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In order to make a unified treatment for estimation problems of a very small noise or a very weak signal in
a quantum process, we introduce the notion of a low-noise quantum channel with one noise parameter. It is
known in several examples that prior entanglement together with nonlocal output measurement improves the
performance of the channel estimation. In this paper, we study this “ancilla-assisted enhancement” for estima-
tion of the noise parameter in a general low-noise channel. For channels on two level systems we prove that the
enhancement factor, the ratio of the Fisher information of the ancilla-assisted estimation to that of the original
one, is always upper bounded by 3/2. Some conditions for the attainability are also given with illustrative
examples.
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I. INTRODUCTION

One of the formidable obstacles for the realization of
quantum computers is decoherence caused by the coupling
between computational qubits and the environment. Recent
study of quantum error correction has shown that fault-
tolerant quantum computing is in principle possible, but it
requires that the noise caused by the decoherence should be
lower than the very stringent threshold. Obviously, such a
statement has a physical meaning only if we have an efficient
method for quantitatively estimating very small noise in
quantum devices in real experiments. However, if the noise
is very small, so is our success probability of observing the
disturbance caused by that noise. This difficulty makes evi-
dent the demand for the study of optimal quantum estimation
of very small noise in general quantum channels based on
well-established quantum estimation theory.

Quantum estimation theory was instituted by Helstrom in
the late 1960s and has been developed with various applica-
tions until recently; for standard reviews we refer to Hel-
strom �1� and Holevo �2�, and see also Hayashi �3� for recent
progress. A typical problem of quantum estimation is to ask
what is the best observable, possibly in an extended system
with ancilla, to measure in order to estimate the true value of
� provided that the system is known to be in one of the state
in a given family ����. A well-established solution for this
problem is given as follows. We call an observable A a �lo-
cally� unbiased estimator at �=�0 if the expectation value
E��A� of A in the state �� satisfies

E�0
�A� = �0, �1�

��E��A���=�0
= 1. �2�

In general there are many unbiased estimators. In order to
select a good one, we consider the variance V��A� of an

arbitrary unbiased estimator A in the state ��. Then, the quan-
tum Cramér-Rao inequality

V��A� �
1

J����
�3�

holds for any unbiased estimator A at �, where

J���� = Tr���L�
2� �4�

is the �quantum� Fisher information defined through the sym-
metric logarithmic derivative �SLD� L� that is characterized
by

���� =
1

2
�L��� + ��L�� , �5�

L�
† = L�. �6�

The SLD is determined uniquely on the range of ��, i.e.,
L���=L���� holds for any two SLDs L� and L��. The Cramér-
Rao inequality �3� follows from a simple application of the
Schwarz inequality for the Hilbert-Schmidt inner product.
From the equality condition for that the lower bound J�

−1 in
Eq. �3� is always achieved by any observable A satisfying

A�� = �J�
−1L� + ����, �7�

see Refs. �1,2� and for a straightforward derivation see the
Appendix of Ref. �4�. In general, to find an optimal estimator
for the true value � needs prior information on the value �,
which might be collected by prior estimations assuming prior
probabilities on the unknown parameter, so that the optimal
estimator is considered as an ultimate limit allowed by phys-
ics. However, there are some cases in which the optimal
estimator can be chosen uniformly over unknown values of �
�5�. In these cases the ultimate limit can be certainly
achieved without prior information.

From the quantum estimation theory for state parameters
mentioned above, we can construct an estimation theory for
unknown parameters of physical processes, such as coupling
constants of the interaction. Suppose that we prepare a quan-
tum system in an initial state �in and leave it in an evolution
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process characterized by an unknown parameter �. Then, the
final state �out��� of this process depends on the parameter �.
The problem of finding the optimal estimation of the param-
eter � is solved by maximizing the Fisher information J�

over all the possible initial states �in and all the possible
observable A in the final state �6,7�. The above-mentioned
physical process can be represented by a mapping �� that
transforms the initial state �in to the final state �out as

�out = ����in� . �8�

It is now fairly well-known that every general state change,
called a quantum operation or a quantum channel, such as
��, physically realizable with probability one should be a
trace-preserving completely positive �TPCP� mapping, and
conversely that every TPCP map can be realized as a unitary
process of the system augmented by an ancilla prepared in a
fixed state as shown by Kraus �8,9�; see also Refs. �10,11�
for the generalization of the above statement to generalized
measurements and see Ref. �12� for the latest elaboration.

As pointed out in Ref. �13�, one can improve the param-
eter estimation if a correlation, or in particular an entangle-
ment, is allowed between the input system S and an ancilla
A. It should be stressed that in doing so one needs no physi-
cal process to occur on the ancilla system A while the system
S passes through the channel ��. In this case, the extended
channel is represented as �� � idA, where idA stands for the
identity channel for A. Then, the improvement can be
achieved by the initial preparation of the composite system
in an entangled state together with the measurement of the
composite system after the process.

