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We consider completely positive maps that describe noisy, multiparticle unitary operations. We show that by
random single-particle operations the completely positive maps can be depolarized to a standard form with a
reduced number of parameters describing the noise process in such a way that the noiseless �unitary� part of the
evolution is not altered. A further reduction of the parameters, in many cases even to a single one �i.e., global
white noise�, is possible by tailoring the decoherence process and increasing the amount of noise. We gener-
alize these results to the dynamical case where the noisy evolution is described by a master equation of
Lindblad form, and the noiseless evolution is specified by an interaction Hamiltonian. The resulting standard
forms may be used to compute lower bounds on channel capacities, to simplify quantum process tomography
or to derive error thresholds for entanglement purification and quantum computation.
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I. INTRODUCTION

Quantum systems evolve via unitary operations U�t�, as
they are governed by the Schrödinger equation. This also
holds for composite systems, e.g., a small quantum system S
which is surrounded by some environment E, where the evo-
lution of the total system is described by a unitary operation
USE�t�. The dynamics of the system S alone—which can be
obtained by tracing out the �uncontrollable� degrees of free-
dom of the environment—is in general no longer unitary. In
fact, the system interacts with degrees of freedom of the
environment, leading to entanglement between system S and
environment E reflected in USE�t��US�t� � UE�t�. The
system-environment interaction leads to decoherence and the
dynamics of the system can be described either by a �time
dependent� completely positive map �CPM� E�t� or—under
certain assumptions on the nature of interaction—by a mas-
ter equation of Lindblad form �1�. From the perspective of
quantum information processing, such an interaction with
environmental degrees of freedom is undesirable and leads to
errors and noise in the system. As discussed below, an arbi-
trary noise process acting on a d-dimensional system S is, at
fixed time t0, determined by O�d4� real parameters. Even for
small system sizes, e.g., when S consists of three qubits �i.e.,
d=8�, this leads to a huge number of independent parameters
�e.g., around 4000 for the three-qubit system�, which makes
an analytical treatment of the influence of such general noise
processes on the properties of the system rather difficult.
This is particularly hindering when considering either large
systems or sequences of several noisy evolutions �or gates�,
as is, e.g., required in the analysis of quantum circuits or
processes such as entanglement purification.

When considering the influence of noise in quantum in-
formation processing, one hence often restricts the analysis
to certain �ad hoc� noise models, such as Pauli channels or
depolarizing �white� noise models. This is usually the case in
the analysis of entanglement purification protocols in the
presence of noisy operations as well as in the theory of fault-

tolerant quantum computation. On the other hand, having a
specific physical setup in mind, one can sometimes justify
these �or other� noise models by a microscopic description of
the underlying system-environment interactions, where only
the dominant part of noisy interactions is considered. How-
ever, when considering �abstract� quantum processes that
deal with the manipulation of quantum information, one does
not want to restrict oneself to a specific physical setup, but
rather would like to keep the analysis at an abstract level and
as general as possible. To this aim, it would be very useful to
justify the usage of simple noise models in a general context,
or to provide a method to bring any noise process to a simple
standard form described by a few parameters.

In this article, we provide a method which allows one to
achieve this aim. We show that indeed any noise process can
be brought to a simple standard form by means of depolar-
ization. That is, by applying appropriate �local� unitary con-
trol operations on a system before and after the noisy evolu-
tion in a correlated way, one can depolarize the noise
process. This depolarization process of the corresponding
CPM E or the Liouvillian L can be viewed as an analogue of
the depolarization of mixed states. For bipartite states, for
instance, it was shown that one can bring any mixed state
� of two d-level systems to a standard form specified
by a single parameter using an appropriate �random�
sequence of local unitary operations. Depolarization takes
place in such a way that the fidelity of the state, i.e.,
the overlap with a maximally entangled state ���
=1/�d�k=1

d �k��k�, remains invariant. The resulting states �iso-
tropic states� are equivalent to Werner states and are given by
��x�=x���	��+ �1−x��1/d2�1. Werner states played an im-
portant role in the investigation of the relations between en-
tanglement and local hidden variable theories �2�, as well as
in the development of entanglement purification protocols,
schemes which are becoming increasingly important since it
was realized that entanglement can serve as a valuable re-
source not only in quantum communication but also in quan-
tum information processing. The development of these im-
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portant issues was triggered by the simplified description of
Werner states �still covering essential entanglement proper-
ties�, and allowed at the same time to obtain necessary or
sufficient conditions for separability or distillability for arbi-
trary bipartite states.

We are confident that also the depolarization of noisy evo-
lutions will prove to be a fruitful tool in the analysis of noise
processes. In direct analogy to the depolarization of states,
the depolarization of the noise maps takes place in such a
way that the fidelity of the ideal �unitary or Hamiltonian�
part of the evolution is not altered. In fact, we make use of
the isomorphism between completely positive maps and
mixed states �3,4� and connect the problem of depolarization
of maps to the depolarization of the corresponding states,
while respecting certain locality restrictions. For decoher-
ence processes �e.g., storage errors of a system due to its
interaction with the local environment, or errors resulting
due to sending a system through a noisy quantum channel�,
where the ideal operation is the identity or, equivalently, the
Hamiltonian part in the corresponding master equation is
zero, we find that one can depolarize the corresponding map
or master equation to a standard form which is described by
correlated and uncorrelated white noise processes. In the
case of two d-level systems, for instance, the corresponding
depolarized map is described by three real parameters �the
weights of ideal operation, single particle �uncorrelated�
white noise processes and two-particle �correlated� white
noise� as compared to O�d8� parameters of an arbitrary map.
We also consider noisy interactions �i.e., the ideal evolution
is given by some nonlocal unitary operation U or some non-
trivial system interaction Hamiltonian H�, where we concen-
trate on two-system interactions. We find that for certain uni-
tary operations, in particular for SWAP gates, Controlled-
NOT �CNOT� gates, as well as phase gates with arbitrary
phase �, a depolarization is still possible. The required num-
ber of parameters to describe the �depolarized� noise process
depends on the unitary operation �interaction� that has to be
kept invariant, and is given by 17 in the case of arbitrary
phase gate, 8 in the case of the CNOT gate and 3 for the
SWAP gate.

Knowledge of the exact form of the noise process �which
can, e.g., be acquired by means of gate tomography� or ad-
ditional control of interactions �e.g., the ability to switch a
noisy interaction on and off at will� allows to further tailor
the noise process. In this case, the fidelity of the ideal opera-
tion is decreased by a certain �small� amount, while the de-
scription of the noise process is simplified and the number of
relevant parameters is further reduced. In many relevant
cases �e.g., noisy SWAP or CNOT gate, switchable noisy
phase gate�, one finds that one can indeed simplify the noise
process in such a way that the corresponding CPM is de-
scribed by a single parameter and the noise process corre-
sponds to correlated white noise. The total amount of noise
is—in the worst case—increased by about an order of mag-
nitude, as weight of the ideal operation is transferred to the
noise part in an appropriate way to achieve this further sim-
plification.

While in the case of maps a depolarization with a signifi-
cant reduction of the associated parameters is only possible
for certain unitary operations, one finds that, in the case of

master equations, sequential application of fast intermediate
local unitary control operations allows one to depolarize any
master equation �of two systems� to a standard form de-
scribed by at most 17 parameters. In return this depolariza-
tion protocol generally increases the noise level of the deco-
herence process. Under certain circumstances, one may even
achieve a standard form described by a single parameter for
arbitrary two-qubit interactions by accepting a further in-
crease of the noise level.

Such standard forms for noisy evolutions may have wide
spread applications in the analysis of quantum information
processes under realistic conditions. For instance, our ap-
proach allows one to obtain lower bounds on the capacity of
arbitrary multipartite quantum channels by considering the
corresponding depolarized channels. The depolarized noise
process also gives rise to a simplified process tomography.
The tomography has to reveal fewer parameters �the param-
eters characterizing the standard form� than those necessary
to describe the original decoherence process or the noisy
gate. This can lead to a significant reduction of the experi-
mental effort to sufficiently characterize the influence of
noise in a given setup. Also processes involving sequences of
noisy gates, e.g., entanglement purification or some quantum
circuits, can be analyzed by considering the standard forms
for the corresponding gates. The resulting threshold values
do no longer refer to specific error models but are valid in
general, as any noise process can be brought to the corre-
sponding standard form. When applying this method to de-
rive generally valid error thresholds, e.g., in the context of
fault tolerant quantum computation, some care is required.
An implicit assumption in order to allow the application of
such a local depolarization procedure is that the correspond-
ing �local� control operations can in fact be �noiselessly� ap-
plied to the system. When dealing, for instance, with deco-
herence processes due to channel noise or local interaction of
the system with some environment, such an assumption is
perfectly reasonable. Also for two-system interaction gates
�such as the CNOT�, one may assume that local, single sys-
tem gates are noiseless �or introduce a negligible amount of
noise as compared to the two-system gate�. However, when
dealing also with noisy single system operations �as is, e.g.,
required in the analysis of fault tolerant quantum computa-
tion�, it is no longer straightforward to apply our results. One
might argue that for sequences of gates the required �ran-
dom� operations for depolarization can be incorporated in
previous/subsequent noisy gates, although it is not entirely
clear whether this argument justifies the assumption that any
gate within a quantum circuit is already of standard form.
However, whenever local, single system control operations
can be assumed to be noiseless, our results are applicable and
one can indeed bring an arbitrary �nonlocal� noise process to
a simplified standard form.

This paper is organized as follows. In Sec. II we review
basic properties of the Jamiołkowski isomorphism between
completely positive maps and states, which will be the main
tool for the derivation of standard forms for CPM in the
following sections. We will then apply this isomorphism in
Sec. III in order to provide standard forms for an arbitrary
decoherence process in the case where the corresponding
control operation to achieve this standard form does not have
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to obey any locality requirements. In Sec. IV we derive stan-
dard forms for maps describing arbitrary decoherence pro-
cesses and some noisy unitary operations. These standard
forms are achieved by control operations that are local with
respect to some given partitioning. In Sec. V we suggest a
protocol to bring an arbitrary noisy evolution described by a
master equation into some standard form, for which the ac-
companying noise process is described by a reduced number
of parameters. Finally we summarize our results in Sec. VI.
Some technicalities can be found in the appendixes.

II. THE JAMIOŁKOWSKI CORRESPONDENCE BETWEEN
COMPLETELY POSITIVE MAPS AND STATES

In this section we review some properties of the Jami-
ołkowski isomorphism �3� between completely positive
maps �CPMs� and states. In Sec. II A we state and discuss
this isomorphism first on an abstract level as a correspon-
dence between matrices and the endomorphisms of the cor-
responding matrix algebras. We will then restrict this general
isomorphism to the physical setting of quantum states and
quantum operations in Sec. II B, where the isomorphism has
a clear interpretation in terms of a teleportation protocol. In
Sec. II C we review some applications of the isomorphism
�5�. Known distance measures for quantum states can be
used to provide distance measures for �trace preserving�
CPMs, which we will use in the following. Finally we extend
the Jamiołkowski isomorphism in Sec. II D to the multiparty
setting and discuss some implications for the entanglement
capabilities of CPMs. For sake of completeness the reader
can find a review �4,6� about the relation between the spec-
tral decomposition of states and the Kraus representation for
CPMs in Appendix A and about the relation between the
purification for quantum states and quantum operation in Ap-
pendix B. Note that the main properties of the isomorphism
are stated in the form of short propositions with a consecu-
tive numbering �Nos. 1–13�, that is continued in the Appen-
dix.

A. The isomorphism in the general setting

Let HA and HA� be two Hilbert spaces of finite dimen-
sions dA=dimC�HA� and dA�=dimC�HA��. With MA

=M�HA� and MA�=M�HA�� we denote the corresponding
matrix algebras over HA and HA�, respectively, which con-
tain the set of physical states �density matrices� DA�MA
and DA��MA� as �proper� convex subsets. Similarly, we
will write M�HA ,HA�� for the algebra of dA� �dA matrices
representing the linear maps from HA to HA�. Moreover let
End�MA→MA�� be the set of linear maps �endomorphisms�
between the algebras MA and MA�, which contain the physi-
cal operations CPM �DA→DA�� between the two quantum
systems, i.e., completely positive maps, as a proper subset. In

the following we will frequently consider a copy Ā of system
A and use—after identifying and fixing a basis in HA and
HA�—the maximally entangled state

��� =
1

�dA
�
i=1

dA

�i�Ā�i�A, P� = ���	�� �1�

on the composite system HĀ � HA.

The Jamiołkowski isomorphism. The map

J: M�HA� � HA� → End�MA → MA�� ,

that maps a matrix E of the matrix algebra over the compos-
ite system HA� � HA to the linear map E given by

E�M� ª dA
2 trAĀ�EA�AP�

AĀMĀ� �2�

�for any M �MA
MĀ� is an isomorphism �3,4�, i.e., it is
linear and bijective. For the inverse of J the matrix
E�M�HA� � HA�, that corresponds to the linear map E, is
given by

E ª EĀ
� IdA�P�

ĀA� . �3�

If the matrix E and map E in correspondence are decom-
posed with respect to the chosen basis �j� �j�NdA

� on HA �or
HĀ� and �i� �i�NdA�

� on HA�

EA�A = �
i,k�NdA�

j,l�NdA

Eij�kl�i�A�	k� � �j�A	l� , �4�

E�M� = �
i,k�NdA�

j,l�NdA�

Eik�jl	j�M�l��i�A�	k� �5�

the Jamiołkowski isomorphism is simply �6�

Eik�jl = dAEij�kl. �6�

From this relation between the coefficients the bijectivity
immediately follows from the linearity of J together with the
fact that M�HA� � HA� and End�MA→MA�� both are linear
spaces of dimension dA�dA�. The above result therefore can
be shown by deriving relation �6� separately from Eq. �2� and
from Eq. �3� using the fact that

dA trĀ�P�
AĀMĀ� = �MA�t �7�

holds for any M �MA.
The isomorphism also turns out to be an isometry �6�: If

one uses the inner products

	E,F� ª tr E†F �8�

	E,F� ª �
j,l�NdA

tr�„E��j�	l��…†F��j�	l��� �9�

for E ,F�M�HA� � HA� and the corresponding maps E ,F
�End�MA→MA��, it can readily be seen that

	E,F� = 	E,F� �10�

holds. Note that the corresponding norms �M� on MA�MA��
and �E� on End�MA→MA�� are Euclidean �l2 norms�.

Equation �6� shows that the isomorphy does not extend
to the respective compositions in M�HA� � HA� and
End�MA→MA��. For example, the composition E �F of to
maps would correspond to a matrix composition law E�F,
where �E�F�ij�kl=�mnEim�knFmj�nl which differs from the
usual matrix multiplication. Nevertheless it also provides
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M�HA� � HA� with a semigroup structure �6�.
The effect of matrix multiplication by local �7� matrices is

given by the following formula: Given a map E and its cor-
responding matrix E and the matrices B1 ,C1�MA�, B2 ,C2
�MA, then the transformed matrix

E� = B1
A� � B2

AEEC1
A� � C2

A �11�

corresponds to a map E� with

E��M� ª B1E�B2
TMC2

T�C1. �12�

B. The isomorphism for quantum states and quantum
operations

Under which conditions on the matrix E�M�HA� � HA�
does the linear map E�End�MA→MA�� correspond to a
physical operation, i.e., is a �trace-preserving� CPM? This
can be answered by the following results �6�.

�1� E is Hermiticity preserving �8�, iff E is Hermitian.
�2� E is positivity preserving �8�, iff E is Hermitian and

for all separable states F�D�HA� � HA�tr�EF��0 holds.
�3� E is completely positive �8�, iff E is positive.
�4� E is a trace-preserving CPM �8�, iff E is positive and

trA� EA�A= �1/dA�1A holds.
These results imply that the Jamiołkowski isomorphism

can be restricted to J : D�HA� � HA�→End�DA→DA��
yielding a correspondence between trace-preserving CPM
and states on the composite system of A and A�. In this case
the isomorphism can be given a natural interpretation in
terms of a teleportation protocol �without classical commu-
nication�: In order to obtain the state E corresponding to a
CPM E according to Eq. �3� the CPM E simply has to be

applied at the system Ā of the composite system in the maxi-
mally entangled state ��� �see Fig. 1�. Conversely, given the
state E, the CPM E can be evaluated for an arbitrary input
state � according to Eq. �2� as follows �see Fig. 2�. Consid-
ering the composite system consisting of parties A� and A in

the state E together with the input state � at system Ā, i.e.,

the total state EA�A � �Ā, the joint system AĀ is measured in a

Bell basis containing the maximally entangled state P�
AĀ.

