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We analyze a method that uses fixed, minimal physical resources to achieve generation and nested purifi-
cation of quantum entanglement for quantum communication over arbitrarily long distances and discuss its
implementation using realistic photon emitters and photonic channels. In this method, we use single-photon
emitters with two internal degrees of freedom formed by an electron spin and a nuclear spin to build interme-
diate nodes in a quantum channel. State-selective fluorescence is used for probablistic entanglement generation
between electron spins in adjacent nodes. We analyze in detail several approaches which are applicable to
realistic, homogeneously broadened single-photon emitters. Furthermore, the coupled electron and nuclear
spins can be used to efficiently implement entanglement swapping and purification. We show that these
techniques can be combined to generate high-fidelity entanglement over arbitrarily long distances. We present
a specific protocol that functions in polynomial time and tolerates percent-level errors in entanglement fidelity
and local operations. The scheme has the lowest requirements on physical resources of any current scheme for
fully fault-tolerant quantum repeaters.
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I. INTRODUCTION

Quantum communication holds promise for transmitting
secure messages via quantum cryptography and for distrib-
uting quantum information �1�. However, exponential attenu-
ation in optical fibers fundamentally limits the range of direct
quantum communication techniques �2�, and extending them
to long distances remains a conceptual and technological
challenge.

In principle, the limit set by photon losses can be over-
come by introducing intermediate quantum nodes and utiliz-
ing a so-called quantum repeater protocol �3�. Such a re-
peater creates quantum entanglement over long distances by
building a backbone of entangled pairs between closely
spaced quantum nodes. Performing an entanglement swap at
each intermediate node �4� leaves the outer two nodes en-
tangled, and this long-distance entanglement can be used to
teleport quantum information �5,6� or transmit secret mes-
sages via quantum key distribution �7�. Even though quan-
tum operations are subject to errors, by incorporating en-
tanglement purification �8,9� at each step, one can extend
entanglement generation to arbitrary distances without loss
of fidelity in a time that scales polynomially with distance
�3�. This should be compared to direct communication,
which scales exponentially, making it impractical for long
distances.

Several approaches for physical implementation of a
quantum repeater protocol have been proposed. Early work
was based on systems of several atoms trapped in high-
finesse optical cavities �10–12�. Such systems can form a
quantum network with several quantum bits �qubits� per
node and are particularly suitable for efficient implementa-
tion of the pioneering proposal of Ref. �3�. In this approach,
quantum communication over 1000 km distances requires

approximately seven quantum bits per node, which must be
coherently coupled to perform local quantum logic
operations—i.e., a seven-qubit quantum computer. The spe-
cific implementation of these early ideas involved the tech-
niques of cavity QED for interfacing stationary and photonic
qubits and for performing the necessary quantum logic op-
erations �13,14�. Recent related work pointed out that long-
distance entanglement can be implemented via probabilistic
techniques without the use of ultrahigh-finesse cavities
�11,12�, while local operations can be accomplished via
short-range interactions involving, e.g., interacting trapped
ions. However, few-qubit registers are still technically very
difficult to construct, and the difficulty increases drastically
with the number of qubits involved. At the same time, an
approach based on photon storage in atomic ensembles �15�
and probabilistic entanglement is also being actively ex-
plored. In comparison with systems based on many-qubit
nodes, this approach offers less error tolerance and requires a
longer communication time. Realization of a robust, practical
system that can tolerate all expected errors remains therefore
a challenging task.

In a recent paper �16� we proposed a quantum repeater
protocol which could be implemented using the electronic
and nuclear degrees of freedom in single-photon emitters.
Here we present further details of the proposal described in
Ref. �16�, and we compare our methods to alternative strat-
egies. We show that our repeater protocol requires only two
effective quantum bits at each node. This is the minimum
requirement on physical resources which still allows active
error correction. As a specific implementation, we consider
nodes formed by a single-quantum emitter with two internal
degrees of freedom. A pair of electronic spin sublevels al-
lows for state-selective optical excitation �see inset in Fig.
1�a��, and a proximal nuclear spin provides an auxiliary
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memory. State-selective fluorescence is used for probabilistic
entanglement generation between electronic spin degrees of
freedom. We analyze in detail and compare several ap-
proaches for probabilistic entanglement generation, focusing
on the feasibility of their implementation using realistic pho-
ton emitters. Once electronic spin entanglement is generated,
the coupled electron and nuclear spin at each node can be
used to efficiently implement entanglement swapping and
purification. We show that these techniques can be combined
to generate high-fidelity entanglement over arbitrarily long
distances. We present a specific protocol that functions in
polynomial time and tolerates percent-level errors in en-
tanglement fidelity and local operations.

Our approach is stimulated by recent experimental
progress in single-photon generation by means of single-
quantum emitters, including atoms and ions as well as impu-
rities and nanostructures in solid-state devices. Although our
approach is relevant to atomic systems, such as single atoms
trapped in a cavity �17� or single trapped ions �12�, it is
particularly suitable for implementation with solid-state

emitters—for example, impurity color centers �18,19� and
quantum dots �20,21�. These devices offer many attractive
features including optically accessible electronic and nuclear
spin degrees of freedom, potential optoelectronic integrabil-
ity, and fast operation.

The paper is organized as follows. First, we will discuss
techniques for entanglement generation. For clarity, we will
present our results in the context of nitrogen-vacancy �NV�
centers in diamond and discuss alternative implementations
at the end. Realistic imperfections, such as homogeneous
broadening and limited selection rules, motivate an entangle-
ment generation scheme based on state-selective Rayleigh
scattering and interferometry. We calculate the success prob-
ability and entanglement fidelity for this scheme as imple-
mented in NV centers and compare this scheme to alternative
schemes based on Raman scattering or optical � pulses, with
success conditioned on detection of one or two photons.
Next, we will show how hyperfine coupling between the
electron spin and proximal nuclei permits entanglement
swapping and purification. Performing these operations in
parallel and employing a nesting scheme, we calculate the
fidelity obtained and the time required to generate it as a
function of distance. In addition, we compare this scheme to
the pioneering proposals �3,15� for fault-tolerant quantum
repeaters. Finally, we quantitatively discuss the feasibility of
implementing a quantum repeater using NV centers and elu-
cidate alternative material systems which satisfy the require-
ments of our technique.

II. ENTANGLEMENT GENERATION

The initial step in our scheme is entanglement generation
between the electron spins of two emitters separated by a
distance L0. In principle, entanglement can be generated
probabilistically by a variety of means—e.g., Raman scatter-
ing �13,22,23� or polarization-dependent fluorescence �12�.
However, solid-state emitters often do not exhibit appropri-
ate selection rules, and for our repeater protocol it is essential
that the optical transition be independent of the nuclear spin
state. Specifically, as illustrated below, solid-state emitters do
not always allow Raman scattering or polarization-dependent
fluorescence which fulfills the latter requirement. We there-
fore consider an entanglement mechanism based on state-
selective elastic light scattering as shown in Fig. 1. Elastic
light scattering places few restrictions on selection rules and
permits nuclear-spin-independent fluorescence as we discuss
below.

A. Properties of single-color centers

Our entanglement generation scheme is applicable to a
wide variety of physical systems, requiring only the simple
level structure illustrated in Fig. 1�a�. For clarity, we will
present it first using a concrete example: the nitrogen-
vacancy center in diamond, which has the specific level
structure shown in Fig. 2. This example illustrates many ge-
neric features common to other solid-state emitters.