Recent progress has been reported on problems for special
families of quantum channels, in particular, SU�2� channel
�14�, a generalized Pauli channel �15�, a generalized
amplitude-damping channel �16�, U�N� channel and its Abe-
lian subgroup channel �17,18�. A review by Fujiwara �19� is
also available. For earlier contributions see also Refs.
�20–25�. In this paper, we are devoted to the ancilla-assisted
enhancement of Fisher information derived by the quantum
Cramér-Rao bound, whereas ancilla-assisted enhancements
have been recently investigated within the Bayesian ap-
proach �26–28� and the minimax approach �29�.

This enhancement effect not only projects a theoretical
profundity of quantum mechanics, but also suggests many
physical applications including the low-noise estimation in
quantum computing, where the enhanced noise estimation is
expected to contribute to developing the quantum error cor-
rection and quantum noise reduction technology �30�.

We can find another application of the low-noise estima-
tion in elementary particle physics. Today, because of tech-
nological difficulties of high-energy experiments, direct re-
search of new physics far beyond the TeV energy scale is
almost impossible. This is one of the reasons why the low-
energy rare processes predicted by the new physics recently
attract much attention. �The CPT symmetry violation in the

K-K̄ oscillation is one of the typical processes �31–34�.�
Clearly, the number of signals for the new-physics evidence
is predicted to be very small, even if the process really exists
in nature. The new-physics data should be separated from an

enormous number of ordinary data explained by the standard
model. This means that the new-physics data can be regarded
as a sort of background low noise in the standard data.
Hence, we can treat the rare process as a low-noise channel.
It is very significant to estimate the intensity of the low noise
because indirect information about physics beyond the stan-
dard model is obtained. In the estimation, the above ancilla-
assisted enhancement may effectively reduce the trial num-
ber of the experiment.

In this paper, we study the estimation theory of the pa-
rameter characterizing a small noise in a general quantum
channel on a system with finite dimensional state space. We
can always decompose the quantum channel into two chan-
nels so that the input state of the original channel passes
through the first noiseless channel and consecutively passes
through the second noisy quantum channel called the noise
channel. Thus, we can concentrate our attention on the noise
channel. We are interested in the case where the noise is so
small that the noise channel deviates only a little from the
identity channel. In such a case, the channel is called a low-
noise channel, and the parameter representing the noise is
called the low-noise parameter denoted by �. Let �� be a
low-noise channel with low-noise parameter �. We assume
that the low-noise parameter is scaled so that �0 is the iden-
tity channel. We can formulate natural mathematical require-
ments for the behavior of the low-noise parameter in a neigh-
borhood of �=0. It is an interesting problem to figure out
how much ancilla-assisted enhancement can be achievable in
the estimation of the low-noise parameter �. In this paper we
shall discuss this problem and obtain several upper bounds
for this ancilla-assisted enhancement factor in the low-noise
parameter estimation.

In Sec. II, we explain a theorem �13� that states that the
Fisher information is attained in a pure initial state, so that
we can always assume that the input of the channel is a pure
state. In Sec. III, we discuss parameter estimation for unitary
channels, which do not couple with the environment, and
show that we have no ancilla-assisted enhancement. Thus,
the ancilla-assisted enhancement is possible only for chan-
nels coupled with the environment. In Sec. IV, we introduce
the notion of low-noise channels mentioned above with rig-
orous mathematical requirements, and we obtain a general
formula for the upper bound for the ancilla-assisted enhance-
ment factor. In Sec. V, we introduce two physical examples
of low-noise channel. In Sec. VI, we give a concrete evalu-
ation of the enhancement factor in two level systems. Let us
consider a low-noise channel �� with low-noise parameter �
in a two level system S2. We obtain a universal upper bound
for the enhancement factor � defined by

� =
L�max�JS2+A��S2+A

�

L�max�JS2
��S2

�
�9�

for any finite level ancilla A. Here, �S2
is the input in the

system S, JS2
is the Fisher information of ����S2

�, �S2+A is the
channel input in the composite system S2+A, JS2+A is the
Fisher information of the output states ��� � idA���S2+A�, and
max�·�� stands for the maximum over all the state �. As

HOTTA, KARASAWA, AND OZAWA PHYSICAL REVIEW A 72, 052334 �2005�

052334-2



shown later, JS2
and JS2+A show a singular behavior �1/� in

the � expansion, and L�J� is coefficient of �1/�, i.e.,

J��� =
1

�
L�J� + O��0� . �10�

The universal upper bound of the enhancement factor �
for all the two level systems is given by

� �
3

2
. �11�

This upper bound is attainable by various channels ��, and
the corresponding optimal input state is a maximal entangled
state, and holds for any low-noise channels on two level
systems.

II. THE MAXIMUM IS ATTAINED BY A PURE INPUT
STATE: THE FUJIWARA THEOREM

In this section we briefly review an important theorem
due to Fujiwara �13�: the maximum of the Fisher information
of output states ���=������ over all possible input states � is
attained by a pure input state for an arbitrary fixed channel
��.