With probability 1 /dA
2 the desired output state E��� is then

obtained at system A�.
According to Eq. �12� any operation N on E, which is

separable with respect to the partitioning �A� ,A�, i.e.,

E� = �
j

Bj
A� � Cj

AE�Bj
A� � Cj

A�†, �13�

translates to a probabilistic application of combined opera-
tions before and after the CPM E:

E��M� ª �
j

BjE�Cj
TMCj

*�Bj
†. �14�

In particular, the application of local unitaries or measure-
ments to E on party A�A�� corresponds to the application of
local unitaries or measurements before �after� the CPM E. On
the other hand, not all separable operations can be imple-
mented by local quantum operations and classical communi-
cation �LOCC� �9�. Since only the measurement results be-
fore the CPM E can influence operations performed
afterward, we have to restrict the separable operations on
side A and A� even to be local quantum operations and one-
way classical communication �1-LOCC� from party A to
party A�. The separable operations in question thus corre-
spond to the state

E� = �
ij

Bij
A� � Cj

AE�Bij
A� � Cj

A�†,

where the following holds.
�i� � jCj

†Cj =1, i.e., the quantum operation C���=� jCj�Cj
†

on party A is a trace preserving CPM.
�ii� C is bistochastic C�1�=1 and hence the corresponding

CPM C̃���=� jCj
T�Cj

* before the application of E is also a
trace preserving CPM, i.e., � jCj

*Cj
T=1.

�iii� For each measurement outcome j on party A
�before the application of E� the corresponding operation
B j���=�iBij�Bij

† , that is performed on party A� according to
the classical information sent by A, is a trace preserving
CPM, i.e., �iBij

† Bij =1.
Conditions �i� and �iii� specify the notion of a general

1-LOCC protocol, that we consider in the following. In many
cases such as for local projective measurements or for proba-
bilistic applications of local unitaries, property �ii� follows
from �i�, but in general �ii� provides an separate condition,

which reflects the fact that before E not C but C̃ with trans-
posed Kraus operators is applied. To simplify notations we
will therefore consider those 1-LOCC protocols, that satisfy
all three conditions. The above discussion indicates the two
directions, in which one can try to manipulate E with the help
of the corresponding state E.

FIG. 1. In order to obtain the state E the CPM E is applied to

system Ā of the joint system of A and Ā, which is prepared in the

maximally entangled state P�
ĀA.

FIG. 2. �Color online� Given the state E on the composite sys-
tem A� and A, the CPM E is evaluated for an arbitrary input state �

by taking � as an input at system Ā. Then the joint system AĀ is
measured in a Bell basis containing the maximally entangled state

P�
AĀ. With probability 1 /dA

2 the desired output state E��� is then
obtained at system A�.
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�A� If one really has the above teleportation protocol
available in practice, any �nonlocal� operation on E can be
considered in order to manipulate the corresponding CPM.

�B� If the isomorphism is only a helpful theoretical tool,
then one should only consider 1-LOCC operations on E in
order to manipulate a given CPM, since these operations can
be implemented by a coordinated application of operations
before and after the evaluation of the CPM.

We emphasize that only one direction of the isomorphism
protocol can be implemented with unit probability of suc-
cess. This implies that the case �A� corresponds to a proba-
bilistic modification of the CPM E whereas case �B� gives
rise to a deterministic manipulation protocol. Case �A� is
also equivalent to all protocols, in which one does not only
allow arbitrary local operations before and after the applica-
tion of E �and therefore the use of independent ancillary sys-
tems to perform these operations� but also to make an �arbi-
trary� ancillary system available to store quantum
information. This information is obtained during the opera-
tions before the CPM E and later used in the operations per-
formed after E �10�.

C. Distance measures for quantum states and quantum
operations

In the remainder of this paper we derive standard forms
E� for some noisy CPM E, that approximates some ideal
operation I. A reasonable requirement for such a standard
form is that it is also a considerably good approximation to
the ideal operation. In order to assess this requirement some
kind of distance measure between quantum operation is
needed. As a first application of the Jamiołkowski correspon-
dence we thus review the derivation �5� of distance measures
for quantum operations from those for quantum states.

Concerning the isometry properties discussed in Sec. II A
note that the Euclidean norm does not provide a proper dis-
tance measure d for quantum states, since it does not obey
the contractivity property, that is

d„E���,E���… � d��,�� �15�

for all states � ,� and trace-preserving quantum operations E
�11�. This property expresses the physical condition that no
quantum process should allow to increase the distinguish-
ability of two quantum states. In the literature �see, e.g.,
Refs. �5,12,13�� there are mainly two metrics �14� considered
that also obey the contractivity property, namely, trace
distance: d1�� ,��ª 1

2 ��−��tr, where �M�trª tr��M†M� is
the trace norm and fidelity-based distances, that are mono-
tonically decreasing functions of the fidelity F�� ,��
ª tr��������2 such as d2�� ,��ª�1−F�� ,��; note that
F���� ,��= 	������ if �= ���	�� is pure. By again using the
Jamiołkowski isomorphism both distance measures for quan-
tum states have a natural counterpart as a distance measure
for quantum operation. Given two trace-preserving quantum
operations E and F one can define the distance 	�E ,F�
=d�E ,F� as the distance d between the corresponding states
E and F, which is easily shown to yield a metric 	 on the set
of trace-preserving quantum operations as long as d is a met-
ric on the corresponding set of quantum states. Choosing

d=d1 or d=d2 the corresponding distance measures 	1 and
	2 also have the following two properties, which seem to be
reasonable requirements for any distance measure for quan-
tum operations �5�.

Stability �12�. 	�Id � E , Id � F�=	�E ,F�, i.e., the distance
measure of two quantum processes should not depend on
whether they are considered to occur in an environment to-
gether with some unrelated ancillary quantum system;

Chaining �15�. 	�E1 �E2 ,F1 �F2��	�E1 ,F1�+	�E2 ,F2�,
i.e., for a composed process, the total error will be less than
the sum of the errors in each individual step.

Note that the evaluation of the above distance measures
in practice requires some quantum process tomography.
Moreover both measures can be shown to have some
physical interpretation in the sense of a bound to the average
case error in function computation and sampling computa-
tion �5�. But in the following we will consider a slightly
different application. Unfortunately the natural approach for
defining error measures for quantum operations by averaging
the distances between the output states, i.e., 	�E ,F�
ª�d�d(E��� ,F���) so far could not be modified in such a
way that it would also fulfill the stability property. Neverthe-
less, for the case that one operation F=U is a unitary opera-
tion, the average fidelity

F̄�E,U� ª d�	��U†E����	���U��� �16�

has at least a plausible interpretation in terms of the average
“overlap” between the two outputs U��� and E����	���, al-
though it does not even define a metric. It was shown in Ref.

�16� that this average fidelity F̄�E ,U� is linearly related to the
“Jamiołkowski” fidelity F�E ,U�=F�E , ��U�� by

F̄�E,U� =
F�E,U�d + 1

d + 1
, �17�

where ��U� denotes the pure state corresponding to the uni-
tary operation U.

In the following we will be interested in standard forms
for noisy operations E, which approximate some ideal opera-
tion, that will be either the identity �Id� or some unitary U.
These standard forms E� are obtained by different protocols,
which might introduce additional noise to the operation E.
Apart from simplicity of the obtained standard form E�, it
should only differ in the same order of magnitude from the
ideal operation U or Id as the original imperfect operation E.
The above argument shows that the “Jamiołkowski” fidelity
F�E , Id� or F�E ,U� can in both cases be used to measure this
distance: On the one hand the fidelity is related to a decent
distance measure for quantum operation by a monotonic de-
creasing function. On the other hand for our applications the
fidelity has a physical interpretation in terms of the average
error in approximating an ideal �unitary� quantum operation
U. In the following we therefore try to provide standard
forms E� of noisy operations E, that have either the same or
a slightly decreased fidelity F�E� ,U� with the ideal operation
as the original one �F�E ,U��.
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D. The isomorphism in the multiparty setting

The Jamiołkowski isomorphism has a natural extension to
multiparty scenarios, which are of special interest in
quantum information theory. For this let the system
A= �A1 , . . . ,AN� consist of N parties, each representing
Hilbert spaces HAi of different dimensions dAi

, such that
HA=HA1 � ¯ � HAN and dA=�i=1

N dAi
. In order to keep the

argumentation simple we consider only CPM E, whose input
and output Hilbert spaces are of the same type, i.e.,

HA�=HA1� � ¯ � HAN� with HAi�
HAi.
The main point in extending the isomorphism to the mul-

tiparty setting is to choose the maximally entangled state
�
�ĀA to be the tensor product of the respective maximally
entangled states

���ĀiAi =
1

�dAi

�
k=1

dAi

�k�Āi�k�Ai �18�

between the subsystem Ai and its copy Āi at each individual
party i=1, . . . ,N. The maximally entangled state � is there-
fore

P�
ĀA = P�

Ā1A1 � ¯ � P�
ĀNAN �19�

with P�
ĀiAi = ���ĀiAi	��. In this notation the isomorphism will

have exactly the same form as stated above with the only
difference that the maximally entangled state � used in both
directions now also respects the partitioning A
= �A1 , . . . ,AN�:

E�M� ª dA
2 trAĀ�EA�AP�

AĀMĀ� �20�

E ª EĀ
� IdA�P�

ĀA� . �21�

For the interpretation in terms of a teleportation protocol

the preparation of the maximally entangled state P�
ĀA and the

corresponding Bell measurement can be performed locally at
each party separately, since the entanglement present in P� is

only with respect to the systems Ai and their copies Āi but
not with respect to the partitioning itself �see Figs. 3 and 4�.
For the index notation it is convenient to take the same for-
mula as in Eq. �6�

Eik�jl = dAEij�kl, �22�

but to consider the indices i, j, k, and l as multi-indices, e.g.,
i= �i1 , . . . , iN��NdA1

� ¯ �NdAN
. It turns out, that many of

the entangling capabilities of the CPM E are directly related
to the entanglement properties of the corresponding state E
�see Refs. �4,17��.

�5� E is separable with respect to parties Ak and Al �and
therefore not capable to create entanglement between them�,
iff E is separable with respect to parties Ak and Al. In par-
ticular, we find that the CPM corresponding to the tensor
product of states E � F simply is the tensor product of the
corresponding CPMs E � F.

�6� For the partial transposition TAk with respect to party
Ak we have

�E�M��TAk� = E��MTAk� �23�

with E�=ETAk�Ak. In particular, E is PPT preserving with re-
spect to party Ak �18�, iff E is PPT with respect to the joint
transposition of Ak� and Ak.

�7� The CPM E can simulate another CPM F under
SLOCC �19�, iff the corresponding positive operator E can
be converted into F by means of SLOCC.

�8� Two CPMs E and F are equivalent under local unitar-
ies �LU�, iff the corresponding positive operators E and F are
LU-equivalent with respect to the finest partitioning
�A1 ,A1� , . . . ,AN ,AN� �.

�9� The CPM E can generate a state � of the composite
system HA� � HA with nonzero probability of success, iff the
corresponding positive operator E can be converted into � by
means of SLOCC.

FIG. 3. �Color online� In order to obtain the state E the CPM E
is applied to the systems Āi of the joint system Ā= �Ā1 , . . . , ĀN�,
which are �locally� prepared in the maximally entangled states

P�
ĀiAi.

FIG. 4. �Color online� Given the state E on the composite sys-
tem A�= �A1� , . . . ,AN� � and A= �A1 , . . . ,AN�, the CPM E is evaluated
for an arbitrary multipartite input state � by taking � as an input at

system Ā= �Ā1 , . . . , ĀN�. Then the joint systems AiĀi are �locally�
measured in a Bell basis containing the maximally entangled state

P�
AiĀi. With probability 1 /dA

2 the desired output state E��� is then
obtained at system A�.
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Since the classification of pure states in bipartite and
three-qubit systems under SLOCC is known in detail, the
results can be transferred to the corresponding maps via Nos.
�7� and �9� �see Ref. �17��. For further applications to puri-
fication, storage, compression, tomography, and probabilistic
implementation of nonlocal operations and its use in quan-
tum computation we refer the reader to Refs. �20,21�.

In the following we will mainly consider two-qubit gates,
which are of special interest in quantum computation and
quantum information. Note that in Refs. �4,20� �see Sec. III�
it was shown for the case of two-qubit unitary operations,
how to modify the teleportation protocol to implement an
arbitrary two-qubit unitary with unit probability of success.
We will illustrate the results Nos. 7, 8, and 9 for these gates,
namely, for the following.

CNOT gate: UAB= �0�A	0�+ �1�A	1��x
B

��CNOT� =
1
�2

��00�AA���0�BB� + �11�AA���1�BB�� . �24�

Phase gate: UAB���=e−i��y
A

��y
B

������ = cos�����0�AA���0�BB� − i sin�����2�AA���2�BB�.

�25�

SWAP gate: UAB= �00�AB	00�+ �01�AB	10�+ �10�AB	01�
+ �11�AB	11�

��SWAP� = ��0�AB���0�BA�. �26�

Note that ��SWAP� is a product state with respect to the par-
titioning AB� vs A�B but not with respect to the partitioning
AA� vs BB�. In fact ��SWAP� has a Schmidt decomposition
into four �AA� ,BB��-product terms, whereas ��CNOT� and
������ can be decomposed into two �AA� ,BB��-product
states. From basic facts �22� about bipartite entanglement for
pure states it follows from No. 7 that the SWAP gate can
simulate the phase gate and the CNOT gate by means of
SLOCC operation to be performed before and after the
SWAP operation �but not vice versa�. Moreover the CNOT
gate and the phase gate can simulate each other under
SLOCC for arbitrary �� �0,2��. For the case of �=� /4
they actually coincide up to some local unitaries �17,23�:

UCNOT
AB = U1

A
� U2

BUAB��

4
�V1

A
� V2

B �27�

with

U1 =
1
�2

� 1 − i

− 1 − i
�, U2 = �1 0

0 − i
� ,

V1 =
1
�2

�1 i

i 1
�, V2 =

1
�2

� 1 i

− 1 i
� .

This corresponds to the fact that the corresponding states
��CNOT� and ���� /4�� are LU equivalent with respect to to
the partitioning �A ,A� ,B ,B�� �see No. 8�, i.e.,

��CNOT� = U1
A� � U2

B� � �V1
A�T

� �V2
B�T����

4
�� . �28�

According to No. 9 the SWAP-gate will moreover be capable
to create more entanglement than the CNOT gate and the
phase gate, which can—up to SLOCC—create the same type
of entanglement.

III. STANDARD FORM FOR DECOHERENCE
IN THE SINGLE-PARTY SETTING

In this section we apply the Jamiołkowski isomorphism in
order to derive a standard form for an arbitrary decoherence
process, that is described by some CPM E. We show that this
standard form can be achieved by randomly choosing appro-
priate unitaries to be performed before and after the actual
CPM occurs. We first consider the case of a qubit system and
then discuss a generalization to d-level systems.

Let denote �0=1, �1=�x, �2=�y, and �3=�z the Pauli
matrices. Note that starting with the maximally entangled

state ���AĀ= �1/�2���00�AĀ+ �11�AĀ� we obtain a complete
Bell basis ���0� , ��1� , ��2� , ��3�� simply by applying �i lo-

cally on system A, i.e., ��i�AĀ=�i
A

� IdĀ���0�AĀ�. Thus any
decomposition of a state E=�ijEij��i�	� j� in terms of the Bell
basis corresponds to a canonical representation of the CPM E
in terms of Pauli matrices

E��� = �
i,j=0

3

Eij�i�� j , �29�

where the conditions on the matrix E= �Eij� can directly be
read off from the isomorphism, i.e., E must be density ma-
trix. A case of particular interest in quantum information
theory, especially in the study of fault-tolerance of quantum
computation, is when E is a diagonal matrix. In many appli-
cations the corresponding CPM, the so called Pauli channel

E��� = �
i=0

3

Ei�i��i with ��
i=0

3

Ei = 1� , �30�

describes some underlying noise model or decoherence
process. This class contains for E0= �1+3p� /4 and E1=E2

=E3= �1− p� /4 the depolarizing channel �white noise�
E�= p�+ �1− p� 1

21, for E0= �1+ p� /2, E1=E2=0, and E3

= �1− p� /2 the dephasing channel E�= p�+ �1− p� /2��
+�z��z� and for E0= �1+ p� /2, E2=E3=0, and E1= �1− p� /2
the bit-flip channel E�= p�+ �1− p� /2��+�x��x�.