NV centers represent a promising physical system be-
cause of their strong optical transition around 637 nm and

FIG. 1. �Color online� �a� Generic level structure showing the
state-selective optical transitions and electronic spin sublevels re-
quired for entanglement generation. �b� Setup used to create en-
tanglement. The two emitters act as state-dependent mirrors in an
interferometer. The outputs of the cavities �a1 and a2� are combined
on a beam splitter. By proper alignment of the interferometer the
photons always exit through the �a1+a2� /�2 port if both centers are
in the scattering state �0�. A detection of a photon in the �a1

−a2� /�2 mode thus leads to an entangled state. �c� Scheme for
balancing the interferometer. Each node is optically excited by a
laser pulse which first reflects off the other node, so that the optical
path lengths for the two excitation-emission paths are identical.
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optically accessible electron spin states. In particular, the
ground state �A1 symmetry class of the C3v group� has three
electronic spin states which we label �−1�, �0�, and �1� ac-
cording to their spin angular momentum along the symmetry
axis of the defect �Ms�. Spin-orbit and spin-spin effects lead
to a splitting of �0� from �±1� by 2.88 GHz. Since we only
require two electronic spin states �0� and �1�, we isolate these
two states from the �−1� state by either adding a small mag-
netic field to shift the energy of the �±1� state or by using
appropriately polarized electron-spin-resonance �ESR�
pulses. As spin-orbit and spin-spin effects are substantially
different for the optically excited state �E symmetry class�,
the strong transition from the Ms=0 sublevel of the ground
orbital state can be excited independently of the other Ms
states. Although there is evidence for photobleaching at low
temperatures, current models indicate that crossover into the
dark metastable state occurs primarily from the Ms= ±1 ex-
cited states �24�. Furthermore, crossover into the trapping
state is a detectable error. In the repeater protocol described
below we perform a series of measurements on the electronic
spin. During these measurements, the dark state will not pro-
duce any fluorescence, revealing the error. Shelving into the
metastable state will thus influence the time �see the Appen-
dix� but not the fidelity associated with the repeater protocol.
Consequently, we assume that we are only near resonance
with a single state �e� which has Ms=0 and neglect pho-
tobleaching effects.

The electron spin degree of freedom suffices to generate
entanglement between adjacent NV centers. To propagate en-
tanglement to longer distances, we will make use of an aux-
iliary nuclear degree of freedom ��↑�,�↓�	 which will be used
for storage of quantum information during the repeater pro-
tocol. In NV centers, this nuclear degree of freedom can arise
from a nearby carbon-13 impurity or directly from the
nitrogen-14 atom that forms the center. The large energy
separation between the �0� and �±1� states exceeds the hy-
perfine interaction by an order of magnitude, decoupling the
nuclear and electronic spins. The energy levels can thus be
described by product states of the two degrees of freedom.
Furthermore, in states with Ms=0, the energy is independent
of the nuclear state, resulting in the optical transition be-
tween �0� and �e� being disentangled from the nuclear spin
state. In the �1� state there is a strong hyperfine interaction
between the electronic and nuclear spin state. By multiplex-
ing two ESR pulses of different frequencies when doing the
operations on the electronic spin and using rf-NMR pulses
for the manipulation of nuclear spin states �see Fig. 2�, the
hyperfine splitting can be compensated for by going to a
rotating frame. Consequently, the nuclear spin can be used to
store entanglement while the �0�− �e� transition is used to
generate another entangled pair of electron spins.

B. Entanglement protocol

To implement the entanglement scheme, each NV center
is placed inside a photonic cavity, whose output is coupled to
a single-mode photonic fiber �note, however, that cavities are
not essential for this proposal; see below�. Fibers from adja-
cent NV centers enter two ports of a beam splitter, and en-
tangled electron spin pairs are obtained conditional on detec-
tion of a photon in an outgoing arm of the beam splitter �see
Fig. 1�b��.

Specifically, our protocol for entanglement generation re-
lies on scattering on the closed optical transition between �0�
and �e�. This scattering does not change the state of the NV
center; the centers essentially act as mirrors reflecting the
light only if they are in the state �0�. We assume that each of
the centers is initially prepared in the state ��0�+ �1�� /�2, so
that the total state is

��ini� =
1

2
��00� + �11�� +

1

2
��01� + �10�� . �1�

Since there is no light scattering from state �1�, we can ex-
clude the �11� component if we detect any scattered photons.
In state �00�, both centers act as mirrors, so that by balancing
the interferometer in Fig. 1�b� we can arrange for the photons
to leave through a specific port D+. A photon detection in the
opposite port D− can thus only arise from the �01� and �10�
states and produces an entangled superposition of these two
states.

Balancing and stabilizing an interferometer over tens of
kilometers as required for the implementation of this proto-
col represents a considerable challenge, but recent experi-
ments have demonstrated stabilization beyond the require-
ments of the present proposal �25,26�. Alternatively, by using
a method analogous to the plug-and-play system used in the

FIG. 2. �Color online� The relevant electronic and nuclear states
of the coupled NV center and 13C impurity nuclear spin. The elec-
tron spin states can be coupled by ESR microwave fields near
2.88 GHz, while the nuclear spin states can be addressed by NMR
pulses on the 130-MHz hyperfine transition. A laser applied on
resonance with the Ms=0 optical transition produces strong fluores-
cence for the entanglement scheme, but it only weakly excites the
Ms= ±1 transitions, because of the large detuning �1. The optically
excited �Ms=0� state decays at a rate � and the optical transition has
an inhomogeneous broadening � caused by fluctuations ��t� in the
energy of the excited state. In our model we also assume that only
the Ms= ±1 states decay to the shelving state �W� at rate �S.
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quantum key distribution �27�, we can reduce this require-
ment to stabilization of a small interferometer locally at each
detector. Suppose that we wish to generate entanglement be-
tween repeater nodes R1 and R2. Employing fast optical
switches, we excite R1 by sending a pulse of light toward R2,
where the light is reflected and sent past the detector to R1.
Light emitted from R1 follows the same path back to the
detector. Similarly, we excite R2 by sending a pulse of light
toward a fast switch at R1. The two paths thus cover the same
path length between the nodes, and we are insensitive to
fluctuations in the path lengths as long as these fluctuations
happen on a time scale which is longer than the time it takes
for the pulses to travel between the stations. Alternatively
one could change to a protocol which relies on the detection
of two photons instead of one. In such protocols the sensi-
tivity to changes in the path lengths can be reduced consid-
erably �28–30�.

C. Entanglement fidelity in the presence of homogeneous
broadening

We now describe this process mathematically, calculating
the fidelity of the entangled pair produced by our protocol, as
well as the probability for it to succeed. Our analysis incor-
porates dominant sources of error in solid-state systems; in
particular, we account for effects of broadening of the optical
transition. Such broadening can be divided into two parts: an
inhomogeneous broadening representing different mean en-
ergy splittings between different centers and a homogeneous
broadening representing the fluctuations of the energy split-
ting in time. The inhomogeneous broadening can be removed
by carefully choosing center with similar properties or by
tuning the resonance frequency with external fields. Below
we shall therefore only consider the homogeneous broaden-
ing.

Our model assumes that the NV centers are excited by a
weak driving field applied between the states �0� and �e� with
Rabi frequency � and the excited states decay with a rate �.
To describe the effect of an additional broadening � on the
optical transition, we assume that the energy of the excited
level fluctuates with a characteristic time which is slow com-
pared to the optical frequency and much shorter than the
lifetime of the excited state. In this approximation the broad-
ening can be described by including a time-dependent detun-
ing ��t� with white-noise characteristics: 
��t��
=0, 
��t���t���=���t− t��. Below we shall be working in the
limit of weak driving, ���+�. In this limit the light emit-
ted from a center consists of two contributions: �i� a coherent
part centered around the frequency of the driving laser with a
width given by the width of the driving laser and �ii� an
incoherent part centered around the frequency of the transi-
tion with a frequency width of �+�. The relative weight of
these two contributions is � :�. With considerable broaden-
ing of the optical transition �	� it is therefore essential to
filter out the incoherent scattered light with a frequency filter
to get a high fidelity. To filter out the incoherent light and
obtain a high collection efficiency we assume that the centers
interact with an optical cavity with a coupling constant g and
a decay rate 
. We emphasize, however, that good cavities

are not essential for our proposal: we only require sufficient
collection efficiency and frequency selectivity, which could
also be obtained by collecting the light with a lens and send-
ing it through a narrow frequency filter. In general the weak
drive may be detuned from the excited state, which would
simplify the filtering of coherent from incoherent light. How-
ever, off-resonant excitation would require a stronger driving
field, making it harder to avoid stray light reaching the de-
tectors. For simplicity we only discuss the situation where,
on average, the driving field and cavity mode are resonant
with the center.

