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A private shared Cartesian frame is a novel form of private shared correlation that allows for both private
classical and quantum communication. Cryptography using a private shared Cartesian frame has the remark-
able property that asymptotically, if perfect privacy is demanded, the private classical capacity is three times
the private quantum capacity. We demonstrate that if the requirement for perfect privacy is relaxed, then it is
possible to use the properties of random subspaces to nearly triple the private quantum capacity, almost closing
the gap between the private classical and quantum capacities.
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I. INTRODUCTION

Quantum information theory is concerned with imple-
menting various communications tasks with a minimal use of
resources �1�. In multiparty protocols, the most interesting
resources are nonlocal ones, such as shared classical key or
entanglement. Recently, it has become apparent that shared
reference frames �SRFs� are another form of nonlocal re-
source that may be included in the accounting of any multi-
party information-processing protocol. Heuristically, two
parties are said to share a reference frame if there is a perfect
correlation between the systems that define the bases of their
respective local Hilbert spaces. For instance, if Alice and
Bob each define their local Cartesian frame using classical
gyroscopes in their labs, then they possess a shared reference
frame if the rotation relating the frames defined by their gy-
roscopes is known to them.

Like entanglement, no amount of discussion between Al-
ice and Bob will allow them to establish a shared reference
frame: doing so requires a physical interaction between them
that goes beyond the framework of classical information
theory and, for that matter, the usual formalism of quantum
information theory. For example, to establish a shared Car-
tesian frame between their respective labs, Alice and Bob
may make use of a pre-existing frame such as the fixed stars
or the Earth’s magnetic field. However, if no such shared
frame exists a priori, then no amount of discussion will en-
able them to establish one; to do so, they must exchanges
physical systems that carry some directional information
such as spin-1 /2 particles. Understanding the value of a
shared reference frame as a new nonlocal resource and its
relation to both private and quantum communication, there-
fore, is an important necessary step in the ongoing effort to
understand the nature of information in physics.

Substantial progress has recently been made in this direc-
tion. Most research has focused on determining the commu-
nication cost to establishing a SRF �2–8�. There have also
been several investigations into the impact of SRFs �or the
lack thereof� on the efficiency with which one can perform a
variety of bipartite tasks, such as quantum and classical com-
munication �9,10�, key distribution �11,12�, and the manipu-
lation of entanglement �10,13–15�. Other work has studied

the cryptographic consequences of the participants’ lack of a
SRF �13,16,17�. Here we shall be interested instead in using
private SRFs as a resource.

A SRF is private if the systems that define Alice and
Bob’s local Hilbert space bases are not correlated with any
other systems. In this case, the SRF can act as a new kind of
key for private quantum and classical communication over a
public channel. Consider a private shared Cartesian frame, as
in Ref. �18�. Under the requirement that the communication
have perfect fidelity and the privacy be perfect, it was found
that for N transmitted qubits, the number of private qubits
that can be communicated asymptotically is log2 N, and the
number of private classical bits that can be communicated
asymptotically is 3 log2 N. This unusual factor of three relat-
ing the quantum and classical capacities is understood in
terms of the details of the representation theory of SU�2�
�19�, but should be contrasted with the “usual” factor of two
that typically relates classical and quantum schemes �20,21�.
In the present paper, we ask the question of whether these
capacities may be improved by allowing transmission with
near-perfect rather than perfect privacy, as is usually consid-
ered in cryptography.

Note the following suggestive facts. 2N secret shared
classical bits can be used in a one-time pad to encrypt 2N
classical bits �cbits�. However, if one asks how many private
qubits can be transmitted using the secret key, the answer is
a factor of 2 less; that same secret 2N cbit string can only
encrypt N qubits if perfect privacy is required �21�. If only
near-perfect privacy is required, on the other hand, the num-
ber of secret cbits required per encrypted qubit shrinks from
2 to 1 asymptotically �22�, so that the difference between
encrypting cbits and qubits disappears.