We show now that the decoherence process specified by
an arbitrary CPM E as in Eq. �29� can be transformed into a
Pauli channel E� �see Eq. �30�� with the same diagonal ele-
ments Ei=Eii. This can be achieved by a probabilistic but
correlated application of one of the four Pauli matrices �i
before and after the actual noise occurs:

E���� =
1

4�
i=0

3

�iE��i��i��i. �31�

In other words, by randomly choosing one of the four Pauli
matrices with probability 1

4 to apply to a system before and
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after the noise process affects the system �e.g., some memory
device� and ignoring the information about which Pauli ma-
trix has been applied, an experimenter will actually �only�
have to deal with noise of the form of a Pauli channel. The
fact that the CPM E can be brought to this form E� follows
from the Jamiołkowski isomorphism used as in case �B� and
the fact, that the corresponding state E can be diagonalized to
E� by a mixing procedure, in which each of the local Pauli

operators �i
A

� �i
A� is applied with probability 1

4 :

E�AA� =
1

4�
i=0

3

�i
A

� �i
A�EAA��i

A
� �i

A�. �32�

The achieved standard form in Eq. �30� can be further
depolarized, by considering the following three Clifford op-
erations Qk=ei�/4�k =�i�k with k=1,2 ,3. Starting with a
state of standard form Eq. �30� one can in fact compute that

1

3�
k=1

3

Qk � Qk
*EQk

†
� Qk

T

= E0��0�	�0� + �E1 + E2 + E3�

����1�	�1� + ��2�	�2� + ��3�	�3�� . �33�

This means that by uniformly choosing one of the 12 unitar-
ies Uki=Qk�i for k=1,2 ,3 and i=0,1 ,2 ,3 and applying Uki

†

before and Uki after the application of an arbitrary CPM E
�see Eq. �29�� the resulting CPM E�:

E���� =
1

12�
ki

UkiE�Uki
† �Uki�Uki

† �34�

will be of the form of depolarizing channel

E���� = ��f�� + �1 − ��f��tr �
1

d
1 �35�

with f =E00 and ��f�= �4f −1� /3. Note that a similar twirling
procedure is also used in the recurrence protocol �24� for
entanglement purification. Both depolarization procedures
�31� and �33� leave the state ��� and thus the identity opera-
tion Id invariant. Hence the Jamiołkowski fidelity remains
the same, i.e., F�E , Id�=E00=F�E� , Id�. Since the Jami-
ołkowski fidelity represents the noise level of the respective
operations E and E�, both standard forms can be achieved
without introducing additional noise to the system.

Let us now turn to the case of general qudit systems with
d=dimC�HA�=dimC�HA��. Here the following complete basis
of maximally entangled states can be chosen:

��kl�AA�
ª

1
�d

�
m=0

d−1

ei�2�/d�k·m�m + l�A�m�A�, �36�

where addition m+ l and multiplication k ·m is meant modulo
d. Note that the Bell basis can be generated by acting on only
one of the systems by means of unitaries Ukl �generalized
Pauli group�

Ukl�m� ª ei�2�/d�km�m + l� �37�

out of the maximally entangled state ��00�= ���, e.g.,

��kl�AA� = Ukl
A

� IdA����00�AA�� . �38�

Similar to Eq. �29� the canonical form for an arbitrary CPM
in terms of the generalized Pauli operators is

E��� = �
kl,k�l�

Ekl,k�l�Ukl�Uk�l�
† . �39�

With respect to this Bell basis the corresponding state has the
decomposition

E = �
kl,k�l�

Ekl,k�l���kl�	�k�l�� . �40�

By generalizing the depolarization procedure in Eq. �31� we
can again diagonalize the state E and thus bring the corre-
sponding CPM E to the form of a �generalized� Pauli chan-
nel.

Standard form: Pauli channel. By uniformly choosing
one of the d2 Pauli operators Ukl and applying Ukl

† before and
Ukl after the application of an arbitrary CPM E �see Eq. �39��
the resulting CPM E�

E���� =
1

d2 �
k,l=0

d−1

UklE�Ukl
† �Ukl�Ukl

† �41�

will be of the form

E���� = �
kl

Ekl� Ukl�Ukl
† �42�

with Ekl� =Ekl,kl.
A proof of this statement can be found in Appendix C.

Whereas an arbitrary Hermitian matrix E is described by
1
2d2�d2−1� real parameters, which in addition have to fulfill
the constraints No. 4 �Sec. II B� in order to correspond to a
trace preserving CPM E, an arbitrary Pauli channels E� can
be described by only d2−1 positive parameters Ekl �25�.

The number of parameters can even be decreased by con-
sidering for the symmetrization procedure not only the Pauli
group Sª �±1, ± i�� ��0 ,�1 ,�2 ,�3� but the larger group

S� = �UA
� U*A��U � U�d�� �43�

of all local unitaries of the form UA � U*A�. Since the group
S� contains S, it has at most a smaller commutant. Whereas
the commutant of S is the set of all Bell diagonal states, the
commutant of S� is indeed �26� only generated by the �or-
thogonal� states P� and

 ª

1

d2 − 1 �
k,l

�k,l���0,0�

��kl�	�kl� =
1

d2 − 1
�1 − P�� . �44�

In other words the set of states, that is invariant under S�, is
determined by a fewer set of parameters. In fact, the states
E�=D�E� obtained by this “twirling” operation
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D�E� = �U � U*�E�U†
� UT�dU , �45�

where dU denotes the uniform probability distribution on the
unitary group U�d� proportional to the Haar measure, is de-
termined by a single real parameter

E� = fP� + �1 − f� �46�

=��f�P� + �1 − ��f��
1

d21, �47�

with ��f�= �d2f −1� / �d2−1�. Note that the fidelity f
= 	��E����= 	��E��� �0� f �1� is left unchanged under the
twirling procedure D, since D simply is a projection onto the
subset of states invariant under this “isotropic symmetry”:

D�E� = tr�P�E�P� + �d2 − 1�tr�E� . �48�

We remark that by partial transposition these isotropic states
E� are in one-to-one correspondence �27� to the set of
Werner states �2�. Since E� is a mixture of the maximally
entangled state P� and a maximally mixed state, we find that
the normal form of the corresponding CPM E� is the �gener-
alized� depolarizing channel �28�.

Standard form: Depolarizing channel. By uniformly
choosing a unitary U�U�d� and applying U† before and U
after the application of an arbitrary CPM E �see Eq. �39�� the
resulting CPM E�:

E���� = UE�U†�U�U†dU �49�

will be of the form

E���� = f� +
1 − f

d2 − 1 �
k,l

�k,l���0,0�

Ukl�Ukl
†

= ��f�� + �1 − ��f��tr �
1

d
1 �50�

with f =E00 and ��f�= �d2f −1� / �d2−1�.
Since an isotropic state E� as in Eq. �47� is separable iff

f �1/d �26�, we note that, according to No. 13. in Appendix
A, the corresponding depolarizing channel becomes en-
tanglement breaking at this point.

Let us briefly address the question of possible practical
implementations of the twirling protocol described above. As
it is shown in the Appendix C it is actually sufficient for the
depolarization protocol to uniformly choose some unitaries
from a finite set of Clifford unitaries.

To summarize we have shown that both standard forms
E�, the Pauli channel and the depolarizing channel, can be
obtained by a random application of quantum operations ap-
plied before and after the actual CPM E. These operations
are chosen uniformly at random from a finite set of unitaries.
Moreover we have seen that these depolarization protocols
do not introduce additional noise to the system.

IV. STANDARD FORMS FOR CPM IN THE MULTIPARTY
SETTING

In this section we will continue the discussion of standard
forms for noisy quantum operations. We will consider a par-
titioning of the system A= �A1 , . . . ,AN� into N parties, which
might be located at distant places. Any depolarization proto-
col that brings a given �nonlocal� CPM into its standard form
therefore should be local with respect to this partitioning. In
the following we will consider an ideal operation I, that can
only be realized imperfectly as a CPM E. We are now inter-
ested in the possible normal forms E�, into which we can
transform E by means of LOCC operation �with respect to to
the given partitioning�, that are carried out before and after E
�29� is actually applied. If one is interested in the standard
form for a map describing a given decoherence process itself,
the ideal operation is the identity I=Id. Apart from the iden-
tity we will in the multiparty setting also consider the case,
where the ideal operation is some two-qubit unitary opera-
tion I=U �U���=U�U†�, which can only be realized in form
of some noisy quantum operation E. In contrast to the case
discussed in the previous section, the locality requirements
now impose rather severe constraints on the allowed opera-
tions to manipulate a given CPM. Note that the state I cor-
responding to the ideal operation �identity or unitary� is pure.
That is for I=U �I=Id� we have I= ��U�	�U� �I= ���	���,
respectively. Before we give an outline of this section we
mention several aspects of the problem of finding such a
standard form.

One can distinguish the two cases where only determinis-
tic or also probabilistic transformations are considered, i.e.,
whether it is possible to transform E into the respective nor-
mal form E� in all of the possible measurement branches of
the LOCC protocol or in at least one.

Closely related to this distinction is the question whether
one uses the teleportation protocol directly as in �A� or indi-
rectly as in �B�, since a direct use of the isomorphism proto-
col in general has only a certain probability of success.

First, one would like the transformation protocol D �on
state level� to leave the ideal operation invariant, i.e.,
D�I�= I. In this case the fidelity F�E� ,I�=tr IE� of the ideal
operation with the transformed noisy operation E� will be the
same as the fidelity F�E ,I�=tr IE of the ideal operation with
the noisy operation E. Since the Jamiołkowski fidelity with
the ideal operation can be regarded as some kind of distance
measure, the transformation will keep E as close to the ideal
operation as before. For the case of the ideal operation being
the identity, the protocol D simply should be unital. On the
other hand one might as well be allowed to sacrifice some
fidelity with the ideal operation in order derive simpler stan-
dard forms.

The transformation protocol might bring any CPM onto
its respective standard form �universal protocol� or it might
be designed to transform a specific CPM into standard form.

Note that most of the differences in these versions of the
problem only become important in the multiparty setting.
This is mainly due to the fact that the depolarizing channel
already provides a standard form for an arbitrary noise pro-
cess, which can be achieved deterministically by a unital
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transformation and which is already specified by a single
noise parameter f .

We generalize the results of Sec. III in Sec. IV A and
derive standard form for decoherence processes �i.e., for the
case I=Id� under the constraint that the underlying control
operation have to be local with respect to the given partition-
ing. In Sec. IV B we discuss the case where the ideal opera-
tion is one of the unitary gates SWAP, CNOT or a phase gate
with some arbitrary angle. In this section we restrict first to
those depolarization procedures that are universal, determin-
istic and leave these unitary gates invariant. In Sec. IV C we
also discuss the case where the fidelity f of the operation is
decreased by a certain amount �i.e., additional noise is intro-
duced� in order to obtain a simpler standard form describing
the noise process, that is to reduce the number of required
parameters. For gates locally equivalent to SWAP and
CNOT, this leads to noise processes described by global
white noise. A similar result is obtained for all phase gates,
provided that one has control over switching the noisy op-
eration on and off at will. The noise is—in the worst case—
increased by an order of magnitude. Finally we briefly men-
tion the problems in Sec. IV D that occur when trying to
transfer the techniques developed in Sec. IV B and Sec. IV C
to the more general case of an arbitrary unitary operation as
the ideal operation.

A. Standard forms for decoherence in the multiparty setting

1. Depolarization without sacrificing

Let us now consider possible standard forms for noise
operations �i.e., ideal operation is the identity� in the multi-
partite setting. Note that the twirling operation D used in
Sec. III corresponds to a projection into the space of states E
over HA � HA� �recall that we chose dA=dimC�HA�
=dimC�HA��=�i=1

N dAi
�. Thus it is straightforward to derive

the corresponding standard form for the multiparty case,
which is obtained after sequential application of the twirling
operation D locally at each party. Since the invariant group
in question are � i=1

N SAi
and � i=1

N SAi
� respectively, the commu-

tants of these groups �i.e., the subspace of invariant matrices
in M�HA� � HA�, onto which the projection � i=1

N DAi
projects� are just given by the tensor products of the commu-
tants �subspaces� for each party. Hence, a probabilistic appli-

cation of local unitaries gkl=gk1l1

A1A1� � ¯ � gkNlN

ANAN� �30� with
probability 1 /dA=1/dA1

¯1/dAN
diagonalizes E and gives

the generalized multipartite Pauli channel

E���� = �
k,l�NdA1

�¯�NdAN

EklUkl�Ukl, �51�

which is again specified by dA
2 −1 positive parameters

�Ndi
ª �0, . . . ,di−1��. In the case of equal dimensions d the

channel is determined by dA=d2N−1 parameters. For a noise
operation on two qubits, for example, the corresponding
standard form is given by

E���� = �
i,j=0

3

Eij�i
A1 � � j

A2��i
A1 � � j

A2. �52�

As in the case of a single system, further depolarization is
possible and hence a simpler standard form can be achieved.
To this aims one performs a complete twirl over the larger
group S�. The result of this twirl is that one projects E into
the set of states of the form

E = �
k�N2�¯�N2

Ekk, �53�

where k=k1

A1 � ¯ � kN

AN and at each party Ai ki

Ai denotes
one of the two orthogonal states 0= P� or 1= spanning
the respective isotropic subspace. If E� is decomposed with
respect to the �nonorthogonal� basis �0 ,1�= (P� , �1/dAi

2 �1),
the corresponding CPM E� has a natural interpretation in
terms of different white noise factors. To be more precise let
us consider the example of two qudits with d=dA1

=dA2
. In

this case the state E� is of the form

E� = �00P�
A1 � P�

A2 + �01P�
A1 �

1

d21A2
+ �10

1

d21A1
� P�

A2

+ �11
1

d21A1
�

1

d21A2
. �54�

Since ��0 ,�1�= �P�− ,d2� is a dual basis for �P� , �1/d2�1�,
we have that

�00 = tr��0
A1 � �0

A2EA1A2� = E00 −
E01

d2 − 1
−

E10

d2 − 1
+

E11

�d2 − 1�2 ,

�01 = tr��0
A1 � �1

A2EA1A2� =
d2E01

d2 − 1
−

d2E11

�d2 − 1�2 ,

�10 = tr��1
A1 � �0

A2EA1A2� =
d2E10

d2 − 1
−

d2E11

�d2 − 1�2 ,

�11 = tr��1
A1 � �1

A2EA1A2� =
d4

�d2 − 1�2E11. �55�

For the corresponding normal form E� of the CPM E we
obtain

E���� = �00� + �01�A1
�

1

d
1A2

+ �10
1

d
1A1

� �A2

+ �11
1

d2 tr���1A1A2
, �56�

where �A1
= trA2

��� and �A2
= trA1

���. The second and third
term correspond to white noise introduced locally at each
party, whereas the last summand introduces global white
noise. Note that some of the coefficients �00, �01, or �10 can
be negative. In the case of equal dimensions at each party
�dAi

=d� we have reduced the number of parameters from
initially O�d4N� for a general CPM E over d2N−1 for a
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general multiparty Pauli channel to 2N−1 parameters �inde-
pendent of the dimension d� to describe different types of
multiparty white noise.

So far we have only considered twirling protocols, that
were deterministic, made direct use of the isomorphism and
left the ideal operation invariant, namely, the identity opera-
tion. But can we further reduce the number of parameters for
a different standard form, which is achieved by a LOCC
protocol, that has only a certain probability of success or that
makes indirect use of the isomorphism or allows to sacrifice
some of the initial fidelity E00 with the ideal operation? To be
more precise, is it possible by weakening one of these con-
ditions to achieve, e.g., just a global white noise channel

E���� = p� + �1 − p�
1

d21 , �57�

i.e., the case, for which also all the diagonal elements vanish
except �00 and �11?

If one allows for a direct use of the isomorphism protocol
and thus to perform local Bell measurements in the basis
��i�, this is certainly possible, since the ideal operation Id is
local with respect to any partitioning and the coefficients Ekl
in Eq. �51� can deliberately be adapted without increasing
the noise level by simply “twirling” all components Ekl but
E00 into �1/d�1. Note that this procedure gives rise to a
probabilistic LOCC protocol, since a direct use of the Jami-
ołkowski isomorphism can in general not be achieved with
unit probability of success �see Sec. II B�. As discussed in
Sec. II B this use of the isomorphism will therefore in gen-
eral not be of great interest for all applications, in which one
would like to work with a standard form of a given CPM
rather than with the CPM itself.

Using the isomorphism only indirectly, we have to restrict
the transformations to the class of SLOCC operation that are

also local with respect to to �Ai , Āi�. Note that one cannot
increase the fidelity f with the ideal operation I=Id by
means of any physical protocol, whenever f corresponds to
the largest eigenvalue in E �31�, e.g., Eq. �51� with
E00�Ekl �¬k= l=0�. In all these cases any SLOCC operation

C1
A

� C2
Ā, that is contained in the transformation protocol and

that does not leave ��� invariant, will cause a decrease in the
fidelity f�� f of the respective standard form E�. Thus any
universal transformation protocol, that yields a respective
standard form for all CPM without decreasing the fidelity,

consists in a probabilistic application of operation C1
A

� C2
Ā

with C1
A

� C2
Ā���= ���, i.e., C1 � C2=C � �C−1�T for some in-

vertible matrix C �32�. Since all such transformation will
also leave all k in Eq. �53� invariant, the respective standard
form cannot contain fewer terms than the multiparty white
noise channel. In this sense the above twirling procedure
already yields a standard form, that is optimal among all
forms achieved by some universal protocol, that only use the
isomorphism indirectly and does not sacrifice any fidelity
with the ideal operation.

2. Depolarization by means of sacrificing

In the remainder of this subsection we will show how to
design twirling protocols that bring a specific CPM into the

standard form of global white noise by introducing addi-
tional noise. The procedure described below does therefore
satisfy neither the universality property nor the no-sacrificing
condition, but it will—especially for the many party case—
significantly reduce the number of parameters of the standard
form to a single one. By applying the above universal depo-
larization procedures, we can start with considering only
states E, that are already in isotropic form �see Eq. �53��.