The combined NV-center cavity system is then described
by the Hamiltonian

H = ��t��e�
e� +
�

2
��0�
e� + �e�
0�� + gĉ†�0�
e� + g�e�
0�ĉ ,

�2�

where ĉ is the photon annihilation operator for the field in the
cavity. In the Heisenberg picture, decay terms can be in-
cluded by considering the quantum Langevin equations of
motion for the atomic operators �̂ij = �i�
j�,

dĉ

dt
= −




2
ĉ − ig�̂0e + F̂c, �3�

d�̂0e

dt
= �−

�

2
− i��t���̂0e + i�gĉ +

�

2
���̂ee − �̂00� + F̂0e,

�4�

d�̂ee

dt
= − ��̂ee + �i��

2
+ gĉ†��̂0e + H.c.� + F̂ee, �5�

where the noise F̂c is the incoming vacuum noise leading to

cavity decay at rate 
 and the other noise operators F̂0e and

F̂ee represent the effect of other optical modes that lead to
decay.

We obtain an appropriate solution to the quantum Lange-
vin equations by noting that, in the limit of weak driving,
���, there is virtually no population of the excited state,
�̂00− �̂ee
 �̂00. The solution can then be written in the form
ĉ=��̂00+noise and �̂0e=
�̂00+noise, but the equations for
the proportionality constants � and 
 are complicated due to
the noise ��t�. By averaging the Langevin equations over the
noise, one can find simple equations for the steady-state mo-
ments of � and 
:

�̄ =
− 2g�


�� + ���1 + 4g2/
�� + ���
, �6�

���2 =

4g2�2


2�� + ��2

�1 +
4g2


�� + ����1 −
�


�� + ���� + 
�
+

4g2


�� + ���
,

�7�
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̄ =
− i�

�� + ���1 + 4g2/
�� + ���
. �8�

Note that in the presence of homogeneous broadening �
�0, the moments do not factor, ���2� ��̄�2, signifying inco-
herent scattering of light into the cavity.

We now apply the entanglement generation protocol and
use our mathematical model to predict the average density
matrix components of the NV-center electron spins. In our
scheme, we combine the output of the two cavities on a
beam splitter and select the desired entangled state by con-
ditioning on a click in detector D−, described by the photon

annihilation operator d̂−=��
 /2�ĉ1− ĉ2�. Here, subscripts 1
and 2 refer to the two NV centers we are trying to entangle,
� is the total collection and detection efficiency for photons
leaving the cavity, and we have omitted the contribution
from vacuum noise operators. To describe the effect of the
detection, we use the quantum jump formalism �31�. If the
system starts out in state ��init�, the density matrix element
�i,j at time t can be found by

�i,j�t� = 
�init�d̂−�t�†�j�
i�d̂−�t���init��t/�P , �9�

where the time argument t is included to emphasize the time-
dependent Heisenberg operators and where �P is the prob-
ability to have a click during a time �t,

�P = 
�init�d̂−�t�†d̂−�t���init��t . �10�

Our entanglement generation scheme relies on interfer-
ence to eliminate D− detection events coming from the initial
state �00�. However, according to our formalism, if we start
out in an initial state �00�, the probability to have a click is
given by

�P = �t
00�d̂−
†d̂−�00� = 
��t����2 − ��̄�2� , �11�

where we assume the noise is independent for the two cen-
ters. This expression vanishes only for coherent scattering of
light into the cavity—i.e., ���2= ��̄�2 or �=0. In the presence
of broadening, there is a finite probability that light will be
detected from the �00� state. Similarly, ��0 leads to a finite
probability for incoherent scattering from �01� and �10�. Ho-
mogeneous broadening thus reduces the fidelity �F
= 
�ideal����ideal�� �where ��ideal� denotes the ideal entangled
state� by

1 − F =
3

2
�1 −

��̄�2

���2
� =

3

2

�

� + �




� + 


1

1 + 4g2/
�� + ��
.

�12�

Here we are interested in the limit where the fidelity is close
to unity and we shall therefore assume ���2
��̄�2 in the cal-
culation of other noise sources below.

D. Other errors

In addition to the error caused by homogeneous broaden-
ing, there is also a reduction in fidelity caused by multiple
emission events from the centers. This fidelity can conve-
niently be expressed in terms of the total emission probabil-
ity

Pem =
t0�2

�� + ���1 + 4g2/
�� + ���
, �13�

where t0 is the duration of the applied laser pulse. In the
absence of homogeneous broadening, multiple excitations re-
sult in a fidelity

F =
1

2
+

e−Pem�1−�/2�

2
�14�

and success probability

P = �1 − exp�− �Pem/2��/2. �15�

The total collection efficiency can be expressed as �=�Pcav
with the probability to emit into the cavity given by

Pcav =
4g2/
�� + ��

1 + 4g2/
�� + ��
. �16�

This treatment has neglected the possibility of distin-
guishing multiple-photon detection events. If our detector
can resolve the photon number, we can use the information
to improve our protocol. In particular, a detection in the

mode described by d̂+=��
 /2�ĉ1+ ĉ2�+noise has no effect
on the component of Eq. �1� that we are interested in, since
d+��01�+ �10��� ��01�+ �10��. Furthermore, a detection in this
plus mode contains contributions from �00�, so it yields no
useful information. On the other hand, detection events in the

mode described by d̂− change the sign of the superposition

state, since d̂−��01�+ �10��� ��01�− �10�� and d̂−��01�− �10��
� ��01�+ �10��. Consequently, the optimal strategy is to
change the phase of the entangled state when an even num-
ber of photons is detected. The resulting fidelity is

F =
1

2
+

e−Pem�1−��

2
. �17�

Finally, we must include the effect of two other sources of
noise: dark counts and electron spin dephasing. In the limit
of small success probability P, the dark count introduces an
incoherent admixture of the initial state into the resulting
density matrix and thus leads to a reduction in fidelity by
Pdark / P, where Pdark=�dct0 is the dark-count probability.
Electron spin dephasing makes the state decay towards a
state with fidelity 1 /2 at a rate 2�e, yielding a reduction in
the fidelity of �e times the total time of the experiments.
Typically, this total time will be dominated by the classical
communication time between nodes, tc.

Putting these considerations together, we find that the en-
tanglement scheme succeeds with probability P= �1/2��1
−e−Pem�/2�
�Pem/4, producing the state ��−�= ��01�
− �10�� /�2 in time T0
�t0+ tc� / P with fidelity

F0 =
1

2
�1 + e−Pem�1−��� − �e�t0 + tc� − �dc

t0

P

−
3

2

�

� + �





 + �

1

1 + 4g2/
�� + ��
. �18�
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For realistic emitters placed into a cavity with either a nar-
row linewidth 
�� or a large Purcell factor 4g2 / �
��+���
�1, the first two terms should dominate the error.

III. COMPARISON TO OTHER ENTANGLEMENT
GENERATION SCHEMES

The entanglement generation scheme that we have pre-
sented so far is the scheme that we believe to be best suited
to NV centers. For other systems, this may not be the case. In
particular, the presented scheme has two primary drawbacks:
�1� it relies on resonant scattering, making it difficult to filter
fluorescence photons from the applied laser field; �2� to
avoid loss of fidelity from incoherent scattering, one must
detect only a narrow frequency interval in the scattered light.
Other entanglement methods present different problems
which may prove easier to resolve or other methods may be
better suited for different physical systems. Consequently,
we now briefly compare the resonant scattering scheme pre-
sented above to alternate techniques.

A. Raman transitions

One of the first schemes considered for probabilistic en-
tanglement generation �13,22,23� used Raman transitions in
three-level atoms. In such schemes, an electron spin flip be-
tween nondegenerate ground states �0� and �1� is associated
with absorption of a laser photon and emission of a fre-
quency shifted Raman photon. After interfering the emission
from two atoms, detection of a Raman photon projects the
two-atom state onto a state sharing at least one flipped spin.
To avoid the possibility that both atoms emitted a Raman
photon, the emission probability must be quite small, Pem
�1. In this limit, a photon detection event in detector D±
results in an entangled spin state ��±�= ��01�± �10�� /�2.