A similar effect occurs in the domain of communication
using shared entanglement. The superdense coding protocol
�20� uses the transmission of N qubits and the consumption
of N ebits to communicate 2N cbits with perfect privacy. �An
ebit is a pure, maximally entangled state of two qubits.� The
number of qubits that can be transmitted with perfect privacy
and no errors is again a factor of 2 less, as implemented in
the quantum Vernam cipher �23�. If either near-perfect pri-
vacy or near-perfect transmission is permitted, however, the
superdense coding protocol can be extended to allow the
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transmission of nearly 2N qubits �24,25�, again erasing the
difference between sending classical and quantum data. The
fact that the methods developed in Ref. �18� for communi-
cating private classical data using a private shared reference
frame made heavy use of superdense coding suggests that it
may be possible, by relaxing the security conditions, to in-
crease the private quantum capacity by a factor of 3, from
log2 N to nearly 3 log2 N. We shall show that this is indeed
the case.

II. PRELIMINARIES

A. Brief comment on notation

The symbol for a state �such as � or �� also denotes its
density matrix. A pure state is always denoted as a ket �e.g.,
���� and the density matrix for a pure state ��� is written
simply as �. We will also use the notation xN�yN if
limN→�xN /yN=1. The term irrep denotes an irreducible rep-
resentation of a group.

B. Private quantum channels using private shared correlations

Whenever Alice and Bob have some private shared corre-
lation, that is, one to which an eavesdropper Eve does not
have access, Eve’s description of the systems transmitted
along the channel is related to Alice’s description by a deco-
hering superoperator, denoted by E �18,21�. Before discuss-
ing shared reference frames specifically, we begin by formal-
izing the notions of the private quantum and classical
capacities of this decohering superoperator.

A �-private quantum communication scheme for E con-
sists of a completely positive, trace-preserving encoding C,
mapping message states on a logical Hilbert space HL to
encoded states on the Hilbert space H of the transmitted
system, such that �i� the operation C is invertible by Bob
�who possesses the private shared correlations�, allowing
him to decode and recover states on HL with perfect fidelity,
and �ii� the encoding satisfies

�E��� − �0�1 � �, ∀ ��� � HL, �1�

where �0 is some fixed state on H, ��−��1	Tr��−�� is the
trace distance between � and �, and � is a security parameter.
When �=0, the scheme is said to be perfectly private. The
private quantum capacity of this channel, Q�E ,��, is defined
as Q�E ,��=supC log2 dim HL.

A �-private classical communication scheme for E con-
sists of a set 
�i�i=1

m of density operators on H such that �i� the

�i� are orthogonal, so that Bob can distinguish these classi-
cal messages with certainty, and �ii� the encoding satisfies

�E��i� − �0�1 � �, ∀ i , �2�

where, again, �0 is some fixed state in H and � is a security
parameter. The private classical capacity of this channel,
C�E ,��, is defined to be C�E ,��=sup
�i�

log2 � 
�i��, where the
supremum is over sets of density operators 
�i� achieving
�-privacy.

Given � privacy, for any pair of quantum or classical mes-
sages, chosen with equal prior probabilities, the probability

that Eve can distinguish these is bounded above by
�1+�� /2, seen as follows. Suppose the message states are �1

and �2. These could be either an encoded pair of quantum
messages, that is, C��L,1� and C��L,2� for some pair of den-
sity operators �L,1 and �L,2 on HL, or an encoded pair of
classical messages, that is, orthogonal density operators. In
either case, the optimal probability for Eve to distinguish
E��1� and E��2� is given by 1

2 + 1
4 �E��1�−E��2��1 �26,27�.

Making use of the triangle inequality for the trace norm � · �1,
we obtain

�E��1� − E��2��1 � �E��1� − �0�1 + �E��2� − �0�1�2� , �3�

where on the second line we have applied the definition of �
privacy. It follows that if the scheme is � private, Eve’s prob-
ability of distinguishing the two messages is bounded above
by �1+�� /2.