We will illustrate the procedure for the case of two qubits.
Generalization to the multipartite case and higher dimensions
are straightforward. For such two-qubit maps, the corre-
sponding state E �after applying the universal depolarization
protocol described in the previous section� is given by

E = E00P�0

A1P�0

A2 + E01�
j=1

3

P�0

A1P�j

A2 + E10�
i=1

3

P�i

A1P�0

A2

+ E11 �
i,j=1

3

P�i

A1P�j

A2, �58�

where P�i
= ��i�	�i� is the projector onto one of the Bell states

��i�. In the following we will collect the parameters in a
vector E= �E00,E01,E10,E11�T. The fact, that E corresponds
to a trace preserving CPM then simply reads �i� E�0
component-wise �i.e., Eij �0 for i , j=0,1� and �ii� N�E�
ªE00+3�E01+E10+3E11�=1. We now consider the follow-
ing type of depolarization:

D�E� = p00E + p01�
j=1

3

� j
A2E� j

A2 + p10�
i=1

3

�i
A1E�i

A1

+ p11 �
i,j=1

3

�i
A1 � � j

A2E�i
A1 � � j

A2. �59�

In a similar notation as before D corresponds to a trace pre-
serving CPM iff N�p�=1 and p�0. It is straight forward to
calculate, that the resulting state E�=D�E� is again in isotro-
pic form Eq. �58� with new parameters Eij� , that are given by
the linear transformation

E� = D�E� · p , �60�

where the matrix D�E� depends on the initial state E:

�
E00 3E01 3E10 9E11

E01 E00 + 2E01 3E11 3�E10 + 2E11�
E10 3E11 E00 + 2E10 3�E01 + 2E11�
E11 E10 + 2E11 E01 + 2E11 E00 + 2�E01 + E10 + 2E11�

� .

�61�

Our goal is to bring E into a form, that corresponds only
to global white noise �see Eq. �57��, i.e., E01� =E10� = 1

3E11� .
Since we require E��0 and N�E��=1, E� should be of the
form E��f��= (f� , �1− f�� /9 , �1− f�� /9 , �1− f�� /27)T with the
new fidelity f�� �0,1�. Thus we look for solutions p to the
linear system Eq. �60� for the specific choice of E��f��, that
additionally fulfills the constraints N�p�=1 and p�0. One
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computes that N�E��=N�p�N�E� and we can therefore omit
the trace preservation condition N�p�=1, since we already
require �chose� E and E� to be trace preserving. Using
N�E�=1 one can compute for the determinant det�D�E��rst,
where r=1−4�E01+3E11�, s=1−4�E10+3E11�, and
t=1−4�E01+E10+2E11�. Thus the linear system Eq. �60� will
definitely have a unique solution, whenever
max�E01,E10,E11��

1
16 �or alternatively the initial fidelity f

=E00�4 max�E01,E10,E11��. Let us consider a fixed vector
E with det�D�E���0 first. For the corresponding CPM E we
want to design a standard form E� with maximal fidelity f�.
In contrast to the standard forms discussed so far the depo-
larization process D, which translates into applying Pauli
operators before and after the actual CPM E occurs, will be
specifically designed for the given initial CPM E, since the
corresponding probabilities are given by the unique solution
p�f��=D�E�−1 ·E��f��. Note that each of the inequalities
pij �0 is linear in f�, i.e., of the form aijf�+bij �0, where the
coefficients are

a00 =
1

6
�1

r
+

1

s
+

4

t
� b00 =

1

48
�3 +

1

r
+

1

s
−

5

t
� ,

a01 =
1

18
�3

s
−

1

r
−

4

t
� b01 =

1

144
�9 +

3

s
+

5

t
−

1

r
� ,

a10 =
1

18
�3

r
−

1

s
−

4

t
� b10 =

1

144
�9 +

3

r
+

5

t
−

1

s
� ,

a11 =
1

54
�4

t
−

3

r
−

3

s
� b11 =

1

432
�27 −

3

r
−

3

s
−

5

t
� .

Depending on the signs of aij�0 the constraints are thus
represented by intervals starting or ending at f ij� =−bij /aij �if
aij =0 the corresponding condition is either always or never
satisfied�. In the following we will discuss the �complete�
positivity condition p�0 in terms of the parameter �r ,s , t�
instead of �E01,E10,E11� since they are linearly related. Be-
cause of 0�Eij �1 we generally have −15�r ,s , t�1. The
back transformation is given by E01= 1

16�1+3s−r−3t�,
E10= 1

16�1+3r−s−3t�, and E11= 1
16�1+ t−r−s�, which implies

E00= 1
16�1+3�r+s+3t��.

Let us consider the situation, in which the initial CPM E is
close enough to the ideal operation, such that
max�E01,E10,E11��

1
16 . Then there exists a unique solution

with 1�r ,s , t�0. Moreover a further restriction of r ,s , t to
the interval � 2

3 ,1� will ensure a01,a10,a11�0 and
f00� � f01� , f10� , f11� . Thus for a fixed initial vector E we are left
with the three constraints f�� f01� , f10� , f11� �and f��1� and the
maximal achievable fidelity is fmax� =min�1, f01� , f10� , f11� �. Al-
though restricting E10,E01,E11 to the interval �0, 1

48
� will be

sufficient to guarantee that r ,s , t� � 2
3 ,1�, not all r ,s , t in the

interval � 2
3 ,1� correspond to E01,E01,E01� �0,1�. A minimi-

zation of fmax� for r ,s , t� � 2
3 ,1� therefore yields only an upper

bound to the fidelity decrease fmax� �vs f� or the increase of

1− fmax� �vs 1− f�, which represents the noise level of the
CPM. A numerical minimization in this region shows that the
relative fidelity fmax� / f is at least 37.14% and the relative
noise level �1− fmax� � / �1− f� is at most increased by a factor
5.5.

Note that for an initial fidelity f �
15
16 we have

0�E10,E01,E11�
1

48 . In other words any decoherence pro-
cess on two qubits, that introduces only little noise �i.e., f
�

15
16�, can be brought into the form of global white noise by

increasing the noise level by a factor less than 5.5. This
standard form is achieved by application of local Pauli op-
erations, that are chosen randomly according to some prob-
ability distribution specified by the parameters pij�fmax� �.
Thus the protocol is specifically designed for the initial form
of the decoherence process �more precisely it depends on the
vector E, that is obtained after the decoherence is brought
into the form Eq. �58� by the methods described above�.

If the initial CPM does not belong to the region with
0�E10,E01,E11�

1
48 , a similar derivation can be applied.

The constraints aijf�+bij �0 again determine, whether a
standard form can be obtained in this way and how much
fidelity has to be sacrificed in order to achieve the normal
form with E��f��. Moreover a generalization to the case of
d-level systems with d�2 and to the multiparty setting with
N�2 can be developed along the lines of the previous dis-
cussion. Note that for increasing N, although the achieved
standard forms will also be global white noise and thus be
specified by one parameter only, the derivation and the trans-
formation protocol itself will become more involved, since
the number of parameters pi1. . .iN

will be 2N and thus increase
exponentially.

B. Standard forms for noisy unitary operations

We now turn to standard forms of noisy operations where
the ideal operation is given by some unitary operation U. We
concentrate on two-particle operations and will illustrate our
approach with help of several examples, including gates
which are up to local unitary operations equivalent to the
SWAP gate, the CNOT gate and a general phase gate with
arbitrary phase �. We will show that one can depolarize
these noisy gates to standard forms with a reduced number of
parameters, without changing the fidelity of the ideal opera-
tion. To this aim, we decomposes a CPM E into a unitary part

U and some remaining �orthogonal� part E� �where Ẽ is in
general no longer a CPM�, i.e.,

E� = fU�U† + �1 − f�Ẽ� , �62�

and both, f and Ẽ, are determined by the isomorphism. We
have that

f = 	�U�E��U� , �63�

Ẽ =
E − f ��U�	�U�

1 − f
, �64�

where Ẽ is the operator corresponding to the map Ẽ and f
specifies the initial fidelity of the operation U. It is not nec-
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essary to make such a decomposition, however in this nota-
tion it is immediately evident that only the noise part,

namely, Ẽ is altered by the depolarization procedure. We re-

mark that tr�Ẽ�=1, however, Ẽ may have negative eigenval-
ues and is hence not a density operator. Nevertheless, we can
formally decompose E �and thus E� into these two parts. We
will show that one can depolarize the map E to

E�� = fU�U† + �1 − f�Ẽ�� , �65�

where Ẽ� is a �generally nonpositive� map of certain standard
form, specified by a few parameters. Clearly, the total map E�
remains completely positive. Note that the depolarization of
E takes place in such a way that the weight of the ideal
operation is not altered. In particular, if the operation is ini-
tially noiseless �i.e., f =1�, it will remain noiseless after the
depolarization. This is achieved by considering depolariza-
tion processes that leave the unitary operation U �or equiva-
lently the state ��U� when considering the operator E corre-
sponding to the operation E� invariant. The number of

required parameters and the explicit form of Ẽ depends on
the ideal operation U, as the group of local operations that
leave U invariant is determined by the structure of the state
��U�.

1. The noisy SWAP gate

In this section we determine a standard form for noisy
SWAP operations. The ideal d-level SWAP operation is de-
fined via its action on product basis states, namely,
USWAP�i�A�j�B= �j�A�i�B, where ��k��k=0,1,. . .,d−1 is a basis of
H=Cd. The state ESWAP= ��SWAP�	�SWAP� corresponding to
USWAP is specified by �see Eq. �26��

��SWAP� = ���AB����BA�. �66�

Consider the mixed state E describing—via the
isomorphism—a noisy SWAP gate. We have that all opera-
tions of the form UA � U*B� � VB � V*A� leave ��SWAP� in-
variant and hence can be used to depolarize E. This implies
that we can essentially use the same depolarization procedure
as in the case where the ideal operation is given by the iden-
tity �see Sec. IV A�, only the role of particles A� and B� is
exchanged. This implies that the resulting standard form can
again be interpreted as a local and global white noise pro-
cesses with three independent parameters, that occur before
the application of an ideal SWAP operation, i.e., E����
=USWAPD���USWAP

† with

D��� = �00� + �01�A �
1

d
1B + �10

1

d
1A � �B + �11

1

d2 tr���1AB.

�67�

Note that the parameters �kl are again given by Eq. �55�,
where Ekl are the coefficients in a decomposition Eq. �53� of
E according to the basis

k � �P�
AB� � P�

BA�,P�
AB� � BA�,AB� � P�

BA�,AB� � BA��

with =1/ �d2−1��1− P��. In particular by the twirling pro-
cedure the Jamiołkowski fidelity remains the same, i.e.,
F�E ,USWAP�=F�E� ,USWAP�.

2. The noisy phase gate and CNOT gate

In this section we consider the unitary operation

UAB��� = e−i��y
A

��y
B
, �68�

for arbitrary angles �. Up to the local unitary operations,
U��� is equivalent to a controlled phase gate, while for
�=� /4, U��� is equivalent to the CNOT gate �see Eq. �27��,
i.e., UCNOT=U1

A
� U2

BU�� /4�V1
A

� V2
B.

We will obtain a standard form for noisy operations, given
in the ideal case by U���, by depolarizing the corresponding
CPM E. The depolarization takes place by applying appro-
priate random local unitary operations that leave the state

���� = cos�����0�A��0�B − i sin�����2�A��2�B, �69�

invariant �up to an irrelevant phase�, where ����	��� is the
state corresponding to U��� via the isomorphism, and

�� j� = 1 � � j��� �70�

are Bell states. Note that such a depolarization procedure for
U��� automatically provides a depolarization procedure for
all operations that are local unitary equivalent to U���, lead-
ing to a standard form with the same number of parameters
for these noisy gates. The depolarization procedure simply
has to be adopted according to the local unitary operations.
To be specific, consider for instance the noisy U�� /4� gate
and the noisy CNOT gate. If WAB is a local unitary operation
that keeps ���/4� invariant, then the operation

W�AB = U1
A� � U2

B� � �V1
A�T

� �V2
B�TWAB�U1

A��†
� �U2

B��†

� V*
1
A

� V*
2
B

keeps ��CNOT� invariant. That is, one obtains a depolariza-
tion procedure for the noisy CNOT gate from the depolariza-
tion procedure for the U�� /4� gate by replacing each unitary
operation W by W�.

We now present an explicit depolarization procedure for
the noisy U��� gate, described by the CPM E, with arbitrary
�. We will consider the depolarization of the corresponding
state by means of four local operations. We remark that any
sequence of depolarization steps can be translated into a
single step with multiple possibilities by considering all pos-
sible combinations. Such a single step procedure can then be
translated to appropriate random operations applied to the
system before and after the application of E and hence to
depolarize the corresponding map. For notational conve-
nience, we define the four-qubit states

��ij�AA�BB� � ��i�AA� � �� j�BB�. �71�

Given an arbitrary CPM E specified by
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E� = �
i,j,k,l=0

3

�ij,kl�i� j��k�l, �72�

the corresponding state E is given by

E = �
i,j,k,l=0

3

Eij,kl��ij�	�kl� , �73�

where �ij,kl=�kl,ij
* . We define two-qubit unitary operations

U , Ũ ,V by

U � �i�y� � �i�y� ,

Ũ � �x � �x,

V � e−i�/4�y � e−i�/4�y . �74�

The action of these operations on Bell-basis states ��� j�� can

be readily obtained and one finds that U , Ũ introduce relative
phases between the Bell states, while V exchanges two of
them. To be specific, we have

U���0�, ��1�, ��2�, ��3�� = ���0�,− ��1�, ��2�,− ��3�� ,

Ũ���0�, ��1�, ��2�, ��3�� = ���0�, ��1�,− ��2�,− ��3�� ,

V���0�, ��1�, ��2�, ��3�� = ���0�,− ��3�, ��2�, ��1�� . �75�

All local operations of the form 1A1B, 1AUB, UA1B, UAUB,

ŨAŨB, 1AVB, VA1B, VAVB keep the state ���� �and the fidel-
ity f = 	���E���� of the ideal operation� invariant and can
thus be used for depolarization.

We decompose E into the unitary part U��� and the re-

maining noise part Ẽ �see Eq. �62�� and consider the corre-

sponding �nonpositive� operator Ẽ �see Eq. �64�� in the fol-
lowing,

Ẽ = �
i,j,k,l=0

3

�ij,kl��ij�	�kl� . �76�

We randomly apply 1A1B, 1AUB, UA1B or UAUB, each with
probability 1 /4, which leads to an operator

Ẽ� =
1

4
�Ẽ + UBẼ�UB�† + UAẼ�UA�† + UAUBẼ�UAUB�†� .

One finds that Ẽ� is of block-diagonal form with coeffi-
cients �ij,kl� , that fulfill �ij,kl� =0 whenever �i mod 2�
� �k mod 2� or �j mod 2�� �l mod 2� and remain invariant
otherwise. This follows from Eq. �75�, as U introduces
a phase �−1� for Bell states ��i� with �i mod 2=1� while
states with even parity �i mod 2=0� remain invariant, which
results in the cancellation of the corresponding off-diagonal
elements. Thus only elements �ij,kl� with �i mod 2�
= �k mod 2� and �j mod 2�= �l mod 2� remain, which can be

grouped into four 4�4 blocks �ab with a= �i mod 2�
= �k mod 2�, b= �j mod 2�= �l mod 2�. For instance, �01

=�i,k��0,2�;j,l��1,3��ij,kl��ij�	�kl�.
In the following, we consider the depolarization of the

subspaces �ab separately. We start with �00, which is spanned
by the states ���00� , ��02� , ��20� , ��22��. By randomly apply-

ing 1A1B or ŨAŨB with probability 1 /2, we find that the
resulting operator �00� has coefficients �00,02� =�00,20� =�02,22�
=0, while the other coefficients remain invariant, i.e.,

�00,00� = �00,00; �02,02� = �02,02; �20,20� = �20,20,

�22,22� = �22,22; �00,22� = �00,22; �02,20� = �02,20. �77�

We thus find that �00 is of the form

�00� =�
�00,00� 0 0 �00,22�

0 �02,02� �02,20� 0

0 �02,20�* �20,20� 0

�00,22�* 0 0 �22,22�
� , �78�

which are eight independent real parameters as �ij,kl=�kl,ij
* .

The effect of these �random� operations on the other sub-
spaces �01,�10,�11 is similar, i.e., the corresponding off-
diagonal term vanish. However, in these subspaces further
depolarization is possible. Consider �01 which is spanned by
the states ���01� , ��03� , ��21� , ��23��. Applying randomly
1A1B or 1AVB with probability 1 /2 leads to coefficients

�01,01� = �03,03� =
1

2
��01,01 + �03,03� ,

�21,21� = �23,23� =
1

2
��21,21 + �23,23� ,

�01,23� = − �03,21� =
1

2
��01,23 − �03,21� . �79�

This can readily be seen by using that

1AVB���01�, ��03�, ��21�, ��23��

= �− ��03�, ��01�,− ��23�, ��21�� . �80�

Thus we find that �01 is of the form

�01� =�
�01,01� 0 0 �01,23�

0 �01,01� − �01,23� 0

0 − �01,23�* �21,21� 0

�01,23�* 0 0 �21,21�
� , �81�

and is thus described by four independent, real parameters
��01,01� and �21,21� are real, �01,23� is complex�.