The Raman scheme can be implemented using either a
weak drive between states �1� and �e� or with a short strong
pulse which puts a small fraction of the population into �e�.
Since the latter is equivalent to the single-detection �-pulse
scheme discussed below, here we consider only weak driv-
ing. The system can now be treated using the quantum-
Langevin–quantum-jump approach formulated above. As be-
fore, homogeneous broadening on the optical transition leads
to an incoherent contribution to the Raman-scattered light,
which reduces the entanglement fidelity in a manner similar
to Eq. �12�. Again, for optimal fidelity the coherent part
should be isolated with a narrow frequency filter. If we as-
sume perfect filtering and a small collection efficiency �
�1, the fidelity conditioned on a click is given by

F = 1 − Pem, �19�

with success probability P= Pem�.
In the limit of large fidelity F
1, the Raman scheme has

a success probability which is a factor of 4 higher than for
our interferometric scheme. Furthermore, the Raman scheme
has the advantage that stray light may be spectrally filtered
from the Raman photons. Nevertheless, because of the hy-
perfine interaction in state �1�, the transition frequency from
�1� to �0� depends on the nuclear spin state. The associated

detrimental effect on the nuclear coherence could potentially
be avoided by using simultaneous transitions from �1� �↑� and
�−1��↓ �, which are degenerate. To our knowledge, however,
fluorescence between �e� and �1� has not be observed, making
it uncertain whether the Raman scheme can be implemented
for the NV centers.1

B. � pulses

Time-gated detection offers an alternate method for dis-
tinguishing scattered photons from stray incident light. If an
atom or NV center is excited by a sufficiently short, strong
laser pulse, its population is coherently driven into the ex-
cited state. The excited state �e� then decays on a time scale
1 /�. When the decay time is much longer than the incident
pulse length, the excitation light and the photon emitted from
the atom are separated in time and can thus be distinguished.
Entanglement is then generated conditional on the detection
of one or two photons, as elucidated below.

1. Single detection

One particularly simple method for generating entangle-
ment using � pulses begins with each atom in a state

cos����1� + sin����0� . �20�

The incident � pulse excites the optically active state �0� to
�e� with unit probability, and the spontaneously emitted pho-
tons are interfered with on a beam splitter and subsequently
measured �as for the Raman scheme above�. Provided �
�1 we can ignore the possibility that both atoms are in state
�0�. A photon detection in D± excludes the state �11�, prepar-
ing the system in ��±�.

As with other entanglement schemes, high-fidelity en-
tanglement generation requires filtering the incoherent scat-
tering caused by homogeneous broadening of the optical
transition. In previous sections, we have proposed to use a
frequency filter to separate the narrow peak �in frequency� of
coherent scattered light from the broad incoherent back-
ground. In the present case, filtering can be done in the time
domain. In the excitation process a coherence is established
between �1� and �e�, and following the excitation this coher-
ence �the off-diagonal density matrix element� decays at a
rate � /2. By only conditioning on photons emitted a very
short time after the excitation, during which the coherence
has not had time to decay, a high-quality entangled pair is
produced.

To describe this process mathematically, we again assume
that the atom is placed inside an optical cavity. In contrast to
our previous calculations, we assume that the cavity has a
broad linewidth to ensure that generated photons leave the
system as fast as possible. In the limit 
�g, �, and � we can
adiabatically eliminate the cavity by setting dĉ /dt=0 in Eq.
�3� so that, if we omit the noise, we obtain

1Raman transitions have been observed in a strong magnetic field
by using the hyperfine interaction to mix the �0� and �1� states, but
since such mixing involves the nuclear degree of freedom, it is not
applicable in the present context.
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ĉ�t� =
2ig



�̂0e. �21�

Inserting this expression into Eqs. �4� and �4� we find

�̂0e�t� = �̂0e�t = 0�exp�−
�eff + �

2
t� , �22�

�̂ee�t� = �̂ee�t = 0�exp�− �efft� , �23�

where the effective decay rate �eff is the decay rate enhanced
by the Purcell effect:

�eff = ��1 +
4g2


�
� . �24�

To find the fidelity of the entangled state created with this
method we again use Eqs. �9� and �10�. For simplicity we
only work in the limit of small collection efficiency, ��1.
Conditioned on a click at time t after the excitation, the fi-
delity of the entangled state is

F = cos2����1

2
+

1

2
e−�t� �25�

and the probability to have a click during the short time
interval from t to t+�t is

�P = 2��eff�t sin2���e−�efft, �26�

where the collection efficiency �=�Pcav is again given by the
collection efficiency for the light leaving the cavity � and the
probability to emit into the cavity is now given by

Pcav =
4g2/
�

1 + 4g2/
�
. �27�

The success probability for a given fidelity now depends
on the ratio between the broadening and the effective decay
rate � /�eff. For �=0, the procedure of initially transferring
population from �1� to �0� and then applying a � pulse be-
tween �0� and �e� is equivalent to a Raman transition, and
Eqs. �25� and �26� indeed reproduce the same relation be-
tween success probability and fidelity given in Eq. �19�. In
the limit of small broadening, ���eff, the �-pulse scheme is
advantageous over the interferometric scheme presented first.
In particular, for a fixed fidelity F
1 the success probability
is a factor of 4 higher.

In the presence of broadening, however, the situation is
different. To obtain a high fidelity we should detect only
photons emitted within a short time T following the excita-
tion. The average fidelity will then depend on two parameters
� and T. By optimizing these two parameters we find that for
F
1 the fidelity is

F = 1 −� �

8�eff
�P

�
. �28�

Since previous expressions �14� and �19� for 1−F depended
linearly on P, this represents a much faster decrease in the
fidelity. The �-pulse scheme is thus less attractive for homo-
geneously broadened emitters.

2. Double detection

If the collection efficiency is very high, it may be an
advantage to rely on the detection of two photons instead of
one �28,29,32,33�. In this scheme, both atoms are initially
prepared in ��0�+ �1�� /�2 and a � pulse is applied between
�0� and �e�. Following a detection in D± the populations in
states �0� and �1� are interchanged and another � pulse is
applied between �0� and �e�. Conditioned on clicks following
both � pulses we can exclude the possibility that the atoms
were initially in the same state and we are left with ��±�
conditioned on appropriate detector clicks. In the absence of
homogeneous broadening, this protocol produces an en-
tangled state with fidelity F=1 with probability P=�2 /2. The
double-detection scheme thus avoids the multiple-photon
emission errors inherent in the single-detection schemes.

With broadening of the optical transition, this is no longer
the case. For F
1, the relation between fidelity and success
probability is now given by

F = 1 −
�

�eff�
�2P . �29�

Again the fidelity decreases more rapidly with the success
probability than for the Raman and resonant scattering
scheme, making it less useful for our purpose.

C. Summary

The best choice of scheme depends on the specific physi-
cal situation. The two �-pulse schemes are advantageous if
the broadening is negligible. In particular in the limit where
we can ignore all errors except the photon attenuation, the
double-detection scheme results in the highest-fidelity en-
tangled pair. With low collection efficiency or large distances
between emitters, the double detection will have a very small
success probability because of the �2 factor, and it may be
advantageous to rely on a single-detection scheme.

The �-pulse schemes are less attractive if we are limited
by homogeneous broadening of the optical transition because
the fidelity decreases rapidly with the success probability.
Better results are obtained for the resonant scattering or Ra-
man schemes. When possible, the Raman scheme offers the
best solution. The frequency-shifted Raman scattering allows
frequency filtering of the incoming light; in addition, the
success probability is 4 times higher than for the resonant
scattering scheme. But as mentioned above, it is not always
possible to drive Raman transitions, and it may be hard to
achieve Raman transition which are independent of the
nuclear spin state. For this reason we believe that the reso-
nant scattering scheme is most promising in the particular
case of NV centers.

Finally we wish to add that the calculations we have per-
formed here assume a specific model for the broadening
�short correlation time for the noise�. With other broadening
mechanisms—e.g., slowly varying noise—these consider-
ations will be different.

IV. ENTANGLEMENT SWAPPING AND PURIFICATION

Using one of the procedures outlined above, electron spin
entanglement can be generated between adjacent pairs of
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nodes. We now discuss a means to extend the entanglement
to longer distances.

A. Swapping

After entangling nearest-neighbor electron spins, the elec-
tron spin state is mapped onto the auxiliary nuclear spin
qubit for long-term storage using the hyperfine interaction.
This operation leaves the electronic degree of freedom avail-
able to generate entanglement between unconnected nodes,
as illustrated in Fig. 3. By combining optical detection of
individual electron spin states �34� and effective two-qubit
operations associated with hyperfine coupling of electronic
and nuclear spins �35�, we may projectively measure all four
Bell states in the electronic-nuclear manifold associated with
each emitter. The outcomes of the Bell state measurements
reveal the appropriate local rotations to obtain a singlet state
in the remaining pair of nuclear spins, implementing a deter-
ministic entanglement swap �4,5�. By performing this proce-
dure in parallel and iterating the process for N� log2�L /L0�
layers, we obtain the desired nuclear spin entanglement over
distance L in a time �L log2�L /L0�.