C. Private quantum communication using a private shared
Cartesian frame

We now determine the superoperator E that describes
Eve’s ignorance of Alice and Bob’s private shared Cartesian
frame for states of N spin-1 /2 particles. �Our description
applies equally well to any realization of a qubit that is en-
tirely defined relative to some reference frame; another ex-
ample is a single-photon polarization qubit.� The transmitted
Hilbert space H in this case is �C2��N. This Hilbert space
carries a tensor power representation R�N of SU�2�, by
which an element ��SU�2� acts identically on each of the
N qubits. For simplicity, we restrict N to be an even integer
for the remainder of this paper, but our main results apply
straightforwardly to all N. Then, we can decompose

�C2��N = �
j=0

N/2

H j , �4�

where H j is the eigenspace of total angular momentum with
eigenvalue j.

Each subspace H j in the direct sum can be factored into a
tensor product H j =H jR � H jP, such that SU�2� acts irreduc-
ibly on H jR and trivially on H jP. Thus,

�C2��N = �
j=0

N/2

H jR � H jP. �5�

The dimension of H jR is

djR = 2j + 1, �6�

and that of H jP is

djP = � N

N/2 − j

 2j + 1

N/2 + j + 1
. �7�

If Alice prepares N qubits in a state � and sends them to
Bob, an eavesdropper Eve who is uncorrelated with the pri-
vate SRF will describe the state as mixed over all rotations
��SU�2�. Thus, the superoperator E acting on a general
density operator � of N qubits that describes the lack of
knowledge of this private SRF is given by �9�
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E��� =� R����N�R†����Nd� . �8�

The effect of this superoperator is best seen through the use
of the decomposition �5� of the Hilbert space. The action of
the superoperator E can be expressed in terms of this decom-
position as

E��� = �
j=0

N/2

�D jR � I jP��� j�� j� , �9�

where D jR is the completely depolarizing superoperator on
H jR , I jP is the identity superoperator on H jP, and � j is the
projector onto H j. The subsystems H jP are called
decoherence-free or noiseless subsystems �28� under the ac-
tion of this superoperator; states encoded into these sub-
systems are completely protected from this decoherence. In
contrast, EN is completely depolarizing on each H jR sub-
system, and thus, the H jR are called decoherence-full sub-
systems �18�.

The largest decoherence-full subsystem occurs for jmax
=N /2 and has dimension 2jmax+1=N+1. As proven in Ref.
�18�, this decoherence-full subsystem defines the optimally
efficient perfectly secure private quantum communication
scheme. Thus, given a private Cartesian frame and the trans-
mission of N qubits, Alice and Bob can with perfect privacy
communicate Q�E ,0�=log2�N+1�� log2 N qubits asymptoti-
cally.

In contrast, in that same paper, it was shown that the
private classical capacity using the private shared Cartesian
frame was given by C�E ,0��3 log2 N. In Appendix I, we
extend the result to show that C�E ,���3�1+�� log2 N+3 for
��1/2. The �-private classical capacity, therefore, does not
change dramatically when � is made nonzero.

D. The working space H�

To construct a “working” Hilbert space on which to in-
vestigate large random subspaces, we use the Hilbert space
on which the states in the private classical communication
scheme have support. This Hilbert space is constructed as
follows. Note that for all j strictly less than the maximum
value N /2, the decoherence-free subsystem H jP is always of
greater or equal dimension than the decoherence-full sub-
system H jR. Thus, we will employ irreps up to, but not in-
cluding, j=N /2. Let jmin	N /2 be some fixed irrep. Our
working space H� will include elements from every irrep in
the range jmin� j	N /2, that is, for j�Y, where

Y = 
jmin, jmin + 1,…,N/2 − 1� . �10�

For convenience, we denote the dimension of the
decoherence-full subsystem of the jmin irrep by D, that is,
D	2jmin+1. Choose a D-dimensional subspace H�jR of H jR
for every j�Y, and a subspace H�jP of H jP that is of dimen-
sion D
	 ��1/
�D�, for some parameter 
�1. Note that
such subspaces always exist because dim H jR=2j+1�D and
dim H jP�dim H jR for all j�Y.

