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We study the dynamics of entanglement in the infinite asymmetric XY spin chain, in an applied transverse
field. The system is prepared in a thermal equilibrium state �ground state at zero temperature� at the initial
instant, and it starts evolving after the transverse field is completely turned off. We investigate the evolved state
of the chain at a given fixed time, and show that the nearest-neighbor entanglement in the chain exhibits a
critical behavior �which we call a dynamical phase transition�, controlled by the initial value of the transverse
field. The character of the dynamical phase transition is qualitatively different for short and long evolution
times. We also find a nonmonotonic behavior of entanglement with respect to the temperature of the initial
equilibrium state. Interestingly, the region of the initial field for which we obtain a nonmonotonicity of
entanglement �with respect to temperature� is directly related to the position and character of the dynamical
phase transition in the model.
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I. INTRODUCTION

Exploring the properties of entanglement has recently at-
tracted a lot of interest, due to the usefulness of entanglement
in quantum information processing tasks �1�. Recently, sev-
eral authors have begun to study the properties of entangle-
ment in real physical many-body systems, such as cold
atomic gases in optical lattices �e.g., �2�� or in trapped gas-
eous Bose-Einstein condensates �e.g., �3��. It turns out that
such investigations help us to understand the physics of
quantum phase transitions �e.g., �4–8��. Moreover, they are
important for implementations of quantum computation or
other quantum information processing tasks in such physical
systems.

Among the potential candidates for implementing quan-
tum computation are various models of spin systems that can
be realized with ultracold atoms in optical lattices �see, e.g.,
�9,10��. There is therefore a strong motivation behind the
study of entanglement in spin systems �see, e.g., �4–8,11–15�
and references therein�. Moreover, studies of entanglement in
spin models help us to relate entanglement to the fundamen-
tal concepts, such as quantum phase transitions. In particular,
it was shown that near a phase transition in the ground state
of an exactly solvable spin model in one dimension �Ising
model in a transverse field�, two-particle entanglement re-
mains short-ranged while two-particle correlation length di-
verges �4,5�. The behavior of bipartite as well as multipartite
entanglement in the ground states and �thermal� equilibrium
states of spin rings and chains has been studied from several
perspectives �4–6,11,14,15�. It has been shown that, using
the concept of localizable entanglement �8,16� �cf. �17,18��,
bounded from above by entanglement of assistance �19� and
from below by correlation functions, one can define an en-
tanglement correlation length that diverges at the criticality,

and majorizes the standard correlation length �see also �20��.
Studies of entanglement of the time-evolved state of spin

models has also been carried out �13,14,21–24�. In particular,
implementation of the “one-way quantum computer” and
short-range teleportation �25� of an unknown state has been
proposed by using the dynamics of spin systems in
�22–24,26,27�. In Ref. �14�, it was shown that the nearest-
neighbor entanglement of the time-evolved state in an infi-
nite spin chain �asymmetric XY model in a transverse field�,
after an initial disturbance, does not approach its equilibrium
value �nonergodicity of entanglement�. Previous studies of
quantum dynamics of spin models after a rapid change of the
field include Refs. �28,29�, while effects of a sudden switch-
ing of the interaction in arrays of oscillators were studied in
Ref. �30�.

In this paper, we study the dynamics of nearest-neighbor
entanglement in the evolution of an infinite spin chain de-
scribed by the asymmetric XY model in a transverse field
�see Eq. �2� below�. We take the initial state of the evolution
to be the equilibrium state at zero temperature, and suddenly
turn off the transverse field at zero time. The system is thus
given an initial disturbance, and its properties are then stud-
ied at later times. We find that the nearest-neighbor entangle-
ment in the evolved state at a fixed time shows a criticality
�which we call a dynamical phase transition �DPT�� with
respect to the transverse external field. We refer to the region
of the initial transverse field for which the entanglement is
nonvanishing �vanishing�, at a fixed time, as the “entangled
phase” �“separable phase”�. Interestingly, the nature of the
DPT depends on whether we are near or far from the time of
initial disturbance. Moreover, for values of the initial trans-
verse field near the criticalities, as well as in the separable
phase, and for short times, the nearest-neighbor entangle-
ment shows nonmonotonicity with respect to temperature.
Accordingly, we call the criticalities “critical regions,” signi-
fying that “critical” effects persist for a small region around
the critical value of the transverse field. Such nonmonotonic-*Also at Institució Catalana de Recerca i Estudis Avançats.
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ity of entanglement with respect to temperature was also
found in Ref. �31�, in the Jaynes-Cummings model. Study of
nonmonotonicity of entanglement with respect to tempera-
ture is interesting, as preservation of entanglement in a hos-
tile environment is one of the main challenges in quantum
computation and quantum information in general. A common
belief is that temperature is a form of noise, i.e., it destroys
the subtle quantum correlations. However, we show that for
the infinite spin chain modeled by the XY Hamiltonian, at
least in some situations, entanglement is not always mono-
tonically decreasing with temperature, and interestingly this
is related to the appearance of a dynamical phase transition
in that model.