Similarly, by randomly applying 1A1B or VA1B with prob-
ability 1 /2, one depolarizes the subspace �10—spanned by
the states ���10� , ��30� , ��12� , ��32��—to the form
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�10� =�
�10,10� 0 0 �10,32�

0 �10,10� − �10,32� 0

0 − �10,32�* �12,12� 0

�10,32�* 0 0 �12,12�
� , �82�

where

�10,10� = �30,30� =
1

2
��10,10 + �30,30� ,

�12,12� = �32,32� =
1

2
��12,12 + �32,32� ,

�10,32� = − �30,12� =
1

2
��10,32 − �30,12� , �83�

which is again described by four independent, real param-
eters.

Finally, the subspace �11—spanned by the states
���11� , ��13� , ��31� , ��33��—can be further depolarized by
randomly applying one of the operations 1A1B, 1AVB, VA1B,
or VAVB with probability 1 /4. One finds that

�11,11� = �11,11� = �13,13� = �31,31� = �33,33�

=
1

4
��11,11 + �13,13 + �31,31 + �33,33� ,

�11,33� = − �13,31� =
1

2
�Re��11,33� − Re��13,31�� , �84�

where Re�x� denotes the real part of x. Thus �11 is described
by two independent, real parameters and is of the form

�11� =�
�11,11� 0 0 �11,33�

0 �11,11� − �11,33� 0

0 − �11,33� �11,11� 0

�11,33� 0 0 �11,11�
� . �85�

We remark that the depolarization process described in this
final step leaves the subspaces �00,�01,�10—which were al-
ready depolarized earlier—invariant. The final depolarized

CPM ẼS is specified by �8+4+4+2−1�=17 real parameters
�where the �−1� results from the normalization condition

tr�Ẽ�=1� and is of Block-diagonal form. The coefficients
�ij,kl� are given by Eqs. �77�, �79�, �83�, and �84� and are zero
otherwise. This leads to the standard form

E� = fU����U���† + �1 − f��
ij,kl

�ij,kl� �i� j��k�l, �86�

where f�= 	���E����= 	���E����, i.e., the fidelity of the
ideal operation remains invariant. To summarize, we can
achieve the following standard form.

Standard form for the phase gate. By uniformly choosing
one of the unitaries Uk from U1 ·U2 ·U3, where

U1 = �1A1B,e−i��/4��y
A
1B,1Ae−i��/4��y

B
,e−i��/4��y

A
e−i��/4��y

B
� ,

U2 = �1A1B,�x
A�x

B� ,

U3 = �1A1B,�y
A1B,1A�y

B,�y
A�y

B� , �87�

and applying Uk
† before and Uk after the application of the

noisy phase gate E the resulting CPM E� is of the standard
form E����=�i,j,k,l=0

3 Eij,kl� �i� j��k�l with

E� =�
�00� 0 0 0

0 �01� 0 0

0 0 �10� 0

0 0 0 �11�
� , �88�

where

�00� = �
a 0 0 u

0 b v 0

0 v*
b̃ 0

u* 0 0 ã
�, �01� =�

c 0 0 w

0 c − w 0

0 − w* c̃ 0

w* 0 0 c̃
� ,

�10� =�
d 0 0 x

0 d − x 0

0 − x*
d̃ 0

x* 0 0 d̃
�, �11� =�

e 0 0 ẽ

0 e − ẽ 0

0 − ẽ e 0

ẽ 0 0 e
�

with the following choice of basis:

B = ���00�, ��02�, ��20�, ��22�, ��01�, ��03�, ��21�, ��23�, ��10�,

���30�, ��12�, ��32�, ��11�, ��13�, ��31�, ��33�� �89�

and the parameters a , ã ,b , b̃ ,c , c̃ ,d , d̃ ,e , ẽ�R and u ,v ,w ,x
�C. This depolarization does not increase the noise level,
i.e., f�= f .

3. The CNOT-type gate

For certain values of �, further depolarization is possible.
In particular, we consider �=� /4, i.e., the operations
U�� /4� which is local unitary equivalent to the CNOT gate.
In this case, the state ���/4� is a maximally entangled state
�with respect to systems A ,B�, which remains invariant un-
der a larger set of local unitary operations than a nonmaxi-
mally entangled state ����. In particular, we consider the
unitary operations
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W � 1 � �i�y� , �90�

W̃ � �z � �x, �91�

which act on Bell states as follows:

W���0�, ��1�, ��2�, ��3�� = �i��2�, ��3�,i��0�,− ��1�� ,

W̃���0�, ��1�, ��2�, ��3�� = �− i��2�, ��3�,i��0�, ��1�� .

The operation WAW̃B leaves the state ���/4�—up to an irrel-
evant global phase factor �−i�—invariant. Note that this is
not true for ���� with ��� /4. We take the standard form
Eq. �86� as initial map, and apply randomly either 1A1B or

WAW̃B. One finds that the resulting operator Ẽ� is signifi-
cantly simplified and is described by eight independent, real

parameters. We denote the coefficients of Ẽ� by �ij,kl.
To be specific, for �00� we find

�00,00 = �22,22 =
1

2
��00,00� + �22,22� � ,

�02,02 = �20,20 =
1

2
��02,02� + �20,20� � ,

�00,22 = i Im��00,22� �; �02,20 = i Im��02,20� � , �92�

where Im�x� denotes the imaginary part of x, i.e., i Im�x�
= �x−x*� /2 and we thus have four real parameters.

This follows from WAW̃B���00� , ��02� , ��20� , ��22��
= ���22� ,−��20� , ��02� ,−��00��.

Similarly, for �01� we find

�01,01 = �03,03 = �21,21 = �23,23 =
1

2
��01,01� + �21,21� � ,

�01,23 = − �03,21 = Re��01,23� � , �93�

while �10� simplifies to

�10,10 = �30,30 = �12,12 = �32,32 =
1

2
��10,10� + �12,12� � ,

�10,32 = − �30,12 = Re��10,32� � , �94�

where we have two real parameters in each case.
Finally, for �11� we have

�11,11 = �13,13 = �31,31 = �33,33 = �11,11� ,

�11,33 = − �13,31 = 0, �95�

which is a single, real parameter. It follows that the standard
form for the depolarized gate U�� /4� is given by

E�� = fU��

4
��U��

4
�†

+ �1 − f��
ij,kl

�̃ij,kl�i� j��k�l,

�96�

where the coefficients �̃ij,kl are defined in Eqs. �92�, �93�,
�94�, and �95� and are zero otherwise. Note that the fidelity
of the ideal operation U�� /4� remains invariant.

Standard form for the CNOT-type gate. The total state Ẽ is
thus of the form

⎝
⎜
⎜
⎜
⎛

a 0 0 iu 0 0 0 0 0 0 0 0 0 0 0 0

0 b iv 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − iv b 0 0 0 0 0 0 0 0 0 0 0 0 0

− iu 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 c 0 0 w 0 0 0 0 0 0 0 0

0 0 0 0 0 c − w 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − w c 0 0 0 0 0 0 0 0 0

0 0 0 0 w 0 0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 d 0 0 x 0 0 0 0

0 0 0 0 0 0 0 0 0 d − x 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − x d 0 0 0 0 0

0 0 0 0 0 0 0 0 x 0 0 d 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 e 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 e 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e
⎠
⎟
⎟
⎟
⎞
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or equivalently

Ẽ =�
�00 0 0 0

0 �01 0 0

0 0 �10 0

0 0 0 �11

� �97�

with

�00 =�
a 0 0 iu

0 b iv 0

0 − iv b 0

− iu 0 0 a
�, �01 =�

c 0 0 w

0 c − w 0

0 − w c 0

w 0 0 c
� ,

�10 =�
d 0 0 x

0 d − x 0

0 − x d 0

x 0 0 d
�, �11 =�

e 0 0 0

0 e 0 0

0 0 e 0

0 0 0 e
� ,

where we use the basis B in Eq. �89� and a=�00,00,
b=�02,02, etc., are all real parameters.

C. Standard forms by means of sacrificing

While the standard forms for the general U��� gate or the
CNOT-type gate U�� /4� are already relatively simple �as the
number of relevant parameters is significantly reduced,
namely, from 255 to 17 or 8, respectively�, for many practi-
cal applications a further simplification might still be desir-
able. If, for instance, one would like to analyze error thresh-
olds for processes involving several particles and/or
operations �as is, e.g., the case in fault tolerant quantum
computation or entanglement purification with imperfect
means� where noisy operations are described by these stan-
dard forms, the corresponding CPMs are still rather complex.

In this section we will provide such a further simplifica-
tion of the corresponding noise process, where we find that
in many relevant cases a single parameter is sufficient and
the noise process can be described by �global� white noise. In
contrast to the previous depolarization procedure, here the
exact form of the noise process �equivalently the correspond-
ing state E� has to be known. This may, e.g., achieved by
performing a process tomography of the CPM resulting after
the universal depolarization protocol describe in the previous
section �note that only the knowledge of the depolarized map
is required�. In addition, the fidelity of the ideal operation is
no longer conserved but decreased by a certain amount. That
is, by “sacrificing” a �small� amount of the fidelity of the
operation, one can modify the resulting noise process in such
a way that one obtains a very simple standard form. This is
done by transferring weight from the ideal operation to the
noisy part in an appropriate way and hence tailor the noise
process.

1. The noisy SWAP gate

Let us consider a noisy SWAP gate in the two qubit case.
For a specific noisy SWAP operation with sufficiently large

Jamiołkowski fidelity f =F�E ,USWAP�= 	�SWAP�E��SWAP�
�

15
16 a depolarization procedure can be designed that brings

the noisy operation E to the standard form

E���� = f�USWAP�USWAP
† + �1 − f��

1

16
1AB �98�

with f�� f /3. Thus the noise in the standard form corre-
sponds to white noise, where the noise level �1− f�� is at
most increased by a factor of 5.5. As in Sec. IV B 1 this
immediately follows from the results for the case, where the
ideal operation is the identity, by simply applying the de-
signed depolarization procedure from the end of the Sec.
IV A with the role of particles A� and B� exchanged. Note
that the corresponding twirling procedure remains local with
respect to the physical partitioning �AA� ,BB��.

2. The noisy CNOT-type gate

We consider now the noisy CNOT-type gate U�� /4�, de-
scribed by the standard form given in Eq. �96�. We will fur-
ther depolarize the corresponding noise process in such a
way that the fidelity of the ideal operation is decreased �as
few as possible� and the noise is global white noise, i.e., the
simplified standard form is given by

E�� = q̃U��/4��U��/4�† + �1 − q̃�
1

16�
ij

�i� j��i� j

= q̃U��/4��U��/4�† +
1 − q̃

16
1 , �99�

where the fidelity of the ideal operation f̃ = q̃+ �1− q̃� /16. We
find that the amount of noise is increased at most by �ap-

proximately� an order of magnitude, i.e., �1− f̃� / �1− f��20.
Clearly, such a further depolarization is only useful if the
fidelity of the ideal operation is initially sufficiently large,
i.e., f �0.96, as otherwise the completely depolarizing op-
eration would be obtained.

We will first demonstrate that a depolarization to global
white noise is possible, and will then discuss the resulting
decrease of fidelity. The state ES can be written as

ES = fE�/4 + �1 − f�Ẽ , �100�

where Ẽ is the operator corresponding to the noise part of the
CPM ES �see Eqs. �96� and �97�� and

E�/4 = ���/4�	��/4� =
1

2
���00�	�00� + ��22�	�22� + i��00�

�	�22� − i��22�	�00�� , �101�

is the operator corresponding to U�� /4�.
We will first show that by means of local unitaries, one

can change the off-diagonal elements of E�/4 in such a way

that each off-diagonal element in Ẽ �or equivalently E� can
be erased by probabilistically applying either the correspond-
ing unitary operation or the identity with appropriate prob-
ability. Here, we are no longer restricted to operations that
keep ���/4� invariant, but can use arbitrary local unitaries.
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We first note that by applying 1AA� � �z
B

� �z
B�, one can

change the sign of the off-diagonal elements ��00�	�22� and
��02�	�20�, which implies that in the following discussion
the sign of the off-diagonal elements do not play a role.

By the depolarization procedure in Sec. IV B 3 we can
assume the sub-block �00—spanned by the states
���00� , ��02� , ��20� , ��22��—of the �total� state E to be in the
form

�00 =�
A 0 0 iY

0 B iX 0

0 − iX B 0

− iY 0 0 A
� , �102�

with

A = f/2 + �1 − f�a, B = �1 − f�b , �103�

Y = f/2 + �1 − f�u, X = �1 − f�v , �104�

where a=�00,00 ,b=�02,02 , iu=�00,22 , iv=�02,20 �see Eqs.
�96� and �97��.

We consider the operations Ux= �1 � �x� and Uz= �1 � �z�.
We have that the action of these operations on Bell states is
given by

Ux���0�, ��1�, ��2�, ��3�� = ���1�, ��0�,i��3�,− i��2�� ,

Uz���0�, ��1�, ��2�, ��3�� = ���3�,i��2�,− i��1�, ��0�� .

It follows that applying with probability 1 /2 the operation
1AUx

B or 1AUz
B transforms the state E to the state E1. In par-

ticular, the subspace �00 is transformed to the subspace
�01

1 —spanned by ���01� , ��03� , ��21� , ��23��—and some co-
efficients are aligned. One finds that the resulting elements
are given by

�01
1 =�

C 0 0 Z

0 C − Z 0

0 − Z C 0

Z 0 0 C
� , �105�

where

C = �A + B�/2, Z = �X + Y�/2. �106�

Note that the element Z is real. At the same time, the sub-
space �01 is transformed to �00

1 �where the off diagonal ele-
ments are given by i�1− f�w after the transformation, while
the diagonal elements are still given by �1− f�c�. Also the
subspaces �10 and �11 are transformed into each other, where
one finds that �10

1 is diagonal with elements �1− f�e, and also
�11

1 is diagonal with elements �1− f�d.
Similarly, if one applies the operations Ux, Uz in A instead

of B, the state E is transformed to a state E2. In particular, the
subspace �00 is transformed to the subspace �10

2 —spanned
by ���10� , ��30� , ��12� , ��32��—where the elements of
�10

2 are the same as of �01 �see Eq. �105��. The transforma-
tion of the other subspaces follows accordingly, only the role
of systems A and B is exchanged �e.g., �01→�11

2 , etc.�. Note

that one can simultaneously change the sign of all off-
diagonal elements of the resulting state E2 by applying

1AA� � �z
B

� �z
B�.

If one thus mixes the resulting states E �with probability

p0�, Ẽ1 �with probability p1�, and E2 �with probability
p2�—and by appropriately choosing the phases of the corre-
sponding off diagonal elements—one can achieve that the
final state E� has no off diagonal elements in the subspaces
�01� and �10� . This is guaranteed by choosing

p0 =
Z

Z + ��w� + �x���1 − f�
,

p1 =
�w��1 − f�

Z + ��w� + �x���1 − f�
,

p2 =
�x��1 − f�

Z + ��w� + �x���1 − f�
. �107�

The other coefficients of the resulting state can be readily
calculated, taking into account whether a change of sign was
necessary for E1 or E2, where we denote �1=sgn�w�+1,�2

=sgn�x�+1 with �−1��1 =sgn�w�. One finds that each of the
subspaces �01� ,�10� ,�11� is diagonal �with all coefficients
equal� and described by a coefficient, 01,10,11, respec-
tively, where

01 = p0�1 − f�c + �− 1��1p1C + �− 1��2p2�1 − f�e ,

10 = p0�1 − f�d + �− 1��1p1�1 − f�e + �− 1��2p2C ,

11 = p0�1 − f�e + �− 1��1p1�1 − f�d + �− 1��2p2�1 − f�c .

�108�

The subspace �00� is given by

p0�00 + �− 1��1p1�00
1 + �− 1��2p2�00

2 , �109�

where we find that resulting diagonal elements are

A� = p0A + �− 1��1p1�1 − f�c + �− 1��2p2�1 − f�d ,

B� = p0B + �− 1��1p1�1 − f�c + �− 1��2p2�1 − f�d ,

�110�

while the off diagonal elements are given by

iY� = p0iY + �− 1��1ip1�1 − f�w + �− 1��2ip2�1 − f�x ,

iX� = p0iX + �− 1��1ip1�1 − f�w + �− 1��2ip2�1 − f�x .