The Hilbert space of interest is then

H� = �
j�Y

H�jR � H�jP, �11�

with dimensionality K	dim H� given by

K �
1



�
j�Y

D2 =
1



�N/2 − jmin��2jmin + 1�2. �12�

To maximize this dimension, we choose jmin to be the integer
nearest to N /3. In this case, we have asymptotically

K �
2

27

1



N3. �13�

�More precisely, K−1 exceeds the right-hand side for suffi-
ciently large N, a result we will use later.�

The superoperator E maps a state � on H� to the state

E��� = �
j�Y

�IHjR
/djR� � TrjR�� j�� j� , �14�

where IHjR
is the identity on H jR. �Note that the state E���

will, in general, have support outside of H�.� To fully exploit
the working space, we will pursue an encoding such that
E��� is close to maximally mixed on as large a subspace as
possible. To this end, we define

�0 	 �
j�Y

�IHjR
/djR� � �IH�jP

/D
� , �15�

where IH�jP
is the identity on H�jP.

III. THE MAIN RESULT

We wish to show that for fixed �, there exists a private
quantum communication scheme for E that scales as
3 log2 N. This is achieved by encoding into particular sub-
spaces of the working space H�. Suppose that a subspace
S�H� of the appropriate dimensionality is drawn at random
from some ensemble of subspaces of H�. It is then sufficient
to show that the probability that encoding in S is not � pri-
vate is strictly less than 1, because this implies that there
exist subspaces in the ensemble that do yield �-private
schemes. Any such subspace can then constitute the logical
Hilbert space HL for such a scheme. In this case, the encod-
ing map C is simply the embedding map which takes states in
S� �C2��N to states in �C2��N. Consequently, we leave the
encoding map C implicit in the rest of the paper.

We shall consider the ensemble of subspaces that is gen-
erated by drawing uniformly at random from among all sub-
spaces of H� of a given dimension. More precisely, we shall
take S=US0, where S0 is a fixed subspace of H� and U is a
unitary on H� chosen according to the Haar measure dU. The
condition that we require S to satisfy in order to yield a
�-private scheme is that for all ����S, �E���−�0�1�� for �0

given by Eq. �15�, so that from Eve’s perspective all the
encoded states � are nearly indistinguishable. This condition
is equivalent to demanding that

max
����S

�E��� − �0�1 � � , �16�

where the maximization is over all pure states in S. The
probability that S fails to be � private is, therefore,
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Pr
S �max

����S
�E��� − �0�1 � �� , �17�

where we define the probability PrS�g�S���� that a ran-
domly chosen S satisfies some inequality g�S��� by

Pr
S

�g�S� � �� 	 �

U:g�US0����

dU . �18�

For at least one of the S to be � private, we require that

Pr
S �max

����S
�E��� − �0�1 � �� 	 1, �19�

for some �0. The following theorem implies that such sub-
spaces S, with dimension scaling in the desired fashion, do
exist.

Theorem 1. For the decoherence map E associated with
lacking a reference frame for SU�2�, the condition

Pr
S �max

����S
�E��� − �0�1 � �� 	 1, �20�

holds for sufficiently large N, where the probability is with
respect to the unitarily invariant measure on subspaces S of
H�, provided

log2 dim S 	 3 log2 N + 7/2 log2� + C�, �21�

where C� is a constant.
Consider, for example, 1 /�=polylog�N�, i.e., a polyno-

mial in log�N�. Then we can find S�H� with �E���−�0�1

�� for ����S such that

log2dim S � 3 log2 N , �22�

recovering the same asymptotic rate as the classical private
capacity. In this case, Q�E ,���C�E ,0�.

