTS OF CALCULATIONS FOR dt� FORMATION
IN HYDROGEN-ISOTOPE CRYSTALS

In this section, the rates of resonant dt� formation in solid
HD, D2, and DT are calculated. It is assumed that these
targets are kept at zero or low pressure ��10 kbar�, which
corresponds to the TRIUMF or RIKEN-RAL experimental
conditions. Measurements of the formation rates at TRIUMF
have been performed using energetic ��1 eV� beams of t�
atoms. Therefore, the rates are evaluated here in a wide en-
ergy interval ��1 eV. This involves resonant dt� formation
with simultaneous excitations of the few lowest vibrational
levels of the muonic-molecular complex. The values of the
rates are given for a normalized target density of 4.25
�1022 atoms/cm3 �liquid-hydrogen density�.

Since the exact form of the vibrational-state distribution
Z�w� for the experimental polycrystalline targets is not
known, the Debye model of an isotropic solid has been used
in the calculations presented below. The values of the Debye
temperature �D are taken from the available literature
�27,28�.

The resonance energies and energy-dependent transition-
matrix elements for isolated target molecules HD, D2, and
DT, calculated according to the method presented in Ref.
�45�, are the starting point for the evaluation of the formation
rates in solid hydrogen isotopes. The transition-matrix ele-
ments are available for the rotational transitions Ki=0, 1
→Kf =0, . . . ,9.

Resonant dt� formation in a bound D2 molecule is the
most complicated case. The lowest resonances, correspond-
ing to the vibrational transition �i=0→� f =2 and different
rotational states Ki and Kf, are located in the vicinity of �
=0 with a radius of a few dozen meV. The resonance ener-
gies in this region for a free D2 molecule and for a D2 bound
in a 3-K solid deuterium are shown in Table I. In particular,
there are several subthreshold resonances that give signifi-
cant contributions to the low-energy rates because of wide
resonance profiles. The resonance-energy shift �13� for a
3-K deuterium target is �if =−2.29 meV. Resonances in the
upper spin state F=1 have much smaller energies than those
for F=0 with the same rotational quantum numbers. In par-
ticular, the largest values of �if for F=1, shown in Table I,
are due to the excitations Ki=0, 1→Kf =4. The only matrix
elements which do not tend to zero at �→0 correspond to
the dipole transitions Ki=0→Kf =1 and Ki=1→Kf =0,2.
For F=1, all these transitions are associated with �if
�−50 meV and thus give very small contributions to the
dt�-formation rate. As a result, the low-energy rate is deter-
mined mainly by t� scattering in the F=0 state. However,

even for F=0, dipole transitions are connected with negative
resonance energies, though much closer to �=0 than in the
F=1 case. The lowest positive resonances appear in the tran-
sitions Ki=0→Kf =3,4 and Ki=1→Kf =3,4. They are char-
acterized by strongly varying transition-matrix elements
�45�, which are illustrated in Figs. 3 and 4 �the matrix ele-
ments shown below are given in atomic units e=	=me=1�.
Let us note that this situation is very different from the dd�
case, where low-energy formation is determined by dipole
transitions, with the matrix elements slowly varying below a
few dozen meV �29,45�. Another difference between the dd�
and dt� cases is due to large separations of the low-energy
dt� resonances corresponding to Ki=0 and Ki=1. In the dd�
case, the energies of such resonances are much closer. There-

TABLE I. The resonance energies for dt� formation in t� scat-
tering from single a D2 molecule ��if

0 � and from a 3-K solid-D2

target ��if�, for the vibrational transition �i=0→� f =2. These ener-
gies are given in the corresponding center-of-mass systems.

�if
0 �meV� �if �meV� F Ki Kf S

−25.66 −27.95 1 1 4 1

−21.25 −23.54 1 0 4 0

−18.66 −20.95 1 1 4 2

−18.25 −20.54 1 0 4 1

−11.25 −13.54 1 0 4 2

−24.15 −26.44 0 1 0 1

−19.28 −21.57 0 1 1 1

−16.74 −19.02 0 0 0 1

−11.86 −14.15 0 0 1 1

−9.547 −11.84 0 1 2 1

−2.133 −4.423 0 0 2 1

5.007 2.718 0 1 3 1

12.42 10.13 0 0 3 1

24.34 22.05 0 1 4 1

31.75 29.46 0 0 4 1

FIG. 3. �Color online� Transition-matrix elements �Vif����2 ver-
sus t� energy for the transitions Ki=0→Kf =0,1 ,2 ,3 ,4 and �i=0
→� f =2. The vertical lines denote energies �if of the lowest reso-
nances. Labels “i→ f” stand for the rotational transitions Ki→Kf.
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fore, for dt� one can expect more pronounced differences
between resonant formation in solid ortho-D2 and para-D2
than those found for the dd� case �46�. Most pure-deuterium
experiments in �CF have been carried out in targets with the
statistical mixture of ortho and parastates �called “normal”
deuterium nD2, according to the nomenclature used in Ref.
�28��.