B. Purification

To extend entanglement to long distances in the presence
of errors, active purification is required at each level of the
repeater scheme. By performing local operations and mea-
surements, it is possible to distill multiple entangled pairs
with fidelity above some threshold Fmin into a single en-
tangled pair with higher purity �8,9�. The purification algo-
rithm we use is described in detail in Refs. �3,9,36,37�. For
clarity we will present it in a form appropriate to the system
under consideration, which uses repeated generation of
electron-spin-entangled pairs to purify a stored nuclear-spin-
entangled pair. Specifically, an electron-spin-entangled pair
between stations i and j is described by the density matrix
diagonal components �ae ,be ,ce ,de	 in the Bell-state basis
���−� , ��+� , ��−� , ��+�	, where

��±�ij
�e� =

1
�2

��0i1 j� ± �1i0 j�� , �30�

��±�ij
�e� =

1
�2

��0i0 j� ± �1i1 j�� . �31�

We will refer to these diagonal elements as the “vector fidel-
ity” Fe= �ae ,be ,ce ,de	, noting that the first element �Fe�1

=ae encodes the fidelity with respect to the desired singlet
state. A nuclear-spin-entangled pair between those stations is
described by a similar vector fidelity Fn= �an ,bn ,cn ,dn	 in
the nuclear Bell basis:

��±�ij
�n� =

1
�2

��↓i↑ j� ± �↑i↓ j�� , �32�

��±�ij
�n� =

1
�2

��↓i↓ j� ± �↑i↑ j�� . �33�

The purification protocol calls for a local rotation of each
spin system at both locations,

�0�i,j →
1
�2

��0�i,j + i�1�i,j� , �34�

�1�i,j →
1
�2

��1�i,j + i�0�i,j� , �35�

�↓�i,j →
1
�2

��↓�i,j + i�↑�i,j� , �36�

�↑�i,j →
1
�2

��↑�i,j + i�↓�i,j� , �37�

followed by a two-qubit gate at each location,

�↓0�i → �↓0�i, �↓0� j → �↓1� j ,

�↓1�i → �↓1�i, �↓1� j → �↓0� j ,

�↑0�i → − �↑1�i, �↑0� j → �↑0� j ,

�↑1�i → − �↑0�i, �↑1� j → �↑1� j . �38�

After these operations, the electron spin is projectively mea-
sured at both locations. When the two electron spins are in
the opposite state, the purification step succeeds, mapping
the remaining nuclear spins to a diagonal state �an� ,bn� ,cn� ,dn�	
with an��an.

For the particular entanglement protocol we considered in
Sec. II, the first two terms in Eq. �18�, which we expect to be
dominant, introduce phase errors of the form �f ,0 ,0 ,1− f	.
This purification protocol above is therefore chosen so that it
functions best for phase errors, but it can correct for any type
of errors. To quantify the type of error associated with our
entanglement generation scheme, we define a shape param-
eter � such that the vector fidelity for entangled spin pairs
between adjacent nodes is

F0 = �F0,�1 − F0��,�1 − F0��,�1 − F0��1 − 2��	 . �39�

Note that �→0 corresponds to phase errors while �→1/3
corresponds to a Werner state with equal distribution of all

FIG. 3. �Color online� Entanglement propagation by swapping.
To generate an entangled nuclear spin pair �black �top� circle� over
the distance Ln+1=2Ln+L0, we first generate nuclear entanglement
over the first and second pairs of repeater stations which are dis-
tance Ln apart. The electron spin �red �bottom� circle� is then used
to generate entanglement between the middle stations, separated by
distance L0. Nuclear �electron� spin entanglement is illustrated by
solid �dashed� lines. Entanglement swapping is performed by mea-
suring in the Bell-state basis of the two-qubit system.
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error types. Note also that the assumption of diagonality im-
poses no restriction on the entangled states we generate, as
any off-diagonal elements in their density matrices can be
eliminated by performing random rotations �similar to the
procedure for creating Werner states but without the symme-
trization step� �37�. Furthermore, even without a randomiza-
tion step, the average fidelity is determined by the diagonal
elements �9�.

C. Errors

In the presence of local errors in measurements and op-
erations, the purification and swap procedures deviate from
their ideal effect. To describe this we use the error model
described in �36�. Measurement errors are quantified using a
parameter � such that measurement projects the system into
the desired state with probability � and into the incorrect
state with probability 1−�. For example, a projective mea-
surement of state �0� would be

P0 = ��0�
0� + �1 − ���1�
1� . �40�

Errors in local operations are accounted for in a similar man-
ner. With some probability p, the correct operation is per-
formed; otherwise, one traces over the relevant degrees of
freedom in the density matrix and multiplies by the identity
matrix �for further details see �36� and references therein�.
For example, the action of a two qubit operation Uij would
become

Uij�Uij
† → pUij�Uij

† +
1 − p

4
Trij��� � Iij . �41�

In our calculations, we neglect errors in single-qubit opera-
tions and focus on two-qubit errors, which are likely to yield
the dominant contribution.

These errors determine the level of purification which is
possible given infinitely many purification steps. They also
determine how much the fidelity degrades during the en-
tanglement swap procedure. Below we describe a repeater
protocol which compared to the original proposal �3� reduces
the required number of qubits at each repeater station at the
expense of extra connection steps. Owing to these extra con-
nection steps, our protocol is slightly more sensitive to local
errors than the original scheme.

D. Nesting scheme

Previous proposals for fault-tolerant long-distance quan-
tum communication have required larger and larger numbers
of qubits at each node as the communication distance is in-
creased. Here we describe a nesting scheme which can be
used to communicate over arbitrarily long distances while
maintaining a constant requirement of only two qubits per
node.

The scheme for nested entanglement purification is illus-
trated in Fig. 4. For clarity, we will label purified pairs by A,
pairs to be purified by B, and auxiliary pairs used to perform
purification by C. Briefly, an entangled pair �B� is stored in
the nuclear spins while an auxiliary entangled pair �C� is
generated in the electron spins. The purification protocol de-

scribed in �9,36� is then performed by entangling the electron
and nuclear spins via the hyperfine interaction and subse-
quently measuring the electron spins. Comparison of the
measurement outcomes reveals whether the purification step
was successful, resulting in a new stored pair B with higher
fidelity. After successfully repeating the procedure for m pu-
rification steps �a technique known as “entanglement pump-
ing”�, the stored pair becomes a purified �A� pair, which can
then be used to create B and C pairs over longer distances.
We may thus generate and purify entanglement to arbitrary
distances. This procedure is analogous to the proposal in Ref.
�3�, but avoids the increase in the number of qubits required
for that proposal.

Mathematically, the scheme can be explained most easily
using inductive arguments. Suppose that we have a means to
create and purify entanglement over 2 ,3 , . . . ,n /2 repeater

FIG. 4. �Color online� Nesting scheme for generation and puri-
fication of entangled nuclear and electron spin pairs. In each node,
the nuclear spin degree of freedom is represented by the upper
�black� circle, while the electron degree of freedom is represented
by the lower �red� circle. Entanglement between different nodes is
represented by a line connecting them. Ovals represent entangle-
ment swap steps, and rectangles represent entanglement purification
steps. For n=2 the B and C pairs may be directly generated. For
n�3, the first step illustrates how the B pair is generated, while the
remaining two steps illustrate how the C pair is generated while
storing the B pair. The arbitrary distance algorithm works for n
�6.
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stations ��n+1� /2 if n is odd� and that we know the vector
fidelity FA�n� and the time TA�n� required for each distance.
We can then determine the time required and the vector fi-
delity possible after purification over n repeater stations.