We prove Theorem 1 via a sequence of lemmas. Our start-
ing point is the following result, known as Levy’s Lemma
�29�:

Lemma 2 (Levy). Let f :Sk→R be a continuous real-
valued function on the k sphere with Lipschitz constant 

with respect to the Euclidean metric. Then, if x is selected at
random from Sk according to the uniform measure,

Pr
x

��f�x� − M� � �� 	 exp2�− C�k − 1��2/
2� , �23�

where C�0 is a constant and M is a median for f .
The function of interest is

f��� 	 �E��� − �0�1. �24�

Note that the Hilbert space norm on H� is precisely the Eu-
clidean norm if the Hilbert space is considered as the real
vector space R2K. The following lemma bounds the Lipschitz
constant of this function.

Lemma 3 (Lipschitz constant). The Lipschitz constant of
f��� is bounded above by 2.

Proof. Using the triangle inequality gives

�f��� − f��̃�� = ��E��� − �0�1 − �E��̃� − �0�1� � �E��� − E��̃��1.

�25�

Because E is a completely positive trace-preserving map, and
the trace distance is nonincreasing under such maps,

�E��� − E��̃��1 � �� − �̃�1. �26�

Combining these inequalities with the fact that

���� − ��̃��2
2 = 2 − 2 Re����̃� �27�

�1 − �����̃�2 �28�

=�1

2
�� − �̃�1
2

, �29�

we obtain

�f��� − f��̃�� � 2���� − ��̃��2, �30�

which is the desired bound on the Lipschitz constant. �
The next corollary, an immediate consequence of Levy’s

Lemma, bounds the probability that Eve can distinguish a
random state on H� from �0 substantially better than she can
distinguish states on average.

Corollary 4 (Concentration of f). Let ��� be chosen at
random from the uniform measure on the unit sphere in H�
and M a median for f . Then

Pr
�

��f��� − M� � �� � exp2�− C�K − 1��2

2

 . �31�

Proof. Apply Levy to the function f��� of Eq. �24�. In this
case, k=2K−1 and 
�2. �

Next, we relate the median of f to its mean, which is
easier to estimate. Write

E�f 	� f���d���� �32�

for the expectation of f with respect to the unitarily invariant
measure d���� on pure states in H�. Let A��H� be the set
of points ��� on the unit sphere for which f����M. By the
definition of the median,

�
A�

f���d���� � M�
A�

d���� = M �
1

2
. �33�

Letting A	 be defined analogously, we get

E�f = �
A	

f���d���� + �
A�

f���d���� �
M

2
, �34�

because f����0.
Lemma 5 (Expectation of f). The expectation value of

f��� satisfies

E�f �
1

�

. �35�

The proof is supplied in Appendix II, but can be under-
stood intuitively in terms of the action of E on H�. If the
subspaces H�jP were one-dimensional, then by virtue of the
fact that the H jR are decoherence full, we would have
complete decoherence on H jR � H�jP. Because 1/

�dim H�jP /dim H�jR, the larger the value of 
, the smaller
the dimension of H�jR relative to H�jR, and the less distin-
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guishable on average are states on H jR � H�jR subsequent to
the action of E. One might expect that states could be distin-
guished by their relative supports on the different irreps j
�Y, because these supports are invariant under the action of
E. However, the proof demonstrates that because we use only
sufficiently large irreps, all encoded states will have similar
supports on all irreps and, thus, not be significantly more
distinguishable than if a single irrep had been used.

We note that the proof of the lemma requires that, within
each irrep j�Y, the dimension D
 of H�jP be much smaller
than the dimension D of the decoherence-full subsystem H jR.
For this reason, our result does not apply directly to cryptog-
raphy using a U�1� phase reference, for which the
decoherence-full subsystems are all one-dimensional. How-
ever, for any other reference frame that satisfies this condi-
tion, our results should be directly applicable.

We conclude that the median M is upper bounded by
2/�
 which, using Corollary 1, leads to the result

Pr
�
��E��� − �0�1 � � +

2
�



 � exp2�−
C

2
�K − 1��2
 .

�36�

This inequality is sufficiently strong that we will be able
to use it to conclude that large subspaces of H� have the
property that the distinguishability of all states in the sub-
space are bounded.