Figure 5 shows �Vif����2 for the transition �i=0→� f =2
and Ki=1→Kf =3, together with the response function �47�
for the resonance F=0→S=1 located at �if =2.7 meV. The
phonon terms in Sres are calculated assuming �S=0, since in
this example we want to neglect their convolution with the
Breit-Wigner profile. There is a strong contrast between reso-
nant formation of the molecules dt� and dd� �29� in solid
deuterium. In the dt� case, the wide Breit-Wigner peak is
not so much pronounced as the narrow recoil-less dd� reso-
nances. The matrix element �Vif����2 increases by a few or-
ders of magnitude within the width of 100 meV of the mul-
tiphonon distribution. Thus, the phonon contribution to the
dt�-formation rate is comparable with the nonphonon one,
already above a few meV. This means that the detailed form
of the density Z�w� of vibrational lattice states is necessary

for the accurate calculation of the low-energy dt�-formation
rate in a solid D2. The shape of the vibrational spectrum in
the energy-dependent rate is strongly distorted, which can be
seen in Fig. 6 evaluated using Eq. �48�. Nevertheless, the
one-phonon and two-phonon terms are clearly distinguished
in the curve corresponding to para-D2. In ortho-D2, a reso-
nance with the lowest �if �0 is located at 10 meV. There-
fore, the Breit-Wigner peak is strongly suppressed by the
Debye-Waller factor and the rate is quite flat. At �→0, the
rates are determined by the wings of the Breit-Wigner peaks,
because the phonon contribution to the rates vanishes when �
approaches zero. For F=1, the main resonances are far from
the considered low-energy interval �see Table I�. The rates
shown in Fig. 7 are thus determined by the Breit-Wigner
wings of the deep subthreshold resonances with a small con-
tribution from the weak resonance �Kf =5� located at �if �0.
As a result, the formation rates for F=1 are lower by two
orders of magnitude than those for F=0.

Resonances in t� scattering from D2, corresponding to the
vibrational excitations � f �3 of the ��dt��dee� complex, are
located at higher energies ��0.2 eV. Therefore, they are
well described by the asymptotic form �37�, which is inde-
pendent of Z�w�. Therefore, the formation rate is determined
accurately using only the mean kinetic energy ET of the D2
molecule. The formation rate in 3-K solid nD2 is plotted in
Fig. 8, for several � f. For comparison, Fig. 9 shows the

FIG. 4. �Color online� Transition-matrix elements �Vif����2 ver-
sus t� energy for the transitions Ki=1→Kf =0,1 ,2 ,3 ,4 and �i=0
→� f =2. Notation is the same as in Fig. 3.

FIG. 5. �Color online� Transition-matrix element �Vif����2 for
resonant dt� formation �transition �i=0→� f =2, Ki=1→Kf =3,
dashed line� and the response function Sres�� ,�−�if� �in arbitrary
units, solid line� for the resonance F=0→S=1 in a 3-K para-D2.
The peak of the Breit-Wigner term from Eq. �47� is centered at the
resonance energy �if =2.7 meV.

FIG. 6. �Color online� Low-energy dt�-formation rate for F
=0 in a 3-K solid nD2 �“normal” deuterium �28��, ortho-D2, and
para-D2, calculated using Eq. �48�.