To show this following Fujiwara, let L� be the SLD de-
fined by Eqs. �5� and �6� for the output state ��. Then the
Fisher information J���� is given by Eq. �4�. Fujiwara �13�
showed that the Fisher information has a convexity property,
i.e.,

J�	
� + �1 − 	���� � 	J�
�� + �1 − 	�J���� �12�

for any 0�	�1, where 
� and �� are states with parameter
�.

To see the above relation, let Hermitian operators L�

 and

L�
� be the SLDs of 
� and ��, respectively, i.e.,

��
� =
1

2
�L�



� + 
�L�

� , �13�

���� =
1

2
�L�

��� + ��L�
�� . �14�

Let us consider the tensor product Hilbert space K=H � C2,
where H is the state space of S and C2 is a two-dimensional
state space. With fixed basis ��0�,�1�� of C2, let �̃� be a den-
sity operator on K such that

�̃� = 	
� � �0�	0� + �1 − 	��� � �1�	1� . �15�

Then, it is easy to see that the SLD of �̃� is L�



� �0�	0�+L�

� �1�	1�, so that the Fisher information of �̃� is given by

J��̃�� = Tr��̃��L�



� �0�	0� + L�
� �1�	1��2�

= 	 Tr�
��L�

�2� + �1 − 	�Tr����L�

��2�

= 	J�
�� + �1 − 	�J���� . �16�

On the other hand, the partial trace of �̃� over C2 is given by

TrC2��̃�� = 	
� + �1 − 	���. �17�

Since the partial trace is a trace-preserving completely posi-
tive map, the monotonicity of the Fisher information under

trace-preserving completely positive maps �35–37� con-
cludes

J�	
� + �1 − 	���� � J��̃�� . �18�

Therefore, from Eqs. �16� and �18� the convexity relation
�12� follows.

Now suppose that an input state �̄ maximizes the Fisher
information, i.e.,

J�����̄�� = max�J���������. �19�

Let

�̄ = 

n

pn�n�	n� �20�

be the spectral decomposition, where 0� pn�1 and 
pn=1.
The output state �̄� is given by

�̄� = ����̄� = 

n

pn����n�	n�� . �21�

By using relation �12� repeatedly, we have

J��̄�� � 

n

pnJ�����n�	n��� . �22�

Since �̄ maximizes the Fisher information, we also have



n

pnJ�����n�	n��� � J��̄�� , �23�

and this concludes the relation J��̄��=J�����n�	n��� for all n.
Thus, the maximum of the Fisher information is also attained
by a pure input state.

From now on, we assume without any loss of generality
that the input state of the channel is always a pure state by
virtue of this theorem.

III. ONE-PARAMETER UNITARY CHANNELS HAVE NO
ENHANCEMENT

Before we go to general analysis of low-noise channels,
let us consider the case where the channel is unitary, or the
channel does not interact with the environment. Interestingly,
the maximization of the output Fisher information J���� with
respect to the input � can be explicitly accomplished. After
the calculation of the maximum, one can notice that the
ancilla-assisted enhancement does not take place at all. The
result makes it clear that, in order to gain the ancilla-assisted
enhancement for channel parameter estimations, the channels
must have the effective interaction between the system and
the environment.

Let U��� be a unitary operator with an unknown param-
eter �. Then the output state of the unitary channel deter-
mined by U��� for an input state �
� is given by

���� = �
����	
���� , �24�

where the output state �
���� is defined by

�
���� = U����
� . �25�

By introducing the �logarithmic� Hamiltonian operator H���
such that
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H��� = i���U����U���†, �26�

H���† = H��� , �27�

and using the result in Ref. �5�, the Fisher information of the
output state is evaluated as

JS���� = 4V
����H���� , �28�

where V
����H���� is the variance of H��� in the state �
����,
i.e.,

V
����H���� = 	
����H���2�
���� − 	
����H����
����2.

�29�

To obtain the maximum of JS, let us consider the maximum
and minimum of the eigenvalues En of H���:

Emax��� = max�En�n, �30�

Emin��� = min�En�n. �31�

Let �max���� and �min���� be eigenstates corresponding to
Emax��� and Emin���, respectively. By a straightforward ma-
nipulation, it is easy to see that the maximum of JS is taken
by a pure input state ���=U���†������, where ������ is
given by

������ =
1
�2

��max���� + �min����� . �32�

For a fixed value of �, the maximum is given by

max�JS��
� = JS�������	������ = �Emax��� − Emin����2.