We begin by creating two purified nuclear spin A pairs
over half the distance and connecting them via a central elec-
tron spin pair of vector fidelity F0. In the presence of local
errors, this yields a nuclear spin B pair with vector fidelity

FB�n� = C��FA�n

2
�,F0,FA�n�

2
��,�,p� . �42�

Here, C gives the vector fidelity obtained upon connecting
the entangled pairs in the presence of local errors �37� and
n /2 and n� /2 are understood to represent �n−1� /2 and �n
+1� /2 when n is odd. The B pair is created in a time

TB�n� = 1.5TA�n�

2
� + T0 +

n�

2
tc, �43�

where T0 is the time required to generate nearest-neighbor
entanglement and tc is the classical communication time be-
tween adjacent stations. We neglect the time required for
local operations and measurement since these times are short
compared to T0 and ntc. Similarly, we can find the vector
fidelity and time for the electron spin C pair:

FC�n� = C��F0,FA�n

2
− 1�,F0,FA�n�

2
− 1�,F0�,�,p� ,

TC�n� = 1.5TA�n�

2
− 1� + 1.8T0 + �n − 2�tc. �44�

After performing one purification step, we obtain a
nuclear spin pair A1, with vector fidelity determined by the
purification function P:

FA1
„n� = P�FB�n�,FC�n�,�,p… . �45�

On average, the time required to perform this single step is

TA1
�n� =

TB�n� + TC�n� + �n − 1�tc

PS„FB�n�,FC�n�…
, �46�

where PS is the probability that the purification step suc-
ceeds.

After m successful purification steps, the vector fidelity of
the nuclear spin Am pair is

FAm
�n� = P„FAm−1

�n�,FC�n�,�,p… , �47�

and the average time required for its creation is

TAm
�n� =

TAm−1
�n� + TC�n� + �n − 1�tc

PS�m�

= �TC�n� + �n − 1�tc��
n=1

m

�
k=n

m � 1

PS�m�
� �48�

+ TB�n��
k=1

m � 1

PS�m�
� , �49�

where PS�m�= PS(FAm−1
�n� ,FC�n�). If we stop purifying at

some fixed number M of purification steps, then the desired
vector fidelity and time over distance n are given by

FA�n� = FAM
�n� , �50�

TA�n� = TAM
�n� . �51�

To complete the inductive argument, we must show that
the protocol works for small distances. There are many
schemes one can use to generate and purify entanglement
over shorter distances, and one possibility is illustrated in
Fig. 4. In fact, once the physical parameters for an imple-
mentation are determined, it should be possible to optimize
the few-node scheme to minimize the required time or maxi-
mize the resulting fidelity.

E. Fixed-point analysis

As the number of purification steps increases m→�, the
fidelity of the resulting entangled pair saturates. This satura-
tion value can be found using a fixed-point analysis �as de-
scribed in �36�� by solving for the vector fidelity FA which is
unchanged by further purification steps:

FA = P�FA,FC,�,p� , �52�

where we have explicitly included the local errors in the
purification function P. This yields a fixed-point fidelity
FFP�FC ,� , p� which is independent of FA. Since the vector
fidelity FA has three independent parameters characterizing
the diagonal elements of the density matrix, one might miss
the fixed point. However, as the number of purification steps
increases, our simulations do indeed approach the calculated
fixed point. We therefore calculate the fixed point as a func-
tion of distance to find the upper bound on the fidelity which
can be attained for given F0 ,L /L0 , p, and �.

F. Asymptotic fidelity

As the distance increases L→�, the fixed-point fidelity
can approach an asymptotic value F�. We can understand the
existence of F� and its value by examining the protocol as a
function of nesting level. In particular, to generate entangle-
ment over n repeater stations we operate at nesting level i
� log2n, where we obtain a purified pair

FA
�i� = FFP�FC

�i�,�,p� , �53�

where FFP is the fixed-point solution to Eq. �52� and
�FFP�1=FFP is the fixed-point fidelity. We will then use this
purified pair FA

�i� to build up an auxiliary C pair on the next
nesting level i+1. Since the fidelity over distance n−1 is
greater than that over distance n—i.e., (FA�n−1�)1

	 (FA�n�)1—the auxiliary pair fidelity we obtain will be
greater than or equal to the first component of
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FC
�i+1� � C��FA

�i�,FA
�i�,F0,F0,F0	,�,p� , �54�

where C is again the connection function. This auxiliary pair
will then determine FA

�i+1�=FFP�FC
�i+1� ,� , p�. When FA

�i+1�

=FA
�i�, we have reached the asymptotic fidelity F�= �FA�1

�see Fig. 5�, which is given by the intersection of the purifi-
cation curve, Eq. �53�, and the auxiliary pair creation curve,
Eq. �54�.

As was the case for the fixed-point analysis, we must
account for all diagonal components of the density matrix in
the Bell-state basis �not just the fidelity a�. Consequently the
asymptotic fidelity represents an upper bound to which the
system may converge in the manner indicated by our simu-
lations. Finally, we should stress that our calculations have
not incorporated loss due to the long but finite memory time
in the nuclear spins. This loss increases with the total time
required for repeater operation and sets the upper limit on the
distance over which our scheme could operate.

G. Results

The discussion of final fidelity may be summarized as
follows: the fidelity obtained at the end of this nested purifi-
cation procedure, F�m ,L ,F0 , p ,��, depends on the number
of purification steps, m, the distance L between the outer
nodes, the initial fidelity F0 between adjacent nodes, and the
reliability of measurements ��1 and local two-qubit opera-
tions p�1 required for entanglement purification and con-
nection �36�. As the number of purification steps increases,
m→�, the fidelity at a given distance L approaches a fixed
point F→FFP�L ,F0 , p ,�� at which additional purification
steps yield no further benefit �36�. Finally, as L increases, the
fidelity may approach an asymptotic value FFP
→F��F0 , p ,��. Figure 6�a� illustrates the efficiency of the
purification protocol: for initial fidelities F0	97%, three pu-
rification steps suffice to produce entanglement at large dis-
tances.

Figure 6�b� demonstrates that our scheme permits genera-
tion of high-fidelity, long-distance entangled pairs in the
presence of percent-level errors in polynomial time. Because
solid-state devices allow fast operations and measurements,

the overall time scale is set by the classical communication
time between nodes. As an example, using a photon loss rate
of �0.2 dB/km, nodes separated by L0�20 km �so that in
the limit of good detectors the collection efficiency is
10−0.4�1/e�, an emission probability Pem�8%, and just one
purification step at each nesting level, our scheme could po-
tentially produce entangled pairs with fidelity F�0.8 suffi-
cient to violate Bell’s inequalities over 1000 km in a few
seconds. For comparison, under the same set of assumptions
direct entanglement schemes would require �1010 years.

Figure 7�a� shows that our scheme will operate in the
presence of 1− p�1% errors in local operations and percent-
level phase errors in initial entanglement fidelity. Other types
of error are in principle possible, and we consider nonzero
shape parameters � for the initial fidelity F0 in Eq. �39�. The
asymptotic fidelity shown in Fig. 7�b� indicates that, al-
though the protocol we use is most effective for purifying
phase errors, it also tolerates arbitrary errors.

H. Optimization

Once the parameters of the system are established, the
protocol can be optimized to minimize the time required to

FIG. 5. Approach to asymptotic fidelity. The solid curve shows
the purified fidelity obtained from the auxiliary pair, while the dot-
ted curve corresponds to the auxiliary pair �constructed from two
smaller purified pairs� on the next nesting level. The system moves
between the curves at each nesting step, and the upper intercept of
the two curves gives the asymptotic fidelity. For this calculation
F0= p=�=0.99 and �=0.

FIG. 6. �Color online� �a� Fidelity scaling with distance. Points
show results using three purification steps at each nesting level,
dashed lines show the fixed point FFP at each distance, and dotted
lines indicate the asymptotic fidelity F�. For �a� and �b�, measure-
ments and local two-qubit operations �= p contain 0.5% errors. The
initial fidelity F0 is �i� 100%, �ii� 99%, �iii� 98%, �iv� 97%, and �v�
96% with phase errors only. �b� Average time scaling with distance
for m=3, given in units of T0= �t0+ tc� / P, the time required to gen-
erate entanglement between nearest neighbors, and L0, the distance
between nearest neighbors. Measurement and local operation times
are neglected. Note that the axes are logarithmic, so time scales
polynomially with distance.
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generate some minimum fidelity Fmin over a distance L. We
can vary the number of repeater stations, �L /L0, and the
number of purification steps, m �which need not be constant�.
We can also tailor the entanglement generation procedure by
changing the emission probability Pem to find the optimum
balance between initial infidelity 1−F0� Pem and entangle-
ment generation time T0�1/ Pem. Finally, one could use more
advanced optimal control techniques to vary the details of
the protocol itself. In particular, it should be possible to
speed up the algorithm by working simultaneously on mul-
tiple nesting levels, beginning entanglement generation and
connection on the next nesting level as soon as the interior
nodes are free. Further speed-up may also be possible in the
case when collection efficiency is very high by using coinci-
dence detection in combination with, e.g., time-bin encoding
�1�. As noted previously such coincidence detection could
also be advantageous for interferometric stability �28–30�.