FIG. 7. �Color online� Low-energy dt�-formation rate for F
=1 in the same targets as in Fig. 6.
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dt�-formation rate for a 3-K gaseous nD2. The energy-
dependent rate for a perfect deuterium gas has been calcu-
lated assuming a 3-K Maxwellian distribution of the D2 ki-
netic energy. This rate includes only formation due to two-
body t�+D2 collisions. The resonant-formation rates
presented in Figs. 8 and 9 display a striking difference be-
tween the gas and the solid case. At �→0, the theory devel-
oped for two-body collisions in a perfect gas gives a negli-
gible resonant formation rate. This result disagrees with the
average formation rates determined by measurements per-
formed in liquid and cold dense-gas targets �3� and in solid
�18� targets. The rate for the solid shows a strong contribu-
tion from the subthreshold resonances, which leads to a large
rate in the limit �→0. Solid-state effects are also significant
at higher energies. The resonance peaks in a solid are much
broader than those in the gas because of the large effective
target temperature �43�. The widths of the peaks increase
with rising recoil energy. However, the centers of higher-
energy peaks in both targets have similar locations since, in
the impulse-approximation limit, the recoil energy �32� for
the muonic-molecular complex bound in a solid equals that
for the isolated complex. The small difference �if of the
resonance energy between the solid and the gas is negligible
for �if �1 meV.

Calculation of the dt�-formation rate for solid HD or DT
is simpler than for D2 since in the HD or DT case there are

no significant resonances in the close vicinity of �=0. This is
caused by different values of the rotational and vibrational
quanta for these molecules. The HD molecule is the lightest
one and the resonances connected with � f =2 are situated in
HD above 0.1 eV �14,45�. As a result, the contributions from
various multiphonon processes to the formation rate plotted
in Fig. 10 cannot be distinguished. The resonance peak for
� f =2 in HD is the strongest dt� resonance found for the
three molecules considered here.

In Fig. 11, the dt�-formation rate is shown for a 3-K solid
DT target. The lowest peaks, which already take the
asymptotic form �37�, correspond here to � f =3. The rota-
tional and vibrational quanta are smallest for DT, so that the
main �lowest Kf� resonances connected with � f =2 are lo-
cated deeply below �=0. Thus, the contribution to the for-
mation rate from the subthreshold resonances is very small
and not apparent in this figure. At 3 K, the effective target
temperature Teff, determined by Eqs. �34� and �33�, equals
about 41 K for HD and 50 K for DT. The resonance shift
�if obtained from Eq. �13� equals −2.71 meV in the case of
HD and −1.97 meV for DT.

The dt� resonances in solid HD and D2 were directly
observed at TRIUMF �19–22� using the energetic t�-atom
beam and time-of-flight techniques. However, Monte Carlo
simulations �see, e.g., Ref. �47�� were employed for inter-
preting the experimental data. Such a procedure was indis-
pensable since the time-of-flight spectra cannot be uniquely

FIG. 8. �Color online� Resonant dt�-formation rate in a 3-K
solid nD2 for F=0 and F=1. The label � f denotes the vibrational
state of the created ��dt��dee� complex.

FIG. 9. �Color online� Resonant dt�-formation rate in 3-K gas-
eous nD2 calculated in the laboratory frame.

FIG. 10. �Color online� Resonant dt�-formation rate in a 3-K
solid HD.

FIG. 11. �Color online� Resonant dt�-formation rate in a 3-K
solid HT.
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inverted because of the geometry used and the energy loss of
t� atoms in the reaction layer prior to resonant formation of
the muonic-molecular complex. In those simulations, the cal-
culated dt�-formation rates for 3-K gas targets �such as that
shown in Fig. 9� were applied because the theoretical forma-
tion rates for a low-pressure solid were not available. A de-
tailed analysis of the data was performed by Fujiwara �19�.
He found more dt-fusion events at lowest and highest t�
energies than had been predicted using the perfect gas model.
Much broader resonance peaks, which we present in Fig. 8,
can certainly improve fits to the TRIUMF data. Also, the
analysis of the fusion-product yield �19� proved that the low-
energy dt�-formation rate in solid deuterium was much
higher than that predicted by the two-collision gas model. In
particular, this concerns formation for the state F=1. The
theoretical rates presented in Fig. 7 support this finding.

The two-peak structure of the calculated time-of-flight
spectra for dt� resonances in HD, obtained assuming a
3-K gas model, was not confirmed by the solid-HD data
�21�. However, one may expect much better agreement with
the TRIUMF data when the rate shown in Fig. 10 is used
instead of the very pronounced peaks evaluated for 3-K HD
gas. A possibility of wider resonance peaks with a fixed Dop-
pler width of 50 meV was already considered in Ref. �21�,
which did not give good fits to the data. Such a result is now
explainable since, according to Eq. �31�, the Doppler width
of a resonance in a condensed target increases with the rising
recoil energy �R. Simultaneously, the resonance height �37�
decreases for higher �R so that the resonance strength is
preserved.

