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We give the optimal decomposition of a universal two-qubit circuit using Heisenberg exchange interactions
and single qubit rotations. Tuning the strength and duration of the Heisenberg exchange allows one to imple-
ment �SWAP�� gates. Our optimal circuit is constructed from only three �SWAP�� gates and six single qubit
gates. We show that three �SWAP�� gates are not only sufficient, but necessary. Since six single-qubit gates are
already known to be necessary, our implementation is optimal in gate count.
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I. INTRODUCTION

In several general solid-state quantum computation ap-
poaches �1–6�, two-qubit interactions are generated by a tun-
able exchange interaction. For example, the Heisenberg ex-
change between two electron spin qubits results in a
�SWAP�� gate, where the exponent � is controlled by adjust-
ing the strength and duration of Heisenberg exchange.
Single-qubit rotations have also been proposed for solid-state
computation; notable mechanisms for rotating spin qubits be-
ing g-tensor resonance �7,8� and localized magnetic reso-
nance �9�. In general, it is desirable to optimize quantum
circuits with respect to the number of physical operations
required, which for most solid-state quantum computation
proposals implies that circuits should be optimized with re-
spect to the number of �SWAP�� operations and single-qubit
rotations.

The problem of optimizing quantum circuits for executing
general n-qubit operations is computationally intractable.
Hence, just as in the classical computation case, one needs to
develop techniques for optimizing only few-qubit circuits
and then assemble these circuits together in a modular fash-
ion. Toward this end, circuit optimization results have mostly
dealt with the case where controlled-NOT �CNOT� gates and
single-qubit rotations are the basic building blocks. For ex-
ample, for a general two-qubit unitary operation, it has been
recently shown that three CNOT gates and additional single-
qubit rotations are sufficient and necessary �10,11�. Now, it is
known that one CNOT gate can be realized by two �SWAP�1/2

gates and single-qubit unitary gates �1�. Hence, six
�SWAP�1/2 gates are sufficient to implement any two-qubit
operation. The question is whether this strategy of simple
substitution is optimal? Or, are �SWAP�� gates just as effi-
cient as CNOT gates �in terms of gate count� in performing
two-qubit operations? Our answer to the latter is in the affir-
mative: The �SWAP�� gates and CNOT gates are both equally
efficient at realizing any two-qubit quantum operation �when
measured in terms of number of gates�, and that, in order to
achieve optimal realizations each type of circuit requires its
own optimization scheme.

The primary results of our paper are as follows. An arbi-
trary two-qubit operation can be implemented using only
three �SWAP�� gates and six single-qubit rotations. We aug-
ment this result with a number of lower bounds. First, we

show that, by considering entanglement power alone, a CNOT

gate requires at least two �SWAP�� gates. Next, we prove
that three �SWAP�� gates are not only sufficient, but in fact
necessary, to implement an arbitrary two-qubit operation.
Our universal two-qubit circuit is optimal in the number of
both �SWAP�� and single qubit gates.

II. HEISENBERG INTERACTION

Let us first fix some notation; the four Bell states
are written as ��±�= �1/�2���00�± �11��, ��±�= �1/�2�
���01�± �10��. The SWAP gate is defined as SWAP������
= ������. For a C2 � C2 system, it can be written explicitly as

SWAP = ��+���+� + ��−���−� + ��+���+� + ei���−���−� .
�1�

In this paper, our basic two-qubit gate is �SWAP��; it can be
written as

�SWAP�� = ��+���+� + ��−���−� + ��+���+� + ei����−���−�

=	
1 0 0 0

0
1 + ei��

2

1 − ei��

2
0

0
1 − ei��

2

1 + ei��

2
0

0 0 0 1


 . �2�

The Hamiltonian of the isotropic Heisenberg exchange

interaction between electron spins S�1 and S�2 is

H = J�t�S�1 · S�2, �3�

where S� = �	x ,	y ,	z� is a vector of Pauli matrices

	x = 
0 1

1 0
�, 	y = 
0 − i

i 0
�, 	z = 
1 0

0 − 1
� . �4�

The coupling constant J�t� can in principal be tuned for con-
fined electrons �1�. The unitary operator generated by this
Hamiltonian is
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U12 = exp
−
i



S�1 · S�2� J�t�dt� . �5�

By adjusting the integrated coupling �J�t�dt, the unitary op-
erator U12 can naturally realize the gate �SWAP�� where �
=�J�t�dt /h. In this paper, we will use the �SWAP�� gate as
the two-qubit gate. It was proposed to use the Heisenberg
interaction alone to implement quantum computing �4–6�.
This scheme encodes one logical qubit as three physical qu-
bits. Additionally, one CNOT gate requires 19 Heisenberg in-
teractions among the six physical qubits. We consider the
scheme where both Heisenberg interaction, as well as,
single-qubit rotations are available.