Lemma 6 (Existence of good subspaces). Let S0�H� be a
fixed subspace and ��0� a fixed state on S0. Let S=US0 be a
random subspace obtained from S0 using a Haar-distributed
unitary U on H�. Then, for any ��0 and 0	�	1/2,

Pr
S

�max
����S

f��� � �� � �5

�

2 dim S

Pr
U

�f�U��0�� � � − �� .

�37�

Proof. Fix an � /2-net N0 for the unit sphere of a fixed
subspace S0 of H� with the Hilbert space norm. The net can
be chosen such that the number of elements in the net satis-
fies �N0�� �5/��2 dim S0. �See Ref. �25� for a proof of this
fact.� By definition, given any ����S0, there exists a state
��̃��N0 such that ����− ��̃��2�� /2. By Lemma 2, this im-
plies that �f���− f��̃����.

Now choose a random subspace S=US0 using a Haar-
distributed unitary. This unitary U maps the net N0 for S0
into a net N for S. Let ��*� be defined by

f��*� = max
����S

f��� . �38�

By definition, there exists a state ��̃*��N such that ���*�
− ��̃*��2�� /2 and, consequently, �f��*�− f��̃*����. It fol-
lows that if f��*���, then f��̃*���−�. Therefore, if

max
����S

f��� � �, then max
��̃��N

f��̃� � � − � . �39�

Finally, if x implies y, then Pr�x��Pr�y�, so we conclude that

Pr
S �max

����S
f��� � �� � Pr

U
� max

��̃��N0

f�U��̃�� � � − �
 , �40�

where PrU reminds the reader that we are varying over uni-
taries. We then have

Pr
U
� max

��̃��N0

f�U��̃�� � � − �
 � �
��̃��N0

Pr
U

� f�U��̃�� � � − ��

= �N0�Pr
U

� f�U��̃0�� � � − �� ,

�41�

where the first inequality is the union bound for probabilities
and the second line follows from the fact that the expression
inside the sum over ��̃� is independent of ��̃� ���̃0� is an
arbitrary state in H��. Recalling that �N0�� �5/��2 dim S0 es-
tablishes what we set out to prove. �

Using this lemma together with Eq. �36�, we obtain

Pr
S �max

����S
�E��� − �0�1 � ��

� �5

�

2 dim S

exp2�−
C

2
�K − 1��� − � −

2
�



2� .

�42�

If dim S is chosen such that the right-hand side is bounded
away from 1, then the left-hand side will also be bounded
away from 1, and there will exist a �-private encoding into a
subspace S. We will, therefore, seek the largest value of
dim S that satisfies the inequality

�5

�

2 dim S

	 exp2�C

2
�K − 1��� − � −

2
�



2� , �43�

or equivalently

dim S 	
ln 2

ln� 5
��

C

4
�K − 1��� − � −

2
�



2

. �44�

Given that ln x��x, we have 1/ ln� 5
�

��1/�5
� and any S sat-

isfying

dim S 	��

5

C ln 2

4
�K − 1��� − � −

2
�



2

, �45�

will also satisfy Eq. �44�. Using the expression for K in Eq.
�13�, it is sufficient to require that

dim S 	
C ln 2

54�5

1



N3�� − � −

2
�



2
�� �46�

for sufficiently large N. If we choose �=� /3 and 
=36/�2,
then this expression reduces to

dim S 	
C ln 2

5832�15
N3�7/2. �47�

It is, therefore, possible to choose S such that f����� for all
����S, whenever
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log2 dim S 	 3 log2 N + 7/2 log2 � + C�, �48�

where C�=log2��C ln 2� / �5832�15��, completing the proof
of Theorem 1.