�33�

To obtain the corresponding result for ancilla-assisted es-
timations, let us introduce an ancilla system A and the ex-
tended channel defined by

�
̃���� = �U��� � 1A��
̃� , �34�

where �
̃� is a state of the composite system S+A to be put
in the extended channel. For the output state �̃���
= �
̃����	
̃����, the Fisher information is given by

JS+A��̃���� = 4V
̃����H��� � 1A� , �35�

where V
̃����H��� � 1A� is the variance of H��� � 1A in the

state 
̃���. Note that the maximum and minimum of the
eigenvalues of H � 1A are taken in the states
�max�����a��min�����a�, respectively, with an arbitrary ancilla
state �a�, i.e.,

H��� � 1A�max�����a� = Emax����max�����a� , �36�

H��� � 1A�min�����a� = Emin����min�����a� . �37�

Hence, the input state given by

��̃� =
1
�2

�U���†
� 1A���max�����a� + �min�����a��

= ����a� �38�

takes the maximum value of JS+A, which turns out to be the
same as that given in Eq. �33�, i.e.,

max�JS+A��
̃� = JS+A���̃����	�̃����� = �Emax��� − Emin����2.

�39�

Consequently, no enhancement by the ancilla extension is
observed in this unitary case, i.e.,

max�JS+A��S+A

max�JS��S

=
max�JS+A��
S+A�

max�JS��
S�
= 1. �40�

It should be noted here that the above argument applies
only to one-parameter unitary channels, for which Eq. �28�
can be applied, whereas a generalization to Abelian group
parameters may follow. For multiple phase parameter estima-
tion of unitary channels, Ballester �17,18� showed, ancilla-
assisted enhancement actually takes place, whereas for com-
muting phase parameter estimation no enhancement occurs.

Within Bayesian approach, Chiribella, D’Ariano, and Sac-
chi �26� showed that unitary channels with non-Abelian
group parameter can have ancilla-assisted improvement of a
large class of cost functions. In this connection, Sacchi
�27,28� gave extensive analysis on the condition for ancilla-
assisted improvement of the error probability for discrimina-
tion of Pauli channels.

IV. LOW-NOISE CHANNELS

In this section, we introduce the notion of a low-noise
channel �� with unknown parameter �, which takes only
small values ��0, by requiring a physically natural assump-
tion of the channel �� for the parameter values near �=0.
The small parameter � is assumed to control the low noise
well enough and is called the low-noise parameter.

As mentioned in Sec. I, we will focus on the ancilla ex-
tension of the low-noise channel defined by �� � idA. The
ancilla-assisted enhancement factor � is also defined as the
ratio of the Fisher information of the ancilla-assisted estima-
tion to that of the original one and is analyzed in detail.

The concept of the noise in a quantum process to imple-
ment a target unitary process can be understood under the
following consideration. Suppose that we would like to
implement a unitary channel ��U� for a system S, so that the
output state corresponding to an input state �in of S is de-
signed to be

�out = ��U���in� = U�inU
†. �41�

Without any noise, the unitary operator can be normally
implemented as

U = exp�− itHS/�� , �42�

where t is the time interval from input to output, and HS is
the Hamiltonian of S under control �Fig. 1�.
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In real life, the system S is coupled weakly with the en-
vironment E and causes the decoherence that cannot be cor-
rected by controlling the Hamiltonian HS of the system S, so
that the noise is brought from the environment. Assume that
the noise is controlled by one unknown positive parameter �.
The estimation of the noise parameter � often becomes criti-
cal in development of quantum devices such as quantum
computers.

The total Hamiltonian reads

Htot = HS + HSE + HE, �43�

where HE is the Hamiltonian of E and HSE is the interaction
Hamiltonian between S and E. Because of the noise, the
actual output state �out� deviates from the intended output
state �out �Fig. 2�.

By using Htot, the output state �out� is determined in prin-
ciple by

�out� = TrE�e−itHtot��in � �E�eitHtot� , �44�

where TrE is the partial trace over E and �E is the initial state
of E. Theoretically, it is preferable that we determine the
value of the noise parameter � via Eq. �44�; however, the
explicit calculation of Eq. �44� is too complicated to perform
in many cases. Hence, adopting a reasonable theoretical
model of the noise effect, the actual value of its noise param-
eter of the model should be experimentally estimated.

Without assuming any detailed knowledge about HE and
HSE, it is natural to represent the noisy process by a TPCP
map �� such that

�out� = ����in� , �45�

where the relation �0=��U� holds as the noiseless case. In
quantum theory, the channel �� can be equivalently de-

scribed by a sequence of two channels �the third line of Fig.
2�. The first one is the target unitary channel ��U� and the
second represents the genuine noise part. This means that the
general noisy process is equivalent to the noiseless unitary
process followed by an instantaneous noise process. The sec-
ond channel is called the noise channel �� and defined by

����� ª ���U†�U� = ������U��−1���� . �46�

Using the definition and the ideal output state �out, it is pos-
sible to write the actual output state �out� such that

�out� = ���U�inU
†� = ����out� . �47�

When the noise vanishes, the channel reduces to the identity
channel:

�0 = idS. �48�

It is stressed that despite the noise channel �� being con-
ceptually constituent, it can be simulated in a real experiment
by use of the actual channel �� �Fig. 3�. In fact, the output
state of the channel �� defined by

��,out = ����in� �49�

is exactly reproduced by

��,out = ������U��−1��in�� , �50�

for an arbitrary input state �in. Therefore, by adopting a
known state �in� = ���U��−1��in�, which is independent of �, as
the input state of the actual channel ��, we experimentally
obtain the output state ��,out of the noise channel ��. This
aspect sounds very significant. Actually, we can replace, not
only theoretically but also experimentally, the estimation
problem for a given real channel �� into the equivalent es-
timation problem for the noise channel ��. Hence, we later
concentrate on estimation of the noise parameters for ��

which satisfies relation �48�.
Next let us define mathematically the low-noise channel

��. This is a kind of noise channel and its noise parameter �
takes small positive values, which is denoted by �. We call �
the low-noise parameter. Physically, �� is expected to have
an analytic � dependence near �=0. A rigorous mathematical
formulation of this requirement is given as follows.