�111�

It remains to show that one can erase the off-diagonal ele-

ment ��02�	�20�, iX̃. This can be accomplished by randomly
applying the operation 1A1B or WA1B �see Eq. �90�� with

probabilities p and �1− p�. If sgn�X̃�=sgn�Ỹ�, one applies in

a addition �z
B

� �z
B� in the second case in order to change the

sign of the corresponding off-diagonal elements. Choosing
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p = ��X�� + �Y���−1, �112�

ensures that the off-diagonal element ��02�	�20� vanishes,
while ��00�	�22� becomes

Y� = ipY� + �− 1�sgn X�+1i�1 − p�X� �113�

and the diagonal elements become

A� = pA� + �1 − p�B�, �114�

B� = pB� + �1 − p�A�. �115�

Note that all other elements of Ẽ� remain invariant. Finally,

the remaining off-diagonal element ��00�	�22�, iỸ�, which
corresponds in part to the ideal operation and in part to the
noise part, can be formally incorporated into the ideal part of
the evolution, i.e., the resulting state can be formally rewrit-
ten as

Ef = f����/4�	��/4� + �1 − f��D , �116�

where D is diagonal in the basis ���ij�� with elements dij and
f�=2Y�. The elements dij of D in the blocks �01,�10,�11 are
given by Eq. �108� �i.e., d01=d03=d21=d23=01, etc.�, while
in the block �00 we have

d02 = d20 = B�, �117�

d00 = d22 = A� − Y�. �118�

The coefficients dij can even be made equal by further
reducing the fidelity of the ideal operation. In this case, D
corresponds to the completely mixed state, and the corre-
sponding map is given by global white noise. This is done as
follows: Using that the probabilistic operation UA1B or 1A1B,
one produces a state diagonal in the basis ���ij�� with the
same diagonal coefficients as Ef, where we consider the situ-
ation where d00=d22�dij, i.e., the fidelity of the ideal opera-
tion is sufficiently large. In this sense, weight from the ideal
operation can be transferred to the other states. In particular,
one uses 1AWB to increase weight in ��02�	�02� and
��20�	�20�; 1AUx

B and 1AUz
B to increase weight of �01; Ux

A1B

and Uz
A1B to increase weight of �10; Ux

AUx
B , Uz

AUz
A , Ux

AUz
B,

and Uz
AUx

B to increase weight in �11.
One thus ends up with a standard form described by glo-

bal white noise as announced �see Eq. �99��. We will evalu-
ate the loss factor for the fidelity for an alternative protocol
discussed in the next section. This protocol is capable of
depolarizing also noisy phase gates to a one-parameter stan-
dard form.

3. The noisy phase gate

In principle, it may be possible to obtain a simplified stan-
dard form for the gate U��� with arbitrary � by similar
means as in the case of the noisy CNOT-type gate U�� /4�,
i.e., by manipulating the noisy evolution in such a way that

weight is transferred from the ideal evolution to the appro-
priate noise parts. However, for small � one encounters a
difficulty which may be hard to circumvent. When using
parts of the operator corresponding to the ideal evolution to
eliminate off diagonal elements in other parts of the density
matrix corresponding to the noisy evolution, we have that
automatically also the diagonal elements are transferred and
hence the noise part is further increased. While in the case of
U�� /4�, the increase of diagonal elements of the noise part is
of the same order of magnitude as the off-diagonal elements,
for small � this is no longer the case. We have that the off
diagonal element of the ideal operations E� is given by
�00,22= i cos���sin���, while the larger diagonal element
�00,00 is given by cos2���. Imagine we have elements in the
noise part of order ��1, where both diagonal and off diag-
onal terms of order � appear. If one wants to eliminate an
off-diagonal element in the noise part which is of order �, we
need �1− p�cos���sin���= ���, i.e., with probability �1− p� the
off-diagonal element of the ideal evolution is transferred to
the off-diagonal element of the noise part with the sign cho-
sen in such a way that the total off-diagonal element in the
noise part vanishes. However, by doing such a transforma-
tion, one of the diagonal elements of the noise part is auto-
matically increased by �1− p�cos2��� which is of the order
��� / tan���. Note that for small �, 1 / tan����1, i.e., the
amount of noise may be increased by orders of magnitude.
This is clearly not acceptable, as our goal was to obtain a
simplified standard form by sacrificing a relatively small
amount of the fidelity and not to decrease the fidelity by
�several� orders of magnitude.

However, under certain conditions one may use an alter-
native method which still allows one to obtain a standard
form corresponding to global white noise, specified by a
single parameter. In particular, if one can switch the noisy
operation on and off at will, i.e., one can decide whether one
wants to apply the noisy operation or does not want to apply
it �and instead apply something else�, then such a depolar-
ization is possible. If one considers the case where U��� is
some nonlocal gate, then it is natural to assume such a con-
trollability. In this case, one can either apply the noisy evo-
lution with certain probability p or apply some other opera-
tion with probability �1− p�. In particular, one can apply any
separable operation. This may, however, involve the applica-
tion of arbitrary local operations �including measurements�,
rather than the application of local unitaries as we have as-
sumed so far. Considering the corresponding states, this
amounts to mixing of the state E with some separable �in the
sense A−B� state D. The separable operation D associated to
D can be implemented by some random application of local
operations, D=�ipiAiBi

T��AiBi
T�†. The corresponding Kraus

operators can be obtained from the spectral decomposition of
D as indicated in Appendix A. Let us now consider a density
matrix A of a separable two-qubit state written in the stan-
dard basis. Then all states of the block diagonal form �see
e.g., Eq. �88�� with separable block matrices �ij =A for
i , j� �0,1� are again separable �recall that �ij denotes sub-
spaces spanned by ��kl� with k mod 2= i , l mod 2= j�. In par-
ticular, any matrix A of the form
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A =
1

4�
1 0 0 �

0 1 � 0

0 �* 1 0

�* 0 0 1
� , �119�

with � ,�� �0,1 ,−1 , i ,−i� as well as any diagonal matrix A
�with positive coefficients summing up to one� is separable.
This can be checked by calculating the partial transposition
of these states, where one finds that the partial transposition
is positive in all cases which is �for two-qubit states� suffi-
cient to ensure separability �33,34�. The corresponding sepa-
rable maps can be implemented by a simple sequence of
random local unitary operations �in the case of diagonal A�,
or measurements �in the case of matrices of the form �119��.
The Kraus representation of the state can be obtained as
shown in Appendix A.

It is now straightforward to see that mixing E with sepa-
rable operators of the form �ij =A with A given by Eq. �119�
or an appropriate diagonal matrix, allows one to eliminate all
�unwanted� off-diagonal elements as well as to align all di-
agonal coefficients of the noise part. Thus the resulting sim-
plified normal form of the noisy operation is given by

ES� = q̃U����U���† + �1 − q̃�
1

16�
ij

�i� j��i� j

= q̃U����U���† +
1 − q̃

16
1. �120�

The fidelity of the ideal operation f̃ = q̃+ �1− q̃� /16 is re-
duced, where we find, e.g., for �=� /4 that if f =1−�, then

f̃ � 1 − 17� . �121�

That is, the fidelity of the operation is reduced by about
an order of magnitude. This can be seen as follows.
Consider, for example, the CNOT like gate U�� /4� with

corresponding standard form of noise Ẽ given by Eq. �97�.
We have tr�Ẽ�=2a+2b+4c+4d+4e= �1− f� and denote y

=max�a ,b ,c /2 ,d /2 ,e /2�, i.e., f �1−2y. One can make Ẽ
diagonal by mixing with matrices �ij� =A. Consider, for in-
stance, the case where all noise is concentrated in b, v �this
in fact turns out to correspond to a �nonunique� worst case

scenario�, i.e., y=b. One mixes Ẽ �with probability p� with a
matrix of the form �00� =A with �=0,�=−i �with probability
�1− p��. The resulting matrix is diagonal for p= �4v+1�−1 and
has diagonal elements b�=bp+ �1− p� /4�2y�4y+1�−1,
a�= �1− p� /4 and c�=d�=e�=0. Note that the worst case cor-
responds to v=b. By mixing the resulting matrix �with prob-
ability q� with a diagonal matrix �with probability 1−q�, one
can make all diagonal elements equal �which corresponds to
white noise�. We have q� �4y+1� / �32y+1�. This leads to a

total final fidelity f̃ = pqf � f / �32y+1�� f / �17−16f�. For
f =1−�, we thus have

f̃ � f/�17 − 16f� � 1 − 17� , �122�

i.e., the fidelity is decreased by about an order of magnitude.
Note that this formula also holds in the general scenario with
arbitrary coefficients a ,b ,c ,d ,e ,u ,v ,w ,x. In the first step,
the worst case is given when all off diagonal elements are
maximal, u=a ,v=b ,w=c ,x=d. In the second step �making
all diagonal elements equal�, it is clearly the worst case if all
weight is concentrated in one element �e.g., b� and all others
are zero, as one has to fill up the weights of the other �14�
diagonal elements. Nonzero diagonal elements would
require less mixing, leading to a larger final fidelity. Thus

f̃ �1−17�1− f� is a conservative bound on the final fidelity,
where in many situations one will end up with a much larger
final fidelity of the depolarized noisy operation.

D. Standard form for arbitrary two-qubit unitary operation

Let us briefly discuss the possibility to generalize the re-
sults in Secs. IV B and IV C to the more general case of an
arbitrary unitary operation as the ideal operation. Consider
an arbitrary unitary U �or even a class unitaries U��. Note
that similar to Eq. �27� any unitary two-qubit gate can be
represented uniquely as �23�

UAB = U1
A

� U2
Be−i�i=1

3 �i�i
A�i

B
V1

A
� V2

B �123�

with � /4��1��2� ��3��0 and some single-qubit unitar-
ies Ui ,Vi �i=1,2�. The main block of the depolarization
procedures in Sec. IV B was to find a set of �A ,A��-local
unitaries, that leave the corresponding pure state ��U�
�or a class pure states ��U�

�� invariant. However, in
general—apart from some special cases where, e.g., all
�i equal or �2=�3=0—the only local unitary operation
that keeps the state invariant is given by the identity opera-
tion. Hence, in generic cases, a depolarization of the
operation—under the condition that the fidelity of the opera-
tion remains invariant—is impossible following this ap-
proach. Thus no universal standard form for arbitrary two-
qubit unitary operations can be obtained along these lines.

It seems more appropriate to follow the ideas of Sec. IV C
and to specifically design such a standard form for a noisy
unitary taking the given form of decoherence into account,
and allow for an increase of noise. We do not deepen such a
discussion at this point but rather refer to an alternative ap-
proach. Instead of regarding the noisy unitary gate as a CPM
and allowing for manipulation before and after the applica-
tion of this operation one might as well consider the dynami-
cal evolution realizing this gate and allow for a manipulation
of this evolution by several short intermediate pulses of local
unitary control operation. Inspired by the results in Ref. �38�
it is shown in the following section that by this procedure it
is possible to depolarize an arbitrary master equation �of two
systems� to a standard form described by at most 17 param-
eters.
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V. STANDARD FORM FOR NOISY EVOLUTIONS
DESCRIBED BY A MASTER EQUATION

In this section, we will consider the evolution of two qu-
bits described by a master equation of Lindblad form, where
the ideal evolution is given by an arbitrary two-qubit Hamil-
tonian. The results can be readily generalized to multiqubit
systems whose �noiseless� interaction is described by Hamil-
tonians that are sums of two-body Hamiltonians.

We will consider a continuous evolution ��t�=Et��0� of
the system due to Markovian quantum dynamics starting at
t=0 in the state ��0�. Thus the family of quantum operations
Et forms a Markovian semigroup �35�, determined by some
generator Z, that in the case of two qubits A and B and the
convention ��1 satisfies the following differential equation
�master equation�:

�

�t
� = Z� ª − iH� + − iHl� + L� �124�

with

H� ª �HAB,�� ,

Hl� ª �Hl
AB,�� ,

and

L� ª �
k,l

k�0∨l�0

Lkl���k
AB�,�l

AB� + ��k
AB,��l

AB�� .

We have separated the unitary evolution of the dynamics into
one part H, which corresponds to the ideal unitary process in
question, and into a “Lamb shift” Hl, which is some unitary
dynamics, that is induced by the coupling between the sys-
tem and its environment and therefore corresponds to noise.
The more relevant influence of the decoherence process L is,
however, incorporated in the “Liouvillian,” which is deter-
mined by the positive “GKS” matrix L= �Lkl� �36�. Note that
the corresponding sum is over all multi-indices k= �k1 ,k2�
and l= �l1 , l2� with ki , lj =0,1 ,2 ,3 except k=0ª �0,0� or
l=0. Thus the totally mixed state �0

AB= 1
41AB does not occur

in the sum and L is a positive 15�15 matrix.
Our goal is now to bring some dynamical evolution

Et=eZt into an appropriate standard form Et�. Here, Et ap-
proximates the ideal unitary evolution I given by H, where

Z = − iH − iHl + L , �125�

while the standard form Et� is specified by

Z� = − iH − iHl� + L�. �126�

That is, the decoherence process corresponding to the stan-
dard form is described by Hl� and L�, rather than Hl and L in
the original evolution. As in the case of CPMs, our goal is to
obtain a simplified standards form in the sense that the num-
ber of relevant parameters describing the decoherence pro-
cess are decreased, while the desired Hamiltonian evolution
is not altered. To achieve this we will make use of the fol-
lowing facts �38�.

�i� Let U be some unitary matrix and U�ªU�U† be the
corresponding operation. By unitary conjugation the Mar-
kovian evolution Et=eZt can be transformed into the Mar-
kovian evolution Et�=U �Et �U†=eZ�t described by

H� = UHU†, �127�

Hl� = UHlU
†, �128�

L� = OLOT, �129�

where O is the orthogonal matrix corresponding to U, that
describes the basis change �k�U�kU† for the linear basis
of hermitian traceless operators �k.

�ii� A Markovian evolution eZ�t according to a linear com-
bination Z�=�i=1

R piZi ��ipi=1� can be simulated by repeat-
edly applying a sequence eZ1	t

¯eZR	t for some small time
intervals 	t= t /M �M is the number of repetitions�, i.e.,

��
i=1

R

epiZit/M�M

——→
M→�

e�i=1
R piZit. �130�

Note that the approximated GKS matrix is L�=�ipiLi and
the error in approximation is of order O�	t2� �39�.

An alternative method consists in the random application
of the time evolutions eZi	t with probability pi in each of the
time intervals 	t= t /M. That is, the evolution in the time
interval 	t is given by �ipie

Zi	t, which accurately approxi-
mates the desired operation in first order 	t. A sequential
application of these random operations M times reproduces

the desired operation e�i=1
R piZit in the limit M→�, i.e., �40�,

��
i=1

R

pie
Zit/M�M

——→
M→�

e�i=1
R piZit. �131�

Following the structure of the previous section we first
consider the case of decoherence itself, i.e., we set H=0. We
propose a depolarization protocol that, after integration of
the corresponding master equation, yields the same standard
forms as obtained in Secs. III and IV A. Second, we consider
the case where H corresponds to some Ising-type interaction,
e.g., H=�y

A
� �y

B. We make use of the results obtained in Sec.
IV B 2 for the corresponding unitary e−iHt. We show that a
depolarization procedure exists for which—in the limit of
infinite intermediate local control operations—the system
evolves according to some standard form which has the stan-
dard form Eq. �88�, when regarded as a CPM Et�. The
depolarization procedures we describe in the following
�Secs. V A and Sec. V B� are only relevant in cases where
one is interested in the standard form for the complete dy-
namics and not only after some given time �the latter corre-
sponding to the case of CPMs discussed in the previous sec-
tions�. Otherwise, one may use the conceptually simpler
depolarization procedure for CPMs. Nevertheless subsec-
tions V A and V B provide the necessary tools for the pro-
cedure proposed in the subsequent Sec. V C, where we show
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how to achieve a standard form for some arbitrary unitary
dynamics. Although this procedure overcomes the restric-
tions to the area of applications in Sec. IV B, this depolar-
ization protocol generally increases the noise level of the
decoherence process. In the following we assume that local
unitary control operations can be performed on time scales
negligible compared to the interaction time for the dynamics.
We will thus refer to these operations as being instantaneous.

A. Standard form for decoherence processes

We first consider maps describing pure decoherence pro-
cesses �H=0� for a single qubit. For the depolarization we
consider the same twirling procedures as in Sec. III but now
we intend to bring the Markovian generator Z of the initial
dynamics into the standard form

Z� = �
k

ukUkZUk
†, �132�

where Uk denote the unitaries which were applied in Sec. III
with equal probability uk to achieve the standard form of a
Pauli channel, i.e., Uk=�k is one of the Pauli matrices and
uk= 1

4 , or the simpler standard form of a depolarizing chan-
nel, i.e., Uk is of the form Ql�i �Ql=ei��/4��l, l=1,2 ,3� and
uk= 1

12. In Sec. III the number uk represented the probability
to apply the different twirling unitaries. According to �ii�, a
similar procedure still works, where intermediate random ap-
plications of the corresponding unitaries lead to a standard
form of the Markovian generator Z. Alternatively, one can
consider a further splitting of the time interval 	t �see Eq.
�130��, where all possible unitary operations corresponding
to the depolarization process are applied sequentially. We
will consider the second approach in the following.