IV. DISCUSSION

We have seen that for fixed ��0, the �-private quantum
capacity of a secret SU�2� reference frame is at least three
times as large as its perfectly private quantum capacity. In-
deed, the relaxation of the security requirement to ��0
causes the private quantum capacity to jump almost to the
value of the perfectly private classical capacity, which is ap-
proximately 3 log2 N, and within a factor of 1+� of the
�-private classical capacity. In earlier work, a similar relax-
ation of the security condition in the quantum one time pad
led to a doubling of the private quantum capacity of a shared
secret key string �22� as well as a similar doubling of the
capacity of a maximally entangled state �24,25�. The tripling
of the capacity seen here, however, is unusual and reflects
the particular structure of the tensor power representation of
SU�2�.

Because the private capacity of a shared reference frame
is proportional to log2 N rather than N, however, the values
of � that provide an improvement over the perfectly private
schemes are quite restricted. From Theorem 1, we see that
for sufficiently large N,

Q�E,�� � 3 log2 N +
7

2
log2 � + C� �49�

for some constant C�. In order to improve upon the perfectly
private scheme, we require that Q�E ,��� log2 N, which im-
plies that 1 /��O�N4/7�. In particular, our construction does
not allow � to be an exponentially decreasing function of N,
which would obviously be more desirable for cryptographic
applications.

Some questions remain about the optimality of the private
quantum communication schemes we have presented here. In
particular, our upper bounds on the private quantum capacity
do not exclude the possibility that � could be made to shrink
exponentially with N while maintaining a number of qubits
sent scaling as 3 log2 N. Also, we have not attempted to con-
struct �-private classical communication schemes meeting
the upper bound of Theorem 7 in Appendix I.

Finally, we note that a shared Cartesian frame is not the
only possible form of a shared reference �18�, and it is useful
to consider other practical examples such as a shared phase
reference, shared direction, or reference ordering. These ex-
amples have different Hilbert space structures arising from
their group representation theory, and in general will result in
different relations between their private classical and quan-
tum capacities. We note that our technique should apply di-
rectly to cryptography using a reference frame for U�K�,
with K�2, because the Hilbert space structures for these
groups satisfy the conditions required for our proof. Whether
similar differences between perfectly private and �-private
capacities can be found for other reference frames is an open
question.
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APPENDIX A: �-PRIVATE CLASSICAL CAPACITY

Theorem 2. For ��1/2, the �-private classical capacity
satisfies C�E ,���3�1+�� log2 N+3.

Proof. Suppose we have a �-private classical communica-
tion scheme for E consisting of m states on H. If such a
scheme exists, then there is also a m-state scheme using pure
states, which we will label 
��i��i=1

m . We will use the privacy
condition to find a small subspace of H such that these states
are almost entirely contained within the subspace. Combin-
ing the Holevo bound with the fact that the original states
were all distinguishable will then lead to an upper bound on
m, the number of states in the scheme.

Let H jQ be the subspace of H jP corresponding to the non-
zero eigenvalues of TrjR�� j�1� j� and let � jQ be the projec-
tor onto H jQ. It follows from the Schmidt decomposition for
� j��1� that dim H jQ�min�djR ,djP�. Also let ��=� j� jR

� � jQ, where � jR is the projector onto H jR. Observe that for
any �i,

Tr����i��� = Tr�E����i���� = Tr���E��i���� , �A1�

because E is trace preserving and because projection by ��
commutes with E. By the privacy condition, however,

� � �E��1� − E��i��1 �A2�

�2
Tr���E��1���� − Tr���E��i����� �A3�

=2
1 − Tr���E��i����� . �A4�

The second inequality holds because �X�1=2 maxP Tr�PX�
for traceless, Hermitian X, where the optimization is over
projectors of all ranks. �See, for example, Ref. �1�.� Combin-
ing �A4� with �A1� shows that Tr����i����1−� /2. Thus
the states 
��i��i=1

m are essentially contained within the sub-
space defined by ��.