FIG. 1. Without any noise, a unitary channel ��U� can be imple-
mented with a suitable controlled Hamiltonian HS in a time interval
t satisfying Eq. �42�.

FIG. 2. A controlled unitary process, such as
quantum computing, usually suffers from noise
�the first line�. The noisy process is described as a
TPCP map, a channel ��, parametrized by one
noise parameter � �the second line�. In quantum
theory, the disturbed process is equivalently de-
scribed by a sequence of two channels. The first
channel is the originally intended unitary channel
��U�. The second channel �� describes the genu-
ine noise effect. We call �� the noise channel �the
third line�.
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Since the low-noise channel �� is a TPCP map, it has
Kraus representations determined by a family of Kraus op-
erators. We shall define low-noise channels in terms of their
Kraus operators. A family of TPCP maps �� with one param-
eter ��0 is called a low-noise channel with low-noise pa-
rameter � if each �� has a Kraus representation

����� = 

a

Ba����Ba
†��� + �


�

C�����C�
†��� �51�

with two classes of Kraus operators �Ba���� and ���C�����
satisfying the following conditions.

�i� Ba��� is analytic at �=0, so that we have the power
series expansion

Ba��� = �a1S − 

n=1

�

Na
�n��n, �52�

in a neighborhood of �=0, where �a and Na
�n� are constant

coefficients and operators, respectively, independent of �.
The noise channel condition in Eq. �48� requires


 ��a�2 = 1. �53�

�ii� C���� is analytic at �=0, so that we have the power
series expansion

C���� = M� + 

n=1

�

M�
�n��n, �54�

in a neighborhood of �=0, where M� and M�
�n� are constant

operators independent of �.
Needless to say, the Kraus operators satisfies the trace-

preserving condition

1S = 

a

Ba
†���Ba��� + �


�

C�
†���C���� , �55�

where 1S is the identity operator. By definition, the relation

lim
�→+0

�� = idS �56�

is automatically satisfied.
It should be emphasized that our definition of the low-

noise channel is general from the physical point of view.
Except that �� satisfies Eq. �56� and has analytic dependence
of � near the origin, the channel �� can be said to be a
general quantum operation acting on the input state. There-
fore, the low-noise channel should always be found in the
weak-interaction limit of HSE for rather general physical pro-
cesses.

A useful comment is given here. Expanding Eq. �55� in
terms of � generates a lot of recursion relations between �a,

Na
�n�, and M�

�n�. The higher components of the operators and
the coefficients are determined recursively and systemati-
cally by solving the equations using their lower components.
The first-order relation in the � expansion of Eq. �55� is
given by



�

M�
† M� = 


a

��aNa
�1�† + �a

*Na
�1�� . �57�

One of our fundamental interests is to ask a question:
which input state for the low-noise channel maximizes the
Fisher information of its output state ��? By virtue of the
theorem reviewed in Sec. II, the optimal input state is a pure
state. Denote the input state by ���	��. Then, from Eqs. �52�
and �54�, �� can be expanded as

�� ª ������	��� = ���	�� − ��1 + O��2� . �58�

Here �1 is given by

�1 = 

a

��a���	��Na
�1�† + Na

�1����	���a
*� − 


�

M����	��M�
† .

�59�

For this output state ��, we perturbatively solve

���� =
1

2
�L��� + ��L�� �60�

in order to get the SLD operator L�. It is possible to check
that the following solution actually satisfies Eq. �60� by sub-
stitution.

L� =
1

�
�1 − ���	��� − �1 + O��� . �61�

By substituting Eq. �61� into the definition of the Fisher in-
formation, we get the value of the information such that

JS���� = Tr���L�
2� =

1

�
	���1��� + O��0� . �62�

By using Eqs. �57� and �59�, the Fisher information is evalu-
ated in the leading order of � as

JS���� =
1

�


�

�	��M�
† M���� − �	��M�����2� + O��0� .

�63�

From Eq. �7� the optimal output-measurement
observable Aopt for any input state ��� is given by Aopt��

= �JS����−1L�+����. The optimal input state ��opt� can be de-
termined by maximizing JS���� with respect to the state ���.