More precisely, we will consider the following depolar-
ization protocol. Let the actual dynamics of the system �i.e.,
the decoherence process� evolve for some time t and choose
a split of the total time t into M sufficiently small time in-
tervals 	t. During each of these small time intervals the sys-
tem dynamics is accompanied by the sequence of instanta-
neous local control operations Uk+1Uk �U0=1� applied in
arbitrary order but with equal distance uk	t. From fact �i� it
follows that instead of the original dynamics eiZuk	t during
each of the time intervals uk	t the system evolves according
to the Markovian generator UkZUk

†. In the time interval 	t
the evolution is thus given by

�
k

euk	tUkZUk
†
. �133�

If these intervals are chosen sufficiently small �i.e., M→��
fact �ii� implies that the overall system dynamics can effec-
tively be approximated by the Markovian generator in Eq.
�132�.

Let us consider the effect of this depolarization on L and
Hl more closely. According to �i� the GKS matrix is brought
into the standard form Eq. �30� or Eq. �35�, except that the
first row and column of Eq. �29� is disregarded in both equa-
tions. Thus we obtain

L�� = − 2�
k=1

3

Lk�� − �k��k� �134�

with Lk=Lkk in the case of twirling with Pauli operators
Uk=�k and

L�� = − 2L�3� − �
k=1

3

�k��k� = − 4L�2� − 1� �135�

with L= 1
3 �L11+L22+L33� in the case of complete depolariza-

tion. Similarly for the Hamiltonian Hl the twirling by means
of the Pauli matrices Uk=�k yields �see �i��:

Hl� =
1

4�
k=0

3

�kHl�k =
1

2
tr�Hl�1 . �136�

Since this twirling is also performed before each of the Clif-
ford unitaries Ql applied, we obtain the same result in the
case of complete depolarization. Thus in both cases the
Lamb shift Hamiltonian in the standard form gives only rise
to some overall phase factor e−�i/2�tr�Hl�t, which can be ne-
glected.

We briefly examine the dynamics Et� due to the Standard
forms, i.e., the solutions of the master equation

�̇ = L�� , �137�

where the Liouvillian L� is given by Eqs. �134� or �135�. It is
straightforward to see that in case of Eq. �134� the Pauli
matrices diagonalize the Liouvillian L� �41�, i.e.,

L��0 = 0, L��1 = − 4�L2 + L3��1,

L��2 = − 4�L1 + L3��2, L��3 = − 4�L1 + L2��3.

For an arbitrary initial state ��0�= 1
2 �1+n ·�� ��n�=1,

����1 ,�2 ,�3�T� we thus obtain

��t� = eL�t��0� =
1

2
�1 + n�t� · �� , �138�

where n�t�= �n1e−4�L2+L3�t ,n2e−4�L1+L3�t ,n3e−4�L1+L2�t�T. The ac-
tion of Et� in terms of Pauli matrices as in Eq. �29� is actually
that of a Pauli channel

Et� = �
k=0

3

Ek�t��k��k, �139�

where

E0�t� =
1

4
�1 + e−4�L2+L3�t + e−4�L1+L3�t + e−4�L1+L2�t� ,

E1�t� =
1

4
�1 + e−4�L2+L3�t − e−4�L1+L3�t − e−4�L1+L2�t� ,

E2�t� =
1

4
�1 − e−4�L2+L3�t + e−4�L1+L3�t − e−4�L1+L2�t� ,
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E3�t� =
1

4
�1 − e−4�L2+L3�t − e−4�L1+L3�t + e−4�L1+L2�t� .

Similarly a specialization to complete depolarization reveals
the depolarizing channel

Et��� = p�t�� + �1 − p�t��tr���
1

2
1 �140�

with p�t�=e−8Lt.
The fact that the above depolarization procedure for con-

tinuous dynamics rediscover the standard forms already ob-
tained in Sec. III for CPM can also be understood by the
simple fact, that the evolution eZ�t is invariant under unitary
conjugation, i.e., UeZ�tU†=eZ�t, iff the generator Z� is invari-
ant under this conjugation. By construction of the protocol
above, this definitely holds for the standard form Z� with
respect to any of the corresponding twirling unitaries Uk.
With uk being the twirling constant we thus obtain

Et� = eZ�t = �
k

ukUke
Z�tUk

†. �141�

Since this equation precisely reflects the corresponding de-
polarization procedure for CPM of Sec. III, the resulting
time-dependent CPM Et� has to be of standard form for
CPMs.

The depolarization protocols for decoherence processes
�described in this subsection� can be readily generalized to
the multiparty setting. The Lamb shift Hl� in the standard
form can be neglected again whereas the Liouvillian is of a
standard form that corresponds to the multiparty Pauli chan-
nel Eq. �51� or the multiparty depolarizing channel Eq. �53�.
Note, however, that each additional party causes a finer split-
ting of the time interval 	t, yielding an exponential increase
of the number of intermediate control operations. More pre-
cisely for N parties the system dynamics in each time inter-
val 	 has to be interrupted by 4N�12N� control operations in
order to achieve a dynamics corresponding to a Pauli channel
�depolarizing channel�. In this case, the alternative method of
applying random local unitary operations rather than the
complete sequence of unitaries is certainly privileged.

B. Standard forms for noisy Ising-type interactions

Let us now move to the case where the ideal operation is
given by some Ising-type interaction

HAB = g�y
A�y

B. �142�

For depolarization we can essentially consider the same pro-
tocol as in the previous section, except that we now take the
twirling unitaries Uk, that were used in Sec. IV B 2. More
precisely uk= 1

32 and the Uk are given by the 32 unitaries
from the product set U1 ·U2 ·U3, where

U1 = �1A1B,e−i��/4��y
A
1B,1Ae−i��/4��y

B
,e−i��/4��y

A
e−i��/4��y

B
� ,

U2 = �1A1B,�x
A�x

B� ,

U3 = �1A1B,�y
A1B,1A�y

B,�y
A�y

B� , �143�

e.g., Uk=e−i��/4��y�x � �x�y. Recall that a twirling with these
unitaries brings the phase gate U���=e−iH� with an arbitrary
angle � into a standard form Eq. �88� described by only 17
independent parameters.

Apart from the different choice of twirling unitaries the
depolarization reads exactly as in Sec. V A: The overall in-
teraction time t is divided into sufficiently small time inter-
vals 	t, in which the system dynamics is interrupted for
short local unitary control operations Uk. The resulting dy-
namics approximates an evolution Et�=eZ�t with new Mar-
kovian generator

Z� = �
k=1

32

ukUkZUk
† = − iH − iHl� + L�. �144�

Note that due to the choice of the twirling unitaries the ideal
Ising-type interaction Hamiltonian H�=H is in fact not
changed by this protocol. The GKS matrix L� is of standard
form Eq. �88�, except that in Eq. �88� the first row and
column are disregarded. Since no normalization constraints
are involved, the smaller 15�15 matrix is still specified
by 17 real parameters. For the new Hamiltonian of the
lamb shift one can compute that the twirling yields Hl�
=H00

l �0
A�0

B+H22
l �2

A�2
B. Omitting the term H00

l 1AB, which

would contribute only as global phase e−iH00
l t to the system

dynamics, the Lamb shift in the standard form thus can be
specified by a single real parameter H22

l . Moreover we will
include this term into the ideal interaction term rewriting
H�=g��y

A�y
B with g�=g+H22

l and will disregard any Lamb
shift in the following. The change in coupling strength de-
mands a reinterpretation of the interaction time. In order to
simulate the actual dynamics eZt running for some time t by
a dynamics of the standard form eZ�t the simulation actually
has to run for the time ts=ct, where c=g /g� represents the
time cost of the simulation. A similar argument as in the
previous subsection shows that the obtained standard form
eZ�t seen as a CPM is actually in the standard form consid-
ered in Sec. IV B 2.

C. Standard forms for arbitrary noisy evolutions by means of
sacrificing

Let us now consider standard forms for arbitrary ideal
unitary evolutions H. We make use of the fundamental fact
�37� that by a stroboscopic application of a sequence of local
unitaries any �entangling� two-qubit Hamiltonian H can
simulate the Hamiltonian Hy =�y � �y of the phase gate op-
eration U���=e−iHy� in Sec. IV B 2 to arbitrary good ap-
proximation �and vice versa�. Before going into detail we
shortly sketch the procedure of deriving a standard form for
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any noisy unitary evolution. Along each single stroboscopic
step 	t= t /M �M number of steps� of the simulation proto-
cols we propose to:

�1� First apply the sequence of unitary operations in order
to obtain the evolution according to −iHy − iHly +Ly.

�2� Depolarize the CPM Ft described by −iHy − iHly +Ly
according to the procedure derived in Sec. V B yielding a
standard form Ft� given by −iHy − iHly� +Ly�.

�3� Transform it back to the original Hamiltonian H ac-
companied by some decoherence process of desired standard
form Hl� and L�.

We remark that steps �1� and �3� require in general a “time
cost,” i.e., the simulation of the action of a desired Hamil-
tonian for some time �1� ct requires a time t. This time cost
translates into a smaller prefactor for the interaction Hamil-
tonian in the corresponding generator Z�, ultimately leading
to an increased noise. That is, the ratio of the strength of
desired interaction �described by H� to strength of noise �de-
scribed by L� decreases, leading to a reduction of the fidelity.
We note that for two-qubit systems the time cost is at most 3.

In order to simulate the Hamiltonian Hy by the �entan-
gling� two-qubit Hamiltonian H and fast local unitary trans-
formations �see Ref. �37�� one considers the decomposition
of Hy in terms of H �term isolation�:

Hy
AB = cv�

i=1

Rv

viViH
ABVi

† + Q1
A + Q2

B, �145�

where Vi are the local unitaries with probabilities
vi�0 ��ivi=1�, Q1 and Q2 are some local Hamiltonian on
qubit A and B, respectively, and cv�0 is some factor to
adjust the coupling “strength” of the Hamiltonians H and Hy.
If the unitary evolution e−iHyt is supposed to be simulated for
the time t, the simulation has to be carried out for the time
ts=cvt. Since the local unitary control operation can be per-
formed on negligible time scales, the factor cv thus deter-
mines the time cost for the following simulation: One
chooses a split of the time ts into M time intervals 	t, such

that the sequence ��ie
−iviViHVi

†
	te−iQ1	te−iQ2	t�M is a sufficient

approximation for e−iHyts as discussed in �ii�. Note that in
each time step 	t the original dynamics according to H is
simply interrupted after the time vi	t in order to apply the
local unitaries Vi+1

† Vi �V0=1�. This corresponds to the system
evolving according to a sequence of Hamiltonians ViHVi

† for
the time intervals vi	t. At the end of each simulation step 	t
the local unitary e−iQ1	t � e−iQ2	t has to be applied in order to
cope with the single qubit dynamics in the Hamiltonian
simulation.

Similarly, one can consider a Hamiltonian simulation for
step �3� according to the decomposition

HAB = cw�
j=1

Rw

wjWjHy
ABWj

† + Q̃1
A + Q̃2

B �146�

with local unitaries Wj, single qubit Hamiltonians Q̃1 , Q̃2 and
time cost cw for the “backward” simulation. For step �2� we
use the twirling protocol derived in Sec. V B providing a
standard form �88� described by 17 independent parameters.
With cy we denote the corresponding time cost of this depo-
larization procedure.

With these notations at hand we can now specify the pro-
tocol to achieve the standard form Et�=eZ�t for an arbitrary
noisy two-qubit evolution Et=eZt. Let Et=eZt be a Markov-
ian evolution with the generator Z=−iH− iHl+L, where
H�=−i�H ,�� corresponds to the ideal evolution with Hamil-
tonian H, Hl�=−i�Hl ,�� represents the Lamb shift with
Hamiltonian Hl and

L� = �
k,l�0

Lkl���k�,�l� + ��k,��l�� �147�

corresponds to the Liouvillian with GKS matrix L. For no-
tational simplicity we will in the following restrict to the
case where in both steps �1� and �3� no single qubit dynamics

has to be corrected, i.e., the terms Q1, Q2, Q̃1, and Q̃2 in the
decompositions Eqs. �145� and �146� vanish. If the system
evolves for some time t, the following protocol requires the
time tsªcvcycwt and thus has time cost cvcycw. The “simu-
lation” ts again has to be divided into sufficiently small time
steps 	t= ts /M. In these time intervals we consider the fol-
lowing sequence of R=32 Rv Rw operations:

�
i,j,k=1

R

W jUkVie
Zwjukvi	tVi

†Uk
†W j

†. �148�

This sequence of operations corresponds to a splitting of the
time interval 	t into smaller intervals of length wjukvi	t, in
which at the beginning the �fast� local unitary Wj

†Uk
†Vi

† is
performed, the system then evolves according to the given
dynamics Z and finally the inverse unitary “pulse” WjUkVi is
applied at the end of the interval wjukvi	t. In the limit
	t→0 we obtain the Markovian dynamics Et�=eZ�t with

Z� = �
i,j,k=1

R

wjukviW jUkViZVi
†Uk

†W j
†. �149�

It is straightforward to show that the ideal operation H in the
generator Z� remains the same, since the twirling over Uk
leaves the Hamiltonian Hy invariant. Moreover Z� again has
a decomposition of the form Z�=−iH− iHl�+L� described
by the new Lamb shift Hamiltonian Hl� and the GKS matrix
L�, that are obtained as follows:
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Z ——→
�1�

vi,Vi

Zy ——→
�2�

uk,Uk

Zy� ——→
�3�

wj,Wj

Z�

Hl ——→ Hyl = �
i

viViHlVi
† ——→ Hyl� = �

k

ukUkHylUk
† ——→ Hl� = �

j

wjWjHyl� WUj
†

L ——→ Ly = �
i

viOVi
LOVi

T ——→ Ly� = �
k

ukOUk
LyOUk

T ——→ L� = �
j

wjOWj
Ly�OWj

T �150�

As discussed in Sec. V B the effect of step �2� on Ly is to
bring the matrix into the standard form Eq. �88�. The final
standard form L� of the GKS matrix is obtained from Ly� by
mixing according to �wj ,Wj� and is thus specified by 17 in-
dependent parameters only, although L� in general is not of
the form Eq. �88�. As seen in Sec. V B we can neglect the
lamb shift by introducing some time cost cy.

To summarize, we have shown how to achieve a standard
form for arbitrary two-qubit interactions, where the noise
process �described by the GKS matrix� is specified by 17
parameters. The above protocol can be affected by different
sources of errors. For this, one can again compare the noise
level of the standard form dynamics Z� with the noise level
of the original dynamics Z in terms of the distance d�Et ,It�
and d�Et� ,It� to the ideal unitary evolution It=eiHt for differ-
ent times t, where d�E ,I� is a suitable distance measure �see
Sec. II C�. Although we have yet not performed a detailed
error analysis in this sense, a nonunit time cost �at most a
factor of cvcw�3 from simulating corresponding
Hamiltonians—steps �1� and �3�, plus the time cost cy from
“Lamb” shift�, in general, corresponds to an increase of the
noise level for the evolution.

As it holds for the depolarization of CPMs in previous
chapters and as opposed to the assumptions made in this
paper, in practise, the depolarization protocol has to face
imperfections in the local control operations, whose extent
depends on the physical realization. Additionally, for the de-
polarization of master equations by means of stroboscopic
control operations one also encounters errors of order O�	t2�
due to the finite approximation �see fact �ii�� �39�. Note that,
in practise, there will be a trade-off between errors in ap-
proximation and errors due to imperfect local control opera-
tions.

D. Simplified standard forms for arbitrary noisy evolutions

A further reduction of the number of relevant noise pa-
rameters and thus a simpler standard form may be achieved
following the ideas developed in Sec. IV C for CPMs. There,
by increasing the noise level and hence reducing the fidelity
of the operation, we have shown that one can in fact achieve
that the noise part of the evolution is described by only a
single parameter �white noise�. The procedure outlined in
Sec. IV C 3 is based on probabilistically mixing the �already
depolarized� noisy CPM E with a certain separable map D,
i.e., a map which can be obtained without interactions be-
tween particles. That is, one chooses randomly whether one

wishes to apply the map E corresponding to the noisy opera-
tion, or the separable map D. For a proper choice of D the
resulting map ES is of the form Eq. �120�.

In the case of master equations, one may adopt this pro-
cedure in such a way that for each time interval 	t, one
applies the �already depolarized� noisy evolution described
by the Z�, together with an appropriate separable evolution
�that may, e.g., be generated with the help of available local
unitary control operations and additional measurements�
with corresponding generator ZD. Both evolutions now have
to be applied either sequentially or chosen randomly. This
implies that either one has the ability to switch off the evo-
lution Z�, or one can produce a separable evolution of arbi-
trary strength ZD. Note that in this case, fast local unitary
operations are in general not sufficient, but arbitrary local
control operations �including measurements� are required to
generate the desired separable operations. As in the case of
CPMs this depolarization procedure requires moreover the
knowledge of the exact form for Z� in order to choose an
appropriate, separable ZD. The total evolution is finally de-
scribed by a Liouvillian with GKS matrix proportional to the
identity, which corresponds to global white noise at the level
of the respective CPM.