Ultimately, the speed of this protocol is limited by three
factors: classical communication time between nodes, proba-
bilistic entanglement generation, and sequential purification.
Faster techniques will require more efficient entanglement
generation or larger numbers of qubits at each node to allow
simultaneous purification steps.

I. Comparison to other quantum repeater schemes

This scheme combines the advantages of two pioneering
proposals for quantum repeaters �3,15�. Early work showed
that entanglement purification and swapping could be com-
bined to permit efficient, fault-tolerant quantum communica-
tion over distances longer than an attenuation length �3�. This
scheme incorporated error correction at the cost of increased
physical resources, requiring nodes containing a number of
qubits scaling at minimum logarithmically with distance
�36�. Owing to the difficulty of implementing even few-qubit
quantum computation, implementation of this scheme re-
mains a challenging goal. Our scheme is closely related to
the original proposal with one key difference: by spatially
rearranging the required physical resources, we can effi-
ciently simulate their protocol while maintaining a constant
requirement on qubits per node. This makes our scheme
amenable to realistic physical implementation.

Another physical implementation for quantum repeaters
uses atomic ensembles as a long-lived memory for photons
�15�. Entanglement is generated by interfering Raman-
scattered light from two ensembles. The entanglement is
probabilistically swapped using an electromagnetically in-

duced transparency readout technique. This scheme elegantly
avoids effects of the dominant photon loss error by condi-
tioning success on photon detection. Our scheme primarily
differs from this proposal in two ways: first, access to two-
qubit operations between electron and nuclear spin permits
deterministic entanglement swapping; second, the two-qubit
nodes allow active correction of arbitrary errors.

V. PHYSICAL SYSTEMS

We conclude with three specific examples for potential
implementation of the presented method.

A. Implementation with NV centers

The NV-center level structure illustrated in Fig. 2 allows
implementation of all steps in the repeater protocol. The cy-
cling transition from �0� to �e� is used for electron spin ini-
tialization by measurement, entanglement generation, and
electron spin-state measurement. A series of ESR and NMR
pulses can be used to perform arbitrary gates between the
electron spin and an adjacent 13C spin �35�. Consequently,
nuclear spin state initialization and measurement is achieved
by initializing the electron spin, mapping the nuclear spin
state onto the electron spin, and subsequently measuring the
electron spin. Entanglement propagation and purification can
be implemented in NV centers by driving ESR and NMR
transitions and using optical detection of the electron spin
states. Once electron spin entanglement is established be-
tween nodes Ri and Ri−1, it can be transferred to the nuclear
spins, leaving the electron degree of freedom free to generate
entanglement between station Ri and Ri+1. Provided that we
can reinitialize the electron spin without affecting the nuclear
entanglement, we can perform the same probabilistic en-
tanglement procedure. Note that ESR multiplexing is re-
quired to perform a � /2 pulse independent of the nuclear
spin; this can be accomplished simply by applying two ESR
pulses at the two transition frequencies.

We now consider the feasibility of implementing our re-
peater protocol using NV centers in diamond. Owing to the
overlap of electron wave functions in the ground and excited
states, most of the NV center optical emission goes into the
phonon sidebands. Other color centers in diamond—for ex-
ample, the NE8 center �38,39�—may suffer less from this
drawback. To enhance the relative strength of the zero-
phonon line, it will be necessary to couple the NV center to
a cavity. For NV centers coupled to cavities with Purcell

FIG. 7. �Color online� �a� Long-distance as-
ymptote dependence on initial fidelity F0 of �i�
100%, �ii� 99%, �iii� 98%, �iv� 97%, and �v� 96%
with phase errors only. �b� Long-distance asymp-
tote dependence on error type. For the calcula-
tions shown, F0=0.99, and the shape parameter
ranges from �=0 to �=0.3. In both �a� and �b�
measurement errors are set equal to operational
errors, �= p.
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factors �10 �21�, we find that the dominant source of error is
electron spin decoherence during the classical communica-
tion period. Using an emission probability Pem�5%, a col-
lection efficiency ��0.2, and a classical communication
time of tc�70 �s over L0�20 km, we find that the fidelity
of directly entangled pairs can reach F0�97% for electron
spin coherence times in the range of a few milliseconds.
Electron spin coherence times in the range of 100 �s have
been observed at room temperature, and significant improve-
ments are expected for high-purity samples at low tempera-
tures �40�. The large hyperfine splitting allows fast local op-
erations between electron and nuclear spin degrees of
freedom on a time scale of �100 ns �35� much shorter than
the decoherence time, allowing 1− p�1%. Finally, cavity-
enhanced collection should significantly improve observed
measurement efficiencies of ��80% �35�.

B. Alternative implementation: Quantum dots

Our discussion thus far has attempted to remain general
while exemplifying our proposal using NV centers. The basic
idea of using two-qubit repeater stations should be applicable
to a wide variety of systems featuring coupled electron and
nuclear spins. To illustrate an alternative implementation, we
consider doped self-assembled quantum dots whose electron
spin is coupled to collective nuclear states in the lattice.
Compared to NV centers, this system offers large oscillator
strengths and the potential for Raman manipulation. Doped
semiconductor quantum dots have been considered in a va-
riety of quantum computing proposals and related technolo-
gies �41,42�. The spin state of the dopant electron provides a
natural qubit with relatively long coherence times. Assuming
a high degree of nuclear spin polarization �Pn	0.95� �43�
and active ESR pulse correction, the electron spin dephasing
time is expected to be 1 ms �44�. The spins of lattice nuclei
in the quantum dot provide an additional, quasibosonic de-
gree of freedom with extremely long coherence times ��1 s
with active correction �45��. Such ensembles of nuclear spin
have been considered for use as a quantum memory �46� and,
by taking advantage of the nonlinearity of the Jaynes-
Cummings Hamiltonian, as a fundamental qubit for a quan-
tum computer �47�.

Unlike the spin-triplet state of the NV centers, the
conduction-band electron has two states �↑� and �↓� corre-
sponding to spin aligned and antialigned with an external
magnetic field Bext� ẑ. The quantum dot system also differs
from NV centers in that it can be manipulated using Raman
transitions: when the external field and growth direction are
perpendicular �Voigt geometry�, two allowed optical transi-
tions to a trion state produce a lambda system; moving to-
wards aligned field and growth directions �Faraday geom-
etry� suppresses the“forbidden” transitions, as shown in Fig.
8�a�.

Electron spin coherence can thus be prepared via Raman
transitions or by standard ESR setups, and changes in effec-
tive magnetic field can be accomplished by off-resonant,
spin-dependent ac Stark shifts with �+ light.

Although optical transitions in doped quantum dots
can exhibit homogeneous broadening ��100 GHz

��10–100�� �48�, the corresponding error can be made neg-
ligible by sending the output from the cavity through a fre-
quency filter with a linewidth of a few hundred MHz.2 More-
over, we note that InAs quantum dots have been successfully
coupled to microcavities with Purcell factors �10 �21�.

Whereas the NV-center electron spin was coupled to a
single nuclear impurity, the electron in a quantum dot
couples to collective excitations of many thousands of nu-
clei. We briefly discuss this system; further details are given
in Refs. �46,49�. The Hamiltonian governing this interaction
is

Hqd = �zŜz + ��
k

�kÎz
k + ���

k

 kS�̂ · I�̂k, �55�

where �k is the gyromagnetic ratio for nuclear spin I�̂k, the
nuclear spin coupling amplitudes satisfy  k� �!�rk��2, �k k

2

=1, and �=A /��k k �A is the hyperfine interaction con-

stant�. By identifying collective nuclear spin operators A�̂

=�k kI�̂, the hyperfine term may be written ��S�̂ ·A�̂ . For sim-
plicity we restrict the following discussion to the case of
perfect nuclear polarization �so the initial state of all Nn
nuclear spins in the quantum dot is �0�= �−I� � ¯ � �−I� for I
spins�. Then an effective Jaynes-Cummings-type Hamil-
tonian describes the system:

Hqd
ef f = ��z

ef fŜz + ��/2�Â+Ŝ− + Â−Ŝ+� , �56�

with corrections of order � /�k k�A /Nn. The effective Zee-
man splitting �z

ef f =�z− IA /� is dominated by the field asso-
ciated with the polarized nuclear spins; for example, in GaAs
quantum dots, this Overhauser shift is IA /��33 GHz. The

2For our entanglement generation scheme, such a filter will allow
the desired narrow band of coherent light to pass through while
rejecting the broad incoherent background. Consequently the filter
will not decrease collection efficiency in the desired mode.