FIG. 3. In order to experimen-
tally generate the output state
��,out of the noise channel �� for
an arbitrary input state �in, we
take �in� = ���U��−1��in�, which is
independent of �, as the input
state for the actual channel ��.
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Let us next discuss the low-noise channel in the ancilla-
extended system S+A. Its extended channel is now given by
�� � idA. The input pure state �
� can be decomposed into

�
� = 

n=1

Cn�n� � �An� , �64�

where ��n�� is an arbitrary orthonormal basis of S and �An�’s
are normalized pure states of A, which are not necessarily
orthogonal to each other. The constants Cn should satisfy the
normalization condition:



n

�Cn�2 = 1. �65�

The SLD for the extended state is given by

L̃� =
1

�
�1 − �
�	
�� + O��0� . �66�

The Fisher information JS+A��̃�� for the output state �̃�=��

� idA��
�	
�� is also evaluated in a similar manner. We have

JS+A��̃�� =
1

�


�

�Tr��̃M�
† M�� − �Tr��̃M���2� + O��0� ,

�67�

where �̃ is a state of S defined by

�̃ = TrA��
�	
�� = 

nn̄

Cn̄
*	An̄�An�Cn�n�	n̄� . �68�

The optimal output-measurement observable Ãopt for any

input state �
� is given by Ãopt�̃�= �JS+A��̃��−1L̃�+�1��̃�. The
optimal input state �
opt� for the extended system is
determined by maximizing JS+A��̃�� with respect to �̃
=TrA��
�	
��.

If the dimension of A is not less than that of S, we are able
to make �An�’s orthogonal to each other:

	An̄�An� = �n̄n. �69�

Then the state �̃ is reduced into a form such that

�̃ = 

n

�Cn�2�n�	n� . �70�

Note that the orthonormal basis ��n�� of S and the coefficients
Cn can be arbitrarily chosen except that 
�Cn�2=1. Hence, �̃
in Eq. �70� is able to describe any possible state of S. There-
fore, the dimension of the ancilla Hilbert space suffices to be
at most the same as the system Hilbert space.

By combining both results of JS and JS+A, we have the
ancilla-assisted enhancement factor � such that

� =
max�
�

�Tr��SM�
† M�� − �Tr��SM���2���S

max�
�
�	�S�M�

† M���S� − �	�S�M���S��2����S�

.

�71�

Here max� ��S
means the maximum value over all possible

states of S and max� ���S� the maximum value over all pos-
sible pure states of S.

Because the set of pure states of S is a subset of the set of
states of S, the following inequality trivially holds:

� � 1. �72�

V. EXAMPLES OF LOW-NOISE CHANNELS

Low-noise channels introduced in the previous section are
found in a lot of applications. Checking that low-noise chan-
nels really appear in some physical phenomena may lead to a
deeper understanding. Thus we give two critical examples in
the following. The details of the channels we introduce be-
low can be seen in Ref. �30�.

A. Isotropic depolarizing channels

An isotropic depolarizing channel is given by

����� = 
1 −
3

4
��� +

1

4
�


a=1

3


a�
a. �73�

This is a well-known example induced by quantum noise.
The parameter ���0� is just a probability that the qubit sys-
tem becomes depolarized. The Kraus operators in Eqs. �52�
and �54� are given by

B0��� = 
1 −
3

4
��1/2

1S, �74�

Ca��� =
1

2

a, �75�

where a=1,2 ,3. Hence the expansion coefficients in Eqs.
�52� and �54� are given by

�0 = 1, �76�

N0
�1� =

3

8
1S, �77�

N0
�n� =

�2n − 3�!!
n!


3

8
�n

1S, �78�

Ma =
1

2

a, �79�

Ma
�n� = 0 . �80�

In this case, the Fisher information has already been calcu-
lated �13�. For the isolated original system S, the information
is independent of the input state and given by

JS =
1

��2 − ��
. �81�

For the extended channel �� � idA, the optimal input state is
the maximally entangled state and the information is given
by
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J̃S+A =
3

��4 − 3��
, �82�

as long as the parameter � is small.

B. Generalized amplitude-damping channels

A generalized amplitude-damping channel is given by

���� = 

a=1

2

Ba����Ba
†��� + �


�=1

2

C�����C�
†��� , �83�

where B� and C� are given by

B1��� =� 1

1 + e−�E�1 0

0 �1 − �
� , �84�

B2��� =� e−�E

1 + e−�E��1 − � 0

0 1
� , �85�

C1��� =� 1

1 + e−�E�0 1

0 0
� , �86�

C2��� =� e−�E

1 + e−�E�0 0

1 0
� . �87�

The channel describes a relaxation process of the two-level
system driven by a finite-temperature thermal bath. The tem-
perature is �kB��−1 where kB is the Boltzmann constant. Here
the small noise parameter � is related with the survival rate s
of the initial state under the relaxation such that �=1−s. The
rate s is given by s=e−�t, where t is time and � the relaxation
rate constant. The corresponding coefficients in the � expan-
sion are given by

�1 =� 1

1 + e−�E , �88�

�2 =� e−�E

1 + e−�E , �89�

N1
�n� =� 1

1 + e−�E

�2n − 3�!!
2nn!