III. CNOT GATE REQUIRES TWO „SWAP…� GATES

We know that one CNOT gate can be realized by two
square root of SWAP gates, �SWAP. If we use a more gen-
eral gate, �SWAP��, can we realize the CNOT by only one
�SWAP�� gate and a certain number of single-qubit rota-
tions? By studying the nonlocal invariants of the quantum
gates, Makhlin showed that the CNOT gate cannot be con-
structed by applying the Heisenberg interaction H only once,
i.e., two �SWAP�� gates are necessary to construct one CNOT

�12�. In this section, we give a different proof, using en-
tanglement power, to show that the CNOT gate requires at
least two �SWAP�� gates.

The entanglement power of a unitary operator U
�SU�4� is defined as

Ep�U� = average��1�� ��2��E�U��1� � ��2��� , �6�

where the average is over all product states ��1� � ��2��C2

� C2 in uniform distribution, see �13�, and E is the linear
entropy which is also the concurrence �14�. Note that for
arbitrary U1 � U2�SU�2� � SU�2�, Ep�U�=Ep�U1 � U2U�.
So, the entanglement power of �u1 � v1��SWAP���u2 � v2� is
actually the entanglement power of �SWAP��.

A simple formula can be used to calculate the entangle-
ment power �11,13�

Ep�U� =
5

9
−

1

36
��U�2,T1,3U�2T1,3�

+ ��SWAP · U��2,T1,3�SWAP · U��2T1,3�� , �7�

where T1,3 acting on C2 � C2 � C2 � C2 is the transposition op-
erator: T1,3�a ,b ,c ,d�= �c ,b ,a ,c�. By tedious but straightfor-
ward calculations we can show that

Ep��SWAP��� =
1

12
−

1

12
cos�2��� . �8�

For detailed calculations, see Appendix A in Ref. �18�. When
�=1/2, �SWAP�� has a maximum entanglement power of
1 /6. Since the entanglement power of CNOT is 2 /9 �11�,
which is strictly larger than 1/6, one �SWAP�� operator with
the help of single-qubit gates is not sufficient to realize the
CNOT. Hence, at least two �SWAP�� gates are necessary to
realize a general SU�4� operator.

IV. GENERAL TWO-QUBIT OPERATION

Kraus and Cirac �15� gave the following result �see also
�16��: an arbitrary unitary transformation U�SU�4� has the
decomposition

U = �u4� � v4��e
−iH�u1 � v1� , �9�

where u1 ,v1 ,u4� ,v4��SU�2�, and

H � hx	x � 	x + hy	y � 	y + hz	z � 	z, �10�

where � /4�hx�hy �hz�0. Then H in �10� can be written
as

H = �00��+���+� + �01��+���+� + �10��−���−�

+ �11��−���−� , �11�

with

�00 = hx − hy + hz, �01 = hx + hy − hz,

�10 = − hx + hy + hz, �11 = − hx − hy − hz. �12�

The diagonal form of H thus gives

e−iH = e−i�00��+���+� + e−i�01��+���+� + e−i�10��−���−�

+ e−i�11��−���−� . �13�

Vidal and Dawson �10� and Vatan and Williams �11� have
shown that the operator e−iH can be realized by only three
CNOT gates and some single-qubit rotation gates. Thus
an arbitrary U�SU�4� can be realized by three CNOT gates
and additional single-qubit gates; see also the Appendix B in
Ref. �18�.

V. ARBITRARY TWO-QUBIT UNITARY OPERATIONS
REQUIRE ONLY THREE „SWAP…� GATES

AND SIX SINGLE QUBIT GATES

Recall that a CNOT gate can be realized by two �SWAP�1/2

gates and a few extra single qubit operations. We know the
optimal circuit for a general U�SU�4� needs three CNOT

gates, so six �SWAP�� gates are needed if we simply substi-
tute SWAP circuits for CNOT gates. Our aim is to find a
circuit to realize U�SU�4� optimal in the number of
�SWAP�� gates.