FIG. 8. �Color online� �a� Level structure for single electron to
trion transition in a single-electron doped III-V or II-VI quantum
dot with external magnetic field in close to a Faraday geometry with
Zeeman splitting �z, heavy-hole splitting �z

h and up to four optical
fields of different frequency and polarization. Dashed lines indicate
weak dipole moments due to small magnetic field mixing. The trip-
let two-electron states are not included due to a large ��1 meV�
exchange energy allowing for complete suppression of their effects.
�b� Electronic ��↑�, �↓�� and collective nuclear ��0�, �1�� states and
their transitions for singly doped quantum dots in a polarized
nuclear spin lattice.
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large detuning �z
ef f suppresses interactions which exchange

energy between the electron and nuclear spins. By changing
the effective magnetic field, we can shift the system into
resonance �z

ef f →0 to drive Rabi oscillations between the
electron spin and the collective nuclear state; see Fig. 8�b�.
Pulsing the appropriate effective field permits a controllable
map between the electron spin state and the collective

nuclear degrees of freedom spanned by �0� and �1�= Â+�0�. In
addition, more complicated sequences of electron-nuclear
spin interaction and electron spin manipulation allow for ar-
bitrary two qubit operations on �↑�, �↓� and �0�, �1� �see Ref.
�47� and commentary therein�.

Measurement and initialization proceed in much the same
manner as described for NV centers. The state of the electron
spin system can be read out by exciting a cycling transition
with resonant �+ light, and measurement and ESR �or Raman
transitions� can be employed to initialize the system in the
desired state. As the effective Knight shift of the electron
spin is negligible on the time scales of entanglement prepa-
ration, the collective nuclear state’s coherence is unaffected
by this process. Due to the improved selection rules and
possibility of Raman transitions, it may be more effective to
use the Raman entanglement generation scheme.

The nuclear state of the quantum dot can be prepared by
cooling the nuclear spins using preparation of electron spin
and manipulation of the effective magnetic field �50�. In
practice, this leaves the nuclear system in a state �D� with the
same symmetry properties as the state �0� described above
�49�. To date, 60% nuclear spin polarization has been
achieved by optical pumping in GaAs quantum dots �43�. As
was the case with NV centers, the nuclear spin state can be
read out by preparing the electron spin in the �↓� state, map-
ping the nuclear state to the electron spin state, and measur-
ing the electron spin state.

C. Atomic physics implementation

Compared to the solid-state implementations we have
considered so far, implementations in single trapped atoms or
ions have the advantage that they typically have very little
broadening of the optical transitions. Because atomic sys-
tems do not reside in a complicated many-body environment,
their internal degrees of freedom can have very long coher-
ence times. For most atomic systems, however, it is hard to
identify a mechanism which allows one degree of freedom—
e.g., the nuclear spin—to be decoupled while we probe some
other degree of freedom—e.g., the electron spin. Below we
describe a system which does fulfill this requirement, al-
though practical considerations indicate implementation may
be challenging.

We consider alkali-earth atoms, such as neutral magne-
sium, and choose an isotope with nonvanishing nuclear spin
�25Mg�. The lowest-lying states of magnesium are shown in
Fig. 9 �electronic structure only�. Instead of the electronic
spin states we have considered so far—i.e., for NV centers
and quantum dots—we will use states which differ in both
spin and orbital angular momentum. The stable ground state
1S0 will serve as state �0�. In this state, the electronic degrees
of freedom have neither spin nor orbital angular momentum

and the nuclear spin is thus decoupled from the electronic
state. The excited state 3P0

o �whose hyperfine interactions
also vanish to leading order� will provide state �1�. Note that
the triplet-singlet transition from 3P0

o to the ground state is
highly forbidden and this state has an extremely long life-
time, but transitions between the two states can still be in-
duced with a strong laser.

To create entanglement we couple the ground state to the
excited state 1P1 with a laser field and collect the scattered
light. From this excited state the atom essentially always
decays back into the ground state. If the driving is detuned
much further than the hyperfine splitting in the excited state,
the nuclear spin is also decoupled during this process. The
nuclear spin can therefore by used to store information while
we entangle the electronic state with another atom. Finally,
to implement gates between the electronic and nuclear states
one should, for instance, couple the �0� state to another state
in the atom where there is a hyperfine interaction, for ex-
ample using resonant excitation of the 1P1 state.

Finally, we note that all three physical implementations
we suggest operate in the visible or near-IR and will likely
require high-efficiency frequency conversion to telecom
wavelengths for low-loss photon transmission.

VI. CONCLUSION

In conclusion, we propose a method for fault-tolerant
quantum communication over long distances requiring only
probabilistic nearest-neighbor entanglement generation, two
qubits per node, and two-qubit operations. We compare sev-
eral schemes for entanglement generation and discuss two
solid-state systems and an atomic system which might be
used to implement them. Potential applications include se-
cure transmission of secret messages over intercontinental
distances.
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APPENDIX

Photobleaching is a detectable error, so it does not affect
the fidelity of entanglement generation or measurement, as
we described above. However, it can increase the time re-
quired for these operations. Fluorescence correlation experi-
ments are consistent with assigning a metastable singlet
structure to the shelving state, which is coupled strongly to
the Ms= ±1 excited states but only weakly to the Ms=0 ex-
cited state �see Fig. 2�, �24�. We need to account for the
possibility that our NV center bleaches during entanglement
generation, requiring us to start over. During each attempt we
resonantly excite the Ms=0 transition with some probability
Pem �see Eq. �13��. To quantify the population lost to �W� we
will consider a model where the Ms= ±1 excited states decay
to the shelving state at rate �S. The oscillator strength for the
Ms= ±1 optical transitions is unknown, so we will assume
that the Rabi frequencies on the Ms= ±1 transitions are ��.

During one attempt at entanglement generation, the prob-
ability to end up in the shelving state is

PW � �S
��2

�1
2 t0, �A1�

where �1 is the detuning from the Ms= ±1 optical transition.
�The excited-state energies are strongly inhomogeneously
broadened, so �1 is not precisely known; this detuning
should be controllable using strain or applied electric fields.�
On average, a large number of attempts �4/ Pem� are re-
quired for successful entanglement generation. Consequently
the total probability for the system to end up in the shelving
state during entanglement generation is

PW � 4�S
��2

�1
2

�

�2�
� 4

�S�

�1
2�

��2

�2 , �A2�

where � ���� is the oscillator strength for the Ms=0 �±1�
transition. The precise values of these parameters are un-
known, but we can estimate their order of magnitude: �S
�1–10 MHz, �+��100 MHz, �1�1 GHz, and ����,
yielding

PW �
4�10−3 – 10−4�

�
. �A3�

If this error rate is too large, we can also check for pho-
tobleaching at intervals during the entanglement procedure.

The shelving state poses a similar problem during mea-
surement. In this case, the Ms=0 transition is strongly illu-
minated so that at least one photon reaches the detectors:
Pem�1/�. Under the same illumination, any population in
�1� will end up in the shelving state with probability

PW � Pex
�S�

�1
2

��2

�2 �
�S�

�1
2�

��2

�2 �
�10−3 – 10−4�

�
. �A4�

Note that the measurement fidelity is unaffected by pho-
tobleaching if we verify that the center is optically active by
observing fluorescence either directly from the �0� state or
after applying a multiplexed ESR pulse to the �1� states. Ul-
timately, in this model the only effect of the shelving state is
to reduce the success rate for entanglement generation and
measurement by of order a few percent. Finally, we should
note that the effect of the shelving state on the nuclear spin
state is currently not known and could potentially complicate
the sequence of operations necessary upon detection of a
shelving event.
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