�0 0

0 1
� , �90�

N2
�n� =� e−�E

1 + e−�E

�2n − 3�!!
2nn!

�1 0

0 0
� , �91�

M1 =� 1

1 + e−�E�0 1

0 0
� , �92�

M2 =� e−�E

1 + e−�E�0 0

1 0
� , �93�

M1,2
�n� = 0. �94�

The calculation of the Fisher information has been per-
formed in Ref. �16�.

The two examples in this section will be discussed again
in Sec. VI.

VI. CHANNELS ON TWO-LEVEL SYSTEMS

In this section we concentrate on a two-level system S2
and an arbitrary ancilla system A. The dimension of A is not
necessarily two, but assumed finite. Let us derive a universal
bound on the ancilla-assisted enhancement factor � such that

� �
3

2
. �95�

The bound must hold for all low-noise channels of S2.
As is well known, any state � of the two-dimensional

system S2 can be written by

� =
1

2
1S +

1

2
x� · 
� , �96�

where 
� is the Pauli matrix vector and the three-dimensional
real parameter vector x� takes values which satisfies

0 � �x��2 � 1. �97�

For pure states, the vector is normal:

�x��2 = 1. �98�

Similarly, the matrix M� in Eq. �54� is uniquely expanded
as

M� = ma01S + 

a=1

3

ma�
a. �99�

Now let us define complex vectors �� a�a=0–3� by using the
coefficients ma� in Eq. �99� as

�� a = �ma�� . �100�

In the vector space, there exists a natural inner product de-
fined by

�u� ,v�� = 

�

u�
*v�. �101�

A metric is also induced naturally from the inner product
such that

gab ª ��� a,�� b� = gba
* , �102�

where a ,b=1–3. For later convenience, define a real non-
negative symmetric matrix H by

H = �hab� = �Re gab� � 0, �103�

and a real three-dimensional vector J� by

J� = �Ja� = �Im g23,Im g31,Im g12� . �104�

Here denote by h1 ,h2 ,h3 the eigenvalues of H. Without loss
of generality, we can assume that

0 � h1 � h2 � h3. �105�

Assume later that �� a�a=1,2 ,3� are linearly independent.
Even if it is not so, because of the continuity of �, we can
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take three linearly independent vectors �� a�t� parametrized by
a real parameter t such that

lim
t→0

�� a�t� = �� a. �106�

In order to get �, we first calculate the factor ��t� for ��� a�t��
and just take a limit as

lim
t→0

��t� = � . �107�

Note that the linearly independence of ��� a� also means

H � 0. �108�

This allows us to assume the existence of H−1.
By a simple manipulation, we have

��J�� =
Tr H + J�H−1J� − min��x� + H−1J��H�x� + H−1J����x���1

Tr H + J�H−1J� − min��x� + H−1J��H�x� + H−1J����x��=1

.

�109�

For the original system S, the optimal input state is given
by

���	�� =
1

2
1S +

1

2
x�opt · 
� , �110�

where x�opt is the vector which minimizes �x� +H−1J��H�x�
+H−1J�� among whole unit vectors. The optimal input state
�
� for the extended system is also given as follows. Find a

vector X� which minimizes �x� +H−1J��H�x� +H−1J�� among
whole vectors with �x���1. Then the optimal state �
� is
determined by solving

TrA��
�	
�� =
1

2
1S +

1

2
X� · 
� . �111�

Let us consider the case where J� =0� . The factor � is given
by

� =
Tr H − min�
a,b=1

3
xaxbhab��x���1

Tr H − min�
a,b=1

3
xaxbhab��x��=1

=
h1 + h2 + h3

h1 + h2 + h3 − min�
a=1

3
ha�x�a�2��x���=1

.

Here we have made H diagonalized in the last equality. Con-
sequently we obtain an expression of � such that

� =
h1 + h2 + h3

h1 + h2 + h3 − min�h1,h2,h3�
. �112�

Taking account of h1�h2�h3, we can easily prove
��3/2 as follows:

� =
h1 + h2 + h3

h2 + h3
�

2h2 + h3

h2 + h3
�

3h3

2h3
=

3

2
. �113�

Next let us discuss the case where J� �0� . Suppose that

�H−1J���1. Then we have

min ��x� + H−1J��H�x� + H−1J����x���1 = 0, �114�

because we can always take a vector x� such that x� =−H−1J�.

For later convenience, let us introduce a function G�J�� as

G�J�� ª min ��x� + H−1J��H�x� + H−1J����x��=1. �115�

Then we can prove that the function G satisfies

G�0�� � G�J�� .