From the result of Kraus and Cirac �Eq. �13�� �15�, we
need to create arbitrary phases on four Bell states by
�SWAP�� gates. But we already know that �SWAP�� applies
a phase to the Bell state ��−� while leaving the other three
Bell states invariant. Also, by Pauli rotations on one particle
of the bipartite state, we can transform the Bell states among
each other. Thus, it is straightforward to create four indepen-
dent phases on the Bell states. We can rewrite the operator
exp�−iH� as

e−iH = ei�hz−hx−hy����+���+� + e2i�hx+hy���−���−�

+ e2i�hy−hz���+���+� + e2i�hx−hz���−���−�� . �14�

This operator can be constructed by �SWAP�� operators as
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e−iH = ei�hz−hx−hy���I � 	x	z��SWAP�2�hy−hz�/��I � 	z	x����I

� 	x��SWAP�2�hx−hz�/��I � 	x����SWAP�2�hx+hy�/�� .

�15�

This circuit just involves three �SWAP�� operators and
single-qubit gates which are Pauli matrices. So as a whole,
we can construct any U�SU�4� by only three SWAP gates
and single-qubit rotations. Note that besides Pauli matrices,
general single-qubit rotations are also necessary to transform
e−iH to U.

Up to an overall phase, we can rewrite e−iH

e−iH = �	z � 	x��SWAP�
�	z � I��SWAP���I � 	x�

��SWAP��, �16�

where �=2�hx+hy� /�, �=2�hx−hz� /�, 
=2�hy −hz� /�. The
corresponding circuit for U is illustrated in Fig. 1.

In any implementation, single-qubit rotations as well as
two-qubit operations will require physical resources such as
time and hardware. Hence, it is helpful to consider the num-
ber of single-qubit gates involved in each circuit as well. In
the circuit of Vidal and Dawson �10�, eight single-qubit gates
are used to construct the general U�SU�4�, while in our
circuit, six single-qubit gates are used. It is known that this is
the least possible number of single-qubit rotations �17�. If we
assume that each single-qubit rotation is as expensive as a
two-qubit operation, then our circuit is potentially cheaper.

We next show that our circuit is optimal in the number of
�SWAP�� gates used, i.e., three �SWAP�� gates are neces-
sary to construct a general circuit. Let us write out a general
unitary operator which contains just two �SWAP�� gates

U = �U1 � V1��SWAP���U2 � V2��SWAP���U3 � V3� ,

�17�

where Uj, Vj, and j=1,2 ,3 are single-qubit operations.
One can group single-qubit unitaries about the �SWAP��

operators as follows:

U = �U1 � V1��SWAP���U1
†

� V1
†��Ũ2 � Ṽ2��SWAP���Ũ2

†

� Ṽ2
†��Ũ3 � Ṽ3� , �18�

where Ũ2=U1U2, Ṽ2=V1V2, Ũ3=U1U2U3, and Ṽ3=V1V2V3.
Here we notice that operators �U1 � V1��SWAP���U1

†
� V1

†�
and �Ũ2 � Ṽ2��SWAP���Ũ2

†
� Ṽ2

†� are just SWAP gates in
some different basis. So we can write this relation as

U = �SWAP���SWAP˜ ���u � v� . �19�

A single �SWAP�� gate can create one phase in one maxi-
mally entangled state, with the orthogonal three-dimensional
space left invariant. So for two �SWAP�� gates, there exist
two maximally entangled orthogonal states, ��1� and ��2�,
simultaneously orthogonal to ��−� and ��̃−�. From the sym-
metry of the �SWAP�� operation, it follows that for every
two-�SWAP��-gate circuit there exists at least two orthogo-
nal and maximally entangled states such that they cannot be
assigned a relative phase by the circuit. That is, the unitary
operator corresponding to the two-�SWAP��-gate circuit
must satisfy U�� j�= �u � v��� j�, j=1,2. Note that local uni-
tary operations cannot add a relative phase to two maximally
entangled states. However, since a general two-qubit opera-
tion can assign independent phases to three maximally en-
tangled states, one can find U�SU�4� such that it will never
satisfy the preceding constraint. Hence, two �SWAP�� gates
and single-qubit rotations are not sufficient to construct an
arbitrary U�SU�4�.

VI. SPIN-BASED QUANTUM COMPUTATION
BY SWAP CIRCUIT

In this section, we will estimate the real time required to
implement our �SWAP�� circuit. We consider both the GaAs
and Si semiconductor systems; for review see Ref. �19�. A
reasonable effective resonant magnetic field is B=1 mT, giv-
ing a Rabi frequency for an electron in GaAs �Si� of approxi-
mately 6.2 MHz �28 MHz�, so that a single-qubit � rotation
requires approximately 80 ns �18 ns�. The effective resonant
magnetic field could be generated by localized magnetic ex-
citation �9� or through g-tensor modulation �7,8�. A SWAP
gate needs about 50 ps for J�0.1 meV Eq. �3�, and hence
50 ps is the maximum time required for performing a
�SWAP�� gate.