Now consider the set of states 
��i���i=1
m , where

��i�� =
����i�

�Tr����i���
. �A5�
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Because ���i��i���
2=Tr����i���, performing the measure-

ment 
�� j��� j�� j=1
m on the set of states 
��i���i=1

m will correctly
identify the state with probability at least 1−� /2. Assume a
state ��i�� is chosen from the uniform distribution. By Fano’s
inequality �30�,

H�i�j� � 1 +
�

2
log2 m , �A6�

where H is the Shannon conditional entropy function, which
in turn implies that

I�i; j� � �1 − �/2�log2 m − 1, �A7�

where I is the mutual information function. Because all the
states ��i�� are contained in the support of ��, however, the
Holevo bound �31� implies that I�i ; j� is no more than the
logarithm of rank ��, which satisfies

rank �� � �
j

djR min�djR,djP� . �A8�

In the case of a private shared SU�2� reference frame, for
which djR=2j+1,

rank �� � �N/2 + 1��N + 1�2 � 2N3, �A9�

where the second inequality holds for all N�2. This implies
that

log2 m �
3 log2 N + 2

1 − �/2
�A10�

�3�1 + �� log2 N + 3, �A11�

provided ��1/2.

APPENDIX B: PROOF OF LEMMA 3

The map E depolarizes each of the systems H jR but for the
purposes of calculation, it is easier to simply discard them. In
the proof, therefore, we will work with the space H�P=
� j�YH�jP, which has dimension dP	dim H�P. Observe that
if we introduce

F��� = �
j�Y

TrjR�� j�� j� , �B1�

which gives a normalized state on H�P, then

�E��� − �0�1 = �F��� − �0�1, �B2�

where �0= IP /dP is the normalized identity operator on H�P.
Using �X�1��rank X�X�2 gives

�F��� − �0�1 � �dP�F��� − �0�2. �B3�

Therefore, we have

E�f � �dP� �F��� − �0�2d����

= �dP� �Tr�F���2 − F���/dP + IP/dP
2 �d���� .

�B4�

Using the normalization Tr F���=1 and the concavity of the
square root function, this expression reduces to

E�f ��� dP Tr�F���2�d���� − 1. �B5�

Therefore, it suffices to evaluate

� Tr�F���2�d���� =� Tr���
j�Y

TrjR�� j�� j�
2
�d���� .

�B6�

Because � j has the form � j =� jR � � jP, where � jR and � jP
are the projectors onto H jR and H jP, respectively,
TrjR�� j�� j� and TrkR��k��k� have orthogonal supports, im-
plying that

Tr���
j�Y

TrjR�� j�� j�
2� = Tr��
j�Y

�TrjR�� j�� j��2� .

�B7�

To evaluate the resulting integral, fix bases 
�m��m=1
D and


�l��l=1
D
 for the spaces H�jR and H�jP, respectively. �Note that

we identify bases labeled by different values of j.� Also let
��0�= �j0m0l0� for some fixed values of j0 ,m0, and l0. Using
Eq. �B7� and making use of the invariance of the measure,
we can expand the integral of Eq. �B6� as

�
U�K�

Tr�F�U�0U†�2�dU

= �
j�Y

�
m,m�=1

D

�
l,l�=1

D
 �
U�K�

Ujml,j0m0l0
Ujml�,j0m0l0

*

�Ujm�l�,j0m0l0
Ujm�l,j0m0l0

* dU , �B8�

which can be evaluated using the identity �see, for example,
Ref. �32��

�
U�K�

UijUkl
* UmnUpq

* dU =
1

K2 − 1
��ij,kl�mn,pq + �ij,pq�kl,mn

−
1

K
�ik� jq�ln�mp −

1

K
�ip� jl�km�nq� .

�B9�

We obtain

�
U�K�

Tr�F�U�0U†�2�dU

= �
j�Y

�
m,m�=1

D

�
l,l�=1

D
 1

K�K + 1�

�l,l� + �m,m�� �B10�

=
� j�Y

�D2D
 + D

2D�

K�K + 1�
. �B11�
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Substituting this back into the expression for E�f yields

E�f �� dP

K�K + 1���j�Y

�D2D
 + D

2D�
 − 1. �B12�

Recalling that dP=� j�YD
 and K=� j�YD
D, we get E�f
��D
 /D. Because D
�

1

D, we have the desired inequality

E�f ��1
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