To show this, we transform G�J�� as

G�J�� = min �X� HX� ��X� −H−1J��=1. �116�

By denoting K� =H−1J�, the function G is given in the diagonal
basis of H by

G = min �

a

ha�Xa��
2�

�X��−K� ��=1

. �117�

Note that the relation �K� ���1 trivially holds. Also notice

from definition �115� that if J� =K� �=0� , G takes the minimum
value of the eigenvalues of H, that is, h1:

G�0�� = h1. �118�

To compare G�J�� with this value h1, suppose a point X� 0� on a

trajectory defined by �X� �−K� ��=1 such that

X� 0� = �K1� ± �1 − �K2��
2 − �K3��

2,0,0� . �119�

Then we have

X� 0�HX� 0� = h1�K1� ± �1 − �K2��
2 − �K3��

2�2. �120�

Here we fix the double sign in the above equation so as to
satisfy the relation:

X� 0�HX� 0� = h1��K1�� − �1 − �K2��
2 − �K3��

2�2. �121�

Since the relation �K� ���1 holds, it is guaranteed that

1 � ��K1�� − �1 − �K2��
2 − �K3��

2�2. �122�

Therefore the important inequality

G�0�� � G�J�� �123�

really arises as follows:

G�0�� = h1 � h1��K1�� − �1 − �K2��
2 − �K3��

2�2

= X� 0�HX� 0� � min �X� �HX� ���X��−K� ��=1 = G�J�� . �124�

Note that

J�H−1J� � 0 �125�

and

Tr H − G�0�� = h2 + h3 � 0. �126�

Keeping Eqs. �123�, �125�, and �126� in mind, let us go back

to the proof of ��J�����0��. By using Eq. �114�, we have
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��J�� =
Tr H + J�H−1J�

Tr H + J�H−1J� − G�J��
. �127�

By replacing G�J�� by G�0�� in the above equality, from Eq.
�123� we obtain

��J�� �
Tr H + J�H−1J�

�Tr H − G�0��� + J�H−1J�
. �128�

By using an inequality such that

b + �

a + �
�

b

a
�129�

for a�b and ��0 with �=J�H−1J�, we have

��J�� �
Tr H

Tr H − G�0��
= ��0�� . �130�

Consequently, we have obtained the bound

��J�� � ��0�� � 3/2. �131�

For the remaining case where �H−1J���1, the problem be-
comes much more trivial. This is because

min ��x� + H−1J��H�x� + H−1J����x���1

= min ��x� + H−1J��H�x� + H−1J����x��=1 �132�

holds in this case. Therefore the relation �=1 is satisfied in
Eq. �109�.

Therefore, for all the possible low-noise channels, the
bound ��3/2 has been proven. The equality �=3/2 can be
attained by the channels satisfying

gab � �ab �133�

with the maximally entangled input pure states of S+A.

The optimal input state depends on the vector J� of the

channel. When J� =0� , the optimal input state is the maximally

entangled state. If �H−1J���1, a factorized input state takes

the maximum and gives �=1. When 1� �H−1J���0, the op-
timal input state is neither the maximally entangled state nor
the factorized state. From the argument below Eq. �114� the
output state ���S+A satisfies

TrA����S+A	��S+A� =
1

2
1S −

1

2
J�H−1
� . �134�

The value of � given by Eq. �127� also changes continuously

between 1���3/2 depending on �H−1J��.
The channel dependence of the optimal input state has

already been noticed in a generalized amplitude-damping
channel �16� by changing the temperature of the thermal
bath. Because of the simplicity of the model, it is possible to
estimate the unknown parameter even in a finite parameter

region. On the other hand, in this paper, the parameter region
of the low-noise channel is constrained to a neighborhood of
a fixed value ��=0�. However, we would like to stress that
our channel includes an enormous number of degrees of free-
dom corresponding to �a, Na

�n�, and M�
�n�, compared with the

generalized amplitude-damping channel.
Note that the isotropic depolarizing channel �Eq. �73� in

Sec. V� is one of the channels attaining the bound ��=3/2�.
The vectors �� a are calculated as

�� 1 =
1

2�1

0

0
� , �135�

�� 2 =
1

2�0

1

0
� , �136�

�� 3 =
1

2�0

0

1
� . �137�

The corresponding matrix gab is just evaluated as

gab =
1

4
�ab. �138�

Thus the channel can achieve �=3/2.
On the other hand, the generalized amplitude-damping

channels �Eq. �83� in Sec. V� cannot achieve the bound. The
vectors �� a are now described by

�� 1 =
1

2��
1

1 + e−�E

� e−�E

1 + e−�E

0
� , �139�

�� 2 =
i

2� � 1

1 + e−�E

−� e−�E

1 + e−�E

0
� , �140�

�� 3 = �0

0

0
� . �141�

The corresponding gab is now given by
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�gab� =
1

4� 1 i
1 − e−�E

1 + e−�E 0

− i
1 − e−�E

1 + e−�E 1 0

0 0 0
� . �142�

Because gab��ab does hold, the channel cannot satisfy �
=3/2 for any parameter value. In spite of the ancilla exten-
sion, the ancilla-assisted enhancement does not appear at all

��=1�, as long as the low-noise parameter � is small enough.

This is because the value of �H−1J�� diverges and the relation

�H−1J���1 always holds.
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