From the point of view of operating time �and hence qubit
storage errors�, reducing the number of single qubit gates
becomes the overwhelming consideration in designing a cir-
cuit. Our circuit is formed by at most three �SWAP�� gates
and six single qubit rotations. Considering that single-qubit
rotations can in principle be performed on individual qubits
simultaneously, the total time to implement a general
�SWAP�� circuit is at most the time required for three single-
qubit rotations. The optimal CNOT circuit given by Ref. �10�
contains three CNOT gates and eight single-qubit rotations. If
we assume that a CNOT gate takes almost the same time as a
SWAP gate, we find that the time to implement the CNOT

circuit is also at most the time to implement three single-
qubit rotations �distinct from the single-qubit rotations of the
�SWAP�� circuit�. In practice, one would like to implement
specific instances of U�SU�4�, so that gate counts and tim-
ings depend on the target operation U. The self-evident ex-
ample is that it is best to implement U=CNOT with a CNOT

circuit, and similarly U=SWAP with a �SWAP�� circuit. The
essential point is that given the physical means to implement
single-qubit rotations and �SWAP��, we can arrive at the
most efficient decomposition �in terms of operating time and

FIG. 1. Circuit for arbitrary unitary transformation U�SU�4� as
decomposed in Eqs. �9� and �16�. Three SWAP gates and six local
unitaries �upon combination of u4� and v4� with Z and X, respec-
tively� are required.
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gate count� of a target U�SU�4� that might be specified
using a network of CNOT’s, controlled phase gates, or other
logically convenient gates. This optimization is essential for
minimizing both storage and gate errors introduced by per-
forming the operation U.

The entanglement power of the �SWAP�� gate is strictly
less than the CNOT gate, but the �SWAP�� gate is as efficient
as the CNOT gate �in terms of gate count� in performing two-
qubit operations. From the point of view of operating time,
we also showed that both the �SWAP�� circuit and the CNOT

circuit are the same for a general two-qubit unitary operation.
So the optimal �SWAP�� circuit is as good as the optimal
CNOT circuit if the complexity of physical implementation of
two-qubit gates �CNOT gate and �SWAP�� gate� and single-
qubit gates are the same. However, if we directly replace a
CNOT gate by two �SWAP�1/2 gates and some single-qubit
gates to implement a general two-qubit operation, we need
six �SWAP�1/2 gates and the operating time will be at least
doubled compared with the optimal �SWAP�� circuit. In this
sense the optimizition of a �SWAP�� circuit is necessary; the
advantages of the optimization are, first, that the number of
two-qubit gates is reduced by half, and second, the operating
time is reduced to one-half to one-third due to the reduction
of the number of single qubit gates.

Our circuit realizes the three free parameters in Eq. �12�
by adjusting the � in the �SWAP�� gate. So the SWAP circuit
generally involves three different �SWAP�� gates with fixed
single-qubit rotations. This is in contrast with the CNOT cir-
cuit, in which the two-qubit operation, the CNOT gate, is
fixed, and the single-qubit rotations are tuned according to
the free parameters in Eq. �12�. This is a trade off in design-
ing a circuit, which do we prefer: tuning �SWAP�� gates or
tuning single qubit rotations? As is generally accepted, in
solid state with Heisenberg exchange interaction, the

�SWAP�� gate can be realized by simply controlling the in-
teraction time as presented in Eq. �5�. An arbitrary single-
qubit rotation is potentially more difficult to realize and may
take up to 100 ns �20� to process. For example, one can
apply magnetic time varying magnetic fields. Since the
single-qubit rotations are fixed in the SWAP circuit of Ref.
�16� �the single-qubit rotations at the front and back of the
circuit still need be adjusted according to the specified op-
erations�, the directions, gradients, pulse time, etc., of the
magnetic field can be fixed. In this sense, for spin-based
quantum computation, tuning the �SWAP�� gate in our cir-
cuit could be advantageous compared to using a fixed
�SWAP�� circuit, such as �SWAP�1/2, and tuning the single-
qubit rotations.

VII. SUMMARY AND DISCUSSION

When it comes to solid state implementations, the ex-
change interaction has emerged as the primary mechanism
for constructing nonlocal quantum gates, and the �SWAP��

gate is the cheapest and the most natural two-qubit gate that
can be realized using this technology. We have shown that
simply replacing individual CNOT gates with its SWAP cir-
cuit is not an efficient implementation technique for
exchange-interaction-based quantum computing systems. We
have presented an alternate optimization technique and have
derived the optimal circuit for an arbitary two-qubit unitary
operator using SWAP gates and single-qubit rotations.
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