VI. SUMMARY

In this article, we have introduced the concept of depolar-
ization of noisy evolutions. We have shown how to reduce
the relevant number of parameters describing an arbitrary,
unknown noise process described by a CPM in such a way
that the ideal �unitary� part of the evolution is not altered.
For decoherence processes we have explicitly calculated the
corresponding standard forms for multipartite systems of ar-
bitrary number N of parties and arbitrary dimension d. We
find a reduction of an arbitrary noise process described by
O�d4N� to local and global white noise processes described
by only 2N parameters. For specific two-qubit unitary opera-
tions �e.g., phase gate with arbitrary phase�, we obtain a stan-
dard form described by at most 17 parameters. For other
gates, the standard forms can be further simplified. In par-
ticular we find standard forms described by eight parameters
for the CNOT-gate and three parameters for the SWAP gate.
The depolarization procedures used to obtain these standard
forms are universal in the sense that the exact form of the
noise process need not be known. With knowledge of the
exact form of the noise process, and by allowing for a �small�
reduction of the fidelity, one can further simplify the standard
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forms. In fact, we have derived a depolarization protocol that
yields a reduction to global white noise, which is described
by only a single noise parameter and where, in the worst
case, the noise level is increased by about an order of mag-
nitude.

We have generalized our results to evolutions described
by a master equation of Lindblad form. Standard forms for
decoherence processes and interaction Hamiltonians propor-
tional to the Ising Hamiltonian can be derived using similar
methods as for CPMs, leading to standard forms with same
number of parameters. We have also obtained a standard
form described by 17 parameters for arbitrary two-qubit in-
teraction Hamiltonians, which, in general, goes along with an
increase of the noise level. As the basic tool we have used
the possibility to simulate the Ising Hamiltonian by an arbi-
trary Hamiltonian �and vice versa�, together with depolariza-
tion of the Ising type interaction. Again, a further simplifica-
tion to a single parameter leading to a GKS matrix
proportional to identity is possible under certain circum-
stances.

We are confident that such simplified standard forms for
noise processes will provide a useful tool to investigate vari-
ous problems in quantum information processing involving
noisy apparatus and interactions with environment. Straight-
forward applications include the possibility to calculate
lower bounds on the channel capacity of arbitrary noise
channels �by investigating the corresponding depolarized
channels�, and a simplified process tomography where only a
reduced number of parameters of the noise process needs to
be determined. Further conceivable applications include the
determination of lower bounds to the lifetime of entangled
states, and strict error thresholds for quantum computation
that are valid for arbitrary noise processes and are not re-
stricted to certain noise models.
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APPENDIX A: SPECTRAL DECOMPOSITION VS KRAUS
REPRESENTATION

For sake of completeness we will shortly discuss the re-
lation of the Jamiołkowski state E with two common repre-
sentations of the corresponding CPM E in terms of its Kraus
representation and its purification. In Appendix A we con-
sider a CPM E described by its Kraus representation. More
precisely any CPM E acting on HA allows for a decomposi-
tion of the form

E�M� = �
i=1

r

KiMKi
† �A1�

with r�dA�dA� �r=Choi rank� Kraus operators Ki

�M�HA ,HA��, where Ki can be chosen to be orthogonal,

i.e., tr�Ki
†Kj�=�ij. E corresponds to SLOCC operation iff

�
�=1

r

Ki
†Ki � 1 , �A2�

where equality holds iff E is trace preserving. Eq. �A1� is an
immediate consequence of the corresponding fact, that any
positive operator E�0 �see No. 3 in Sec. II B� allows a
spectral decomposition

E = �
i=1

r

�vi�	vi� , �A3�

where �vi� are some unnormalized vectors in HA� � HA, r
=rank�E��dA�dA�, which can be chosen to be orthogonal.
Using the decomposition

�vi� = �
��NdA�
��NdA

vi
�����A����A �A4�

this correspondence is simply given by

Ki = �dA�
��

vi
�����A�A	�� �A5�

or Ki
���=�dAvi

��.
Tracing out either system A� or A yields

trA� EA�A = �
i=1

r

�Ki
†Ki�T, �A6�

trA EA�A = �
i=1

r

KiKi
†. �A7�

Note that No. 4 in Sec. II B now follows directly from Eq.
�A2� using Eq. �A6�. The unitary freedom in the choice of
decompositions for E translates to the corresponding CPM as
follows. Two decomposition of E �E� with Kraus operators
Ki and Lj �vectors �vi� and �wj�� correspond to the same CPM
�positive operator� iff there exists a unitary matrix Uij such
that Ki=�ijUijLj ��vi�=�ijUij�wj��. From these decomposi-
tions one can easily obtain a few more results about the
relation between positive operators and CPM under the Ja-
miołkowski isomorphism.

�10� E is factorizable, i.e., E�M�=KMK†, iff E is pure, i.e.,
E= �v�	v�.

�11� E is an isometry, i.e., E�M�=VMV† with V†V=1A, iff
dA�dA� and E is maximally entangled, i.e., pure rand
trA� EA�A=1A. �For a unitary we have dA=dA�.�

�12� E is a projection, i.e., E�M�=dA tr��2
t M��1, iff E is a

product state, i.e., E=�1 � �2.
�13� E can be decomposed into a sum of projections, iff E

is separable. In this case E is entanglement breaking �42�.

APPENDIX B: PURIFICATION FOR QUANTUM STATES
AND OPERATIONS

Frequently a CPM E is also regarded as a description of
the �nonunitary� evolution of the system alone �i.e., by trac-
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ing the environmental degrees of freedom�, where the system
A together with its environment C is believed to evolve ac-
cording to some unitary operation UE. Any such system-
environment model UE then is said to be a purification of the
CPM E, if it yields E as the evolution of the system alone
after tracing out the environment:

E��� = trC�UE
AC� � �C�UE

AC�†� . �B1�

Here we assume that the system A and its environment A� are
initially decoupled � � �C, where �C= �1/dC�1C is the maxi-
mally mixed state of the environment. Similar to the operator
sum decomposition, a purification of a quantum operation E
in terms of unitary evolution UE can simply be derived from
the corresponding purification of the quantum state E in
terms of a pure state on the joint system A�A and C. For this
let ���A�AC be the pure state, such that EA�A=trC����A�AC	���,
then the corresponding purification UE is given similarly to
Eq. �A5� by

UE
AC = �dA � dC �

i�NdA�
j�NdA

k�NdC

�ijk�i�A�A	j�C	k� , �B2�

using the decomposition ���=�i,j,k�ijk�i�A��j�A�k�C. Note that
in both cases purifications can be chosen such that dC
=dimC�HC��dA�dA�.

APPENDIX C: DETAILS FOR THE EXTENSION
TO d-LEVEL SYSTEMS

In this appendix we present some details about the gener-
alization of the standard forms for decoherence to d-level
systems as it was introduced in Sec. III. We prove that �i� the
twirling over the Pauli group as in Eq. �41� depolarizes any
CPM to the standard form of a generalized Pauli channel Eq.
�42� and �ii� the standard form of a generalized depolarizing
channel Eq. �50� can be achieved by twirling over a finite set
of generalized Clifford operations. But let us briefly consider
the measurements in the generalized Bell basis Eq. �36� of
the isomorphism protocol. It is straightforward to compute,

that the other Bell measurement results ��kl�AĀ yield
E�Ukl

* �Ukl
T � instead of E��� for the outcome of the protocol on

system A� but with the same probability 1 /d2.
Before coming to the proofs, we summarize some useful

facts �see also Ref. �27�� about the generalized Pauli opera-
tors Ukl �see Eq. �37��, that are straightforward to prove

Uk�l�Ukl = ei�2�/d�k�·lU�k+k���l+l��, �C1�

Ukl
† = ei�2�/d�k·lU�−k��−l�, �C2�

Ukl
* = U�−k��l�, �C3�

Ukl
T = e−i�2�/d�k·lU�k��−l�, �C4�

Uk�l�
A ��kl� = ei�2�/d�k�·l���k+k���l+l��� , �C5�

Uk�l�
A� ��kl� = e−i�2�/d��k+k��·l����k+k���l−l��� , �C6�

With these relations at hand it is easy to verify �i�.
First note that the set of generalized local Pauli operators

S = �gkl�gkl = Ukl
A

� U�−k��l�
A� ;k,l � Nd� �C7�

is a commutative subgroup �of the generalized local Pauli
group� that stabilizes �
� and is generated by the two ele-
ments g10 and g01. Moreover a simple calculation shows that

gk�l���kl� = ei�2�/d��k�·l−k·l����kl� . �C8�

For a general state E=���,����E��,���������	������ we there-
fore find, that it can be diagonalized by a probabilistic appli-
cation of the local unitaries gkl with uniform probability
1 /d2:

D�E� ª
1

d2 �
k,l=0

d−1

gklEgkl
†

=
1

d2 �
��,����

E��,���������	��������
k=0

d−1

ei�2�/d�k·��−����
� ��

l=0

d−1

ei�2�/d�l·��−����
= �

��

E��,�������	���� . �C9�

This mixing operation D=D1 �D2 can also be decomposed
into a mixing of shift operation D1�E�= �1/d��l=0

d−1g0lEg0l
† and

a mixing of phase multiplication operation D2�E�
= �1/d��k=0

d−1gk0Egk0
† .

Let us now consider statement �ii�. For this we assume
that E is already brought into the form of a �generalized�
Pauli channel of Eq. �42� by a random application of one of
the Pauli operators Ukl. Now the generalized Clifford opera-
tion is a unitary operation Q that maps the generalized Pauli
group P= �ei�2�/d��Ukl �k , l ,��Nd� to itself under conjuga-
tion, i.e., QPQ†=P. It is totally specified by its action on the
two generators U10 and U01 of the Pauli group, since

QUklQ
† = �QU01Q

†�l�QU10Q
†�k �C10�

=U�ka+lb��kc+ld�. �C11�

Here we have chosen QU10Q
†=Uac and QU01Q

†=Ubd. In
addition we disregard appropriate phase factors ei��/d�� with
��N2d, since they will be irrelevant for our purposes. Up to
these phase factors the Clifford unitary Q permutes a Pauli
operator Ukl to a new element Uk�l�, which in modular arith-
metic �modulo d� is related to Ukl by the linear transforma-
tion

�k�

l�
� = CQ�k

l
�ª �a b

c d
��k

l
� . �C12�

This linear transformation needs to be symplectic �43� in
order to truly correspond to a Clifford operation �44�. Sym-
plecticity of CQ in our single-party case simply reduces to
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the condition det CQ=1 �modulo d�. Applying one of these
Clifford unitaries QA � Q*A� to the state EAA� gives the state

QA
� Q*A�E�QA

� Q*A��†

= �
kl

EklQ
AUkl

A �QA�†QA
� Q*A� � ���AA�	���QA

� Q*A��†�QAUkl
A �QA�†�† = �

k�l�

Ekl��k�l��
AA�	�k�l�� ,

�C13�

where as claimed above any phase factor would cancel out.
Note that the component E00 will remain “untouched,” since
any symplectic matrix CQ �even over Fd with d nonprime� is
invertible. In the following the Clifford unitary Q will be
chosen uniformly at random from a set of all Clifford unitar-
ies, where each Q corresponds only to a single CQ �i.e., fix a
choice of phase factor for each CQ�.

By elementary results from group theory it follows, that
by application of the different C the set of all vectors �k , l�T

with k�0 or l�0 will be mapped onto itself in such a way,
that all vectors will occur equally often. For this let G denote
the group of symplectic matrices over Fd

2, that act on
the set X=Fd

2. Furthermore for x�X let Gxª�gx �g�G� de-
note the orbit of x under the group action G and let
Gxª�g�G �gx=x� denote the stabilizer of x. From the sta-
bilizer orbit and Lagrange theorem it follows that for any
finite group G acting on a set X we have �G�= �Gx��Gx�. This
result can be used to show that each nontrivial element

y�X \ �0� �0ª�00�T�Fd
2� is obtained �G� times, if the com-

plete group G is applied to all elements in X \ �0�. Since G
consists of invertible matrices, it maps the set X \ �0� onto
itself. Moreover any y�X \ �0� is only obtained from ele-
ments of its orbit Gy. For a fixed element x�Gy the set
Gxyª�g�G �gx=y� can be rewritten in terms of only one of
its elements g� �i.e., g�x=y� and the stabilizer Gx as
Gxy =g�Gx. Thus y is obtained form each of the �Gy� elements
�of its orbit� by �Gx� different matrices. Since for two ele-
ments in the same orbit we have Gx=Gy, any element y is
obtained �Gx��Gx�= �G� times. Note that in the case of prime
dimension d, the set X is �not only a module but also� a
vector space over the field Fd and one can easily show that
for all x�0 the orbits are the same Gx=X \ �0�. This is due to
the fact, that for each nontrivial vector x one can find a
symplectic �i.e., Fd invertible� matrix g with the first column
being x �and the second the orthonormal vector x��.

A random application of the corresponding Clifford op-
erations therefore provides a mixing of all components Ekl
with k�0 or l�0. Thus starting with a CPM E in the form
of a Pauli channel �Eq. �42�� we can achieve the standard
form in Eq. �50� by uniformly choosing a unitary Q form the
set of Clifford operations and applying Q† before and Q after
the application of the CPM E. In fact the actual set, which the
Clifford operations have to be chosen from in order to
achieve a complete mixing of all the components Ekl with
k�0 or l�0, might even be decreased, as it is illustrated for
the qubit case in Eq. �33�. Note that the Clifford operation
Q1, Q2, and Q3 in Eq. �33� correspond to the three symplectic
matrices C1= � 1 1

0 1
�, C2= � 0 1

1 0
�, and C2= � 1 0

1 1
�.
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Ā with

C1 � C2���= ��� fulfills C1C2
T

� 1���= ��� and thus C1C2
T=1,

i.e., C1
−1=C2

T.
�33� A. Peres, Phys. Rev. Lett. 77, 1413 �1996�.
�34� M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 8 �1996�.
�35� More precisely the family Et of quantum operation, param-

etrized by real t�0, is a continuous one-parameter semigroup,
i.e., �i� E0=Id, �ii� Es �Et=Es+t, and �iii� the map �t ,���Et���
from �0,���MA to MA� is jointly continuous. The family Et

can equivalently be represented by its generator Z���
=limt↓0��Et���−�� / t� in the exponential form Et=eZt or by the
differential equation �̇=Z�.

�36� V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Lett.
Math. Phys. 17, 821 �1976�; G. Lindblad, Commun. Math.
Phys. 48, 119130 �1976�.

�37� J. L. Dodd, M. A. Nielsen, M. J. Bremner, and R. T. Thew,
Phys. Rev. A 65, 040301 �2002�; P. Wocjan, D. Janzing, and
Th. Beth, Quantum Inf. Comput. 2, 117 �2002�; W. Dür, G.
Vidal, J. I. Cirac, N. Linden, and S. Popescu, Phys. Rev. Lett.
87, 137901 �2001�; C. H. Bennett, J. I. Cirac, M. S. Leifer, D.
W. Leung, N. Linden, S. Popescu, and G. Vidal, Phys. Rev. A
66, 012305 �2002�; E. Jané, G. Vidal, W. Dür, P. Zoller, and J.
I. Cirac, Quantum Inf. Comput. 3, 15 �2003�.

�38� D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W. Leung,
and X. Zhou, Phys. Rev. A 64, 062302 �2001�.

�39� More precisely for M time steps 	t= t /M one obtains

�e�ipiZi	t − �
i

epiZi	t� � �
j,k=1

R

��Z j,Zk��
	t2

2
+ O�	t3�

� �
j,k=1

R

�Z j − Zk�	t2 + O�	t3�

� CR2	t2 + O�	t3� ,

where �Z�ªmaxM: �M�tr=1
�Z�M����M�tr= tr��M†M�� is the

maximum norm with respect to the trace norm �for details
about this worst case distance see Ref. �5�� and
Cª2 maxk�Zk� is a constant depending on the generators Zi.
Since eZ�t= �eZ�	t�M and because �Z� obeys the chaining
property �5�, we can estimate the total error

�eZ�t − ��
i

epiZi	t�M� � MCR2	t2 + O�	t3� .

�40� This can be seen by considering a Taylor series expansion of
the expression ��i=1

R pie
Zi�t/M��M, which can be rewritten as

STANDARD FORMS OF NOISY QUANTUM OPERATIONS… PHYSICAL REVIEW A 72, 052326 �2005�

052326-29



�
k=0

�
tk

k!��i=1

R

pie
Zit/M�k

M!

�M − k�!Mk + O� 1

M
� .

Taking the limit M→�, one finds that M! / �M −k�!Mk→1,
and the O�1/M� terms vanish, although the overall conver-
gence is rather slow. The resulting series exactly corresponds

to e�i=1
R piZit.

�41� H. J. Briegel and B. G. Englert, Phys. Rev. A 47, 3311 �1993�.
�42� P. W. Shor, J. Math. Phys. 43, 4334 �2002�.
�43� A matrix C is symplectic iff it leaves the symplectic form P

= � 0 −1
1 0

� invariant, i.e., P=CTPC. Note that its inverse is given
by C−1=−PCTP.

�44� See, e.g., E. Hostens, J. Dehaene, and B. De Moor, quant-ph/
0408190.

DÜR et al. PHYSICAL REVIEW A 72, 052326 �2005�

052326-30