Figures 12 and 13 show the resonant-formation rates for
molecules D2 and DT bound in a solid D/T target. An equili-
brated mixture of molecules D2, DT, and T2 is assumed for a
tritium isotopic concentration Ct=0.4. Target temperatures
5–16 K were applied in the RIKEN-RAL experiment, in
which an unexpected temperature dependence of the
dt�-formation rate in solid D-T mixtures �18� was found.
The corresponding target density is almost constant. A simi-
lar hydrogen-isotope mixture, kept at 15 K, was also used in
the PSI experiment �4�. In both experiments, time spectra of
neutrons from dt fusion were measured. The data were inter-
preted using standard steady-state kinetics, assuming that the

t� atoms were thermalized. Formation from the state F=1 is
negligible for an appreciable tritium concentration as the
spin-flip transition F=1→0 in low-energy t�+ t collisions is
very fast �48�. The theoretical energy-dependent
dt�-formation rates display a weak temperature dependence.
One can expect such a behavior since, for any temperature of
a low-pressure hydrogen-isotope solid, the limit T /�D�1 is
achieved ��D�100 K� and changes of �D are very small
�27,28�. As a result, the response function �47� and thus the
formation rate �48� are always close to their limits for
T /�D→0. Therefore, changes of the average formation rate


̃dt�, determined using steady-state conditions, can only be
ascribed to different t�-energy distributions corresponding to
various target temperatures. An accurate comparison of the
theory with data requires Monte Carlo simulations of the
�CF cycle in a given solid D-T mixture, which can be per-
formed in the future after completing the full set of differen-
tial cross section for muonic atom scattering in mixed D-T
crystals. The t�-energy distribution in steady-state condi-
tions is a crucial information. The shape of such a distribu-
tion is non-Maxwellian and the mean t� energy is greater
than 3

2kBT, due to solid-state effects and to a possible admix-
ture of epithermal t�’s from the reaction d�+ t→ t�+d and
from back decay of the muonic-molecular complex. The lat-
ter effect was studied in Refs. �35,49� with the use of Monte
Carlo simulations in the case of gaseous and liquid targets. In
a high-density target with medium or high Ct, this effect is
small, which is confirmed by the PSI fits �4�.

Averaging the energy-dependent rate from Fig. 12 over
the kinetic-energy distribution of t��F=0� leads to the mean

resonant rate 
̃dt�
0 shown in Fig. 14. The energy distribution

of t� atoms, being in thermal equilibrium with phonons, is
assumed to be proportional to Z���nB�� ,T�. The average t�
energy obtained using this function ranges from 1.2 meV for
T=5 K to 3.4 meV for T=16 K. It is evident that the rise of
the formation rate above about 3 K is mainly due to t� at-
oms entering into the region of the recoil-less resonant peak
in para-D2, centered at 2.7 meV. Phonon processes in both
ortho-D2 and para-D2 lead to a smaller rise in the rate. The
calculated formation rate is close to the PSI result for T
=13 K �4�. Coincidence of the theoretical curve with the data
is obtained, as in the case of the TRIUMF measurements

FIG. 12. �Color online� Rate of resonant dt� formation in
t��F=0� scattering from a D2 molecule bound in 5-K and 16-K
solid D/T�Ct=0.4� targets.

FIG. 13. �Color online� Rate of resonant dt� formation in
t��F=0� scattering from a DT molecule bound in 5-K and 16-K
solid D/T�Ct=0.4� targets.
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�20�, upon scaling by a factor S
�1, which can be ascribed
to the inaccuracy of the calculated transition-matrix ele-
ments. Here, we find S
=0.86, which is consistent with the
result of Ref. �20�.

In the RIKEN-RAL experiment �18�, about a 20% de-
crease of the �CF effectiveness has been found for the
target-temperature change from 16 to 5 K, independently of
the tritium concentration. In order to explain this effect, sev-
eral hypotheses have been considered. The hypothesis of a
significant change of the mean resonant dt� formation rate
for F=0 has led to the best fits to the data. Kawamura et al.

assume that the two components of 
̃dt�
0 —namely, the rate


̃dt�
0,D2 of resonant formation for the D2 molecule and the

analogous rate 
̃dt�
0,DT for the DT molecule—are comparable.

At 16 K, they use 
̃dt�
0,D2 =3.5�108 s−1 and 
̃dt�

0,DT=1.6

�108 s−1 �18�. All the temperature dependence of 
̃dt�
0


Cd
̃dt�
0,D2 +Ct
̃dt�

0,DT �Cd is the deuterium isotopic concentra-

tion� is ascribed only to 
̃dt�
0,D2. With the other rates in the

steady-state kinetics being fixed, about a 30% decrease of


̃dt�
0,D2 between 16 K and 5 K has been obtained. Thus, for

Ct=0.4, the respective change of 
̃dt�
0 equals about 25%. This

finding agrees quite well with analogous 20% decrease of the
theoretical rate plotted in Fig. 14. However, theory predicts

that the low-energy rate 
̃dt�
0,DT should be smaller by a few

orders of magnitude than the corresponding rate 
̃dt�
0,D2, since

the strong resonances in t�+DT scattering are far from the
region ��0. Averaging the rate presented in Fig. 13 over the

t�-energy distribution gives 
̃dt�
0,DT=2.6�106 s−1. This value

agrees well with the rate 
̃dt�
0,DT= �1.8±0.7��106 s−1, deter-

mined for a 30-K liquid D-T in the PSI experiment �4�. Note
that the formation rate in the solid is somewhat greater than
the corresponding rate in the liquid, which is a general law
confirmed by experiments. Thus, according to the presented

calculation and to the PSI results, 
̃dt�
0 � 
̃dt�

0,D2. This means

that in the steady-state analysis of Ref. �18�, a somewhat

greater value of 
̃dt�
0,D2 should have been assumed. In fact,

Monte Carlo simulations similar to that performed for gas-
eous D-T �35� are indispensable for an accurate analysis of
such experiments, since several rates change significantly at
the lowest energies. Moreover, the thermalization process of
muonic atoms in solid hydrogen isotopes is complicated
�29,50,51�. It depends on the target temperature, isotopic
concentration, and rotational population. The full set of dif-
ferential cross sections for muonic atom scattering in mixed
solid D-T is necessary for the accurate description of �CF in
such a target.

V. CONCLUSIONS

A method of calculating the rates of muonic-molecule
resonant formation in collision of muonic atoms with con-
densed hydrogen isotopes has been developed. In the case of
polycrystalline hydrogen-isotope targets, detailed calcula-
tions have been performed using the Debye model of an
isotropic harmonic solid. Values of the resonant-formation
rates have been computed for resonant dt� formation in fro-
zen D-T and HD targets, at collision energies �1 eV. These
rates are very different from those obtained for dilute gas-
eous hydrogen isotopes and exhibit strong solid-state effects.

At the lowest energies, contributions to the total rate from
formation in a rigid lattice and from formation with simulta-
neous phonon processes can be distinguished. In the high-
energy region ���0.1 eV�, for any target, the rate takes a
general asymptotic form which depends on the mean kinetic
energy of the target molecules. For low-pressure solid and
liquid hydrogen isotopes, this energy is much greater than
the corresponding energy in a perfect gas. As a result,
condensed-matter effects in resonant formation do not disap-
pear even at the highest collision energies. Since the main
dt� resonances for HD and DT are located far from zero
energy, in these cases it is sufficient to use only the
asymptotic expression for the formation rate.

The calculated resonance profiles in solids are much
broader than in the dilute-gas case. Experimental evidence
supporting this conclusion has been found in the time-of-
flight measurements of dt� resonances at TRIUMF. A quan-
titative comparison of the theory with these experiments re-
quires, however, complicated Monte Carlo simulations.

The mean values of the dt�-formation rates for D2 bound
in solid D-T mixtures, averaged over the t� kinetic energy
under the steady-state conditions, agree well with the PSI
and RIKEN-RAL data. Also, the temperature dependence of
the mean formation rate determined at RIKEN-RAL for tem-
peratures 5–16 K is revealed by the theory.
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FIG. 14. �Color online� Mean rate of resonant dt� formation in
t��F=0� scattering from nD2 molecules bound in solid D-T �Ct

=0.4� as a function of the target temperature. The dashed line rep-
resents the same rate scaled by the factor S
=0.86. Also shown is
the result of the PSI measurement �4� for a similar target �T
=13 K, �=1.45�.
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