As we have mentioned above, we characterize the DPT in
the asymmetric XY chain by magnetic field and temperature,
the usual control parameters used in statistical physics for
characterizing phase transitions. However, note that we also
use time �t� as one of our control parameters in the charac-
terization. As we will see in this paper, significant change of
behavior is observed in the DPTs, as we change the param-
eter t.

The paper is organized as follows. In Sec. II, we will
recollect some facts about the XY spin model and fix some
notations. In order to explore the properties of entanglement,
one has to fix the measure with which one quantifies en-
tanglement. In Sec. III, we define the entanglement measure
that will be considered in this paper. The concept of dynami-
cal phase transition is discussed in Sec. IV. The nonmonoto-
nicity of entanglement of the evolved state with respect to
temperature of the initial state, and its connection to the dy-
namical phase transition, are discussed in Sec. V. We sum-
marize our results in the final section �Sec. VI�.

II. THE XY MODEL IN THE TRANSVERSE FIELD

A. Description of the model

For a one-dimensional spin chain of spin-1
2 particles, a

simple form of the Hamiltonian with nearest-neighbor inter-
actions is given by

Hint = �
i

�ASi
xSi+1

x + BSi
ySi+1

y + CSi
zSi+1

z � , �1�

where A, B, and C are coupling constants, and Si
x, Si

y, and Si
z

are spin-1
2 operators �one-half of the Pauli matrices� at the ith

site. One can also introduce an external magnetic field in the
Hamiltonian, so that the total Hamiltonian is

H = Hint − h�t�Hmag,

where h�t� is a time-dependent function, to be specified
below. To obtain a nontrivial effect on the dynamics due to
the field part of the Hamiltonian, one must choose the mag-
netic field and other parameters in such a way that the inter-
action part and the field part of the total Hamiltonian do not
commute.

A simple way to attain that is to choose the field part as

Hmag = �
i

Si
z,

and A=1+�, B=1−�, and C=0 �with ��0�. Therefore, the
total Hamiltonian that we study in this paper takes the form
���0�

H = �
i

��1 + ��Si
xSi+1

x + �1 − ��Si
ySi+1

y � − h�t��
i

Si
z. �2�

This Hamiltonian is called the asymmetric XY model in a
transverse field.

Such a system can be realized in atomic gas in an optical
lattice �e.g., �9,10��. Note that the condition of nonvanishing
anisotropy � is required, as otherwise the field part com-
mutes with the interaction part. This model is exactly solv-
able by succesive Jordan-Wigner, Fourier, and Bogoliubov
transformations �32�. We still have to specify the time depen-
dence of the magnetic field, which we choose to be a step
function. Precisely, we choose h�t� to be

h�t� = �a , t � 0

0, t � 0
�

with a�0. The system is thus given an initial disturbance, as
the field is turned off. The properties of the evolved state are
then studied at later times.

We will mainly be interested in studying the dynamics of
nearest-neighbor entanglement of the evolved state of such a
model. The state that we consider evolves according to the
Hamiltonian H, given in Eq. �2�. But it also depends on the
initial state, from which it starts evolving. Let us denote the
�thermal� equilibrium state at the initial time, and at absolute
temperature T, as ��

eq,

��
eq = exp�− �H�0��/Z�.

Here Z� is the partition function, given by

Z� = tr„exp�− �H�0��… ,

and �=1/kBT, where kB is the Boltzmann constant. Hence-
forth, we set k=1. In all cases studied here, we will be
choosing an equilibrium state ��

eq as our initial state. In par-
ticular, we will consider the case of zero temperature, i.e.,
when �→�.

B. Single- and two-particle reduced density matrices

Although our main intention is to study the behavior of
nearest-neighbor entanglement, we will also calculate the
single-site property of magnetization in this model. As we
will see, the behavior of magnetization �in particular, its non-
monotonicity� does not depend on whether we are near or far
from the DPT discussed in this paper. Let us therefore find
out the single-site and two-site reduced density matrices of
the evolved state. Let us suppose that the evolution starts off
from the initial state ��

eq of the infinite chain, and let the
evolved state of the infinite spin chain be denoted by ���t�.
Due to symmetry, all the single-site density matrices of the
evolved state �at a particular instant t, and for a particular
temperature T� are equal. The same is true for the nearest-
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neighbor density matrices �as for the other two-site density
matrices�. We denote them as ��

1�t� and ��
12�t�, respectively.

Our system is an infinite spin chain of spin-1
2 particles,

and so our single-site density matrix ��
1�t� acts on the two-

dimensional complex Hilbert space. A general single-qubit
�two-dimensional quantum system� density matrix can be
written as

��
1�t� =

1

2
I + 2M�

z �t�Sz + 2M�
x �t�Sx + 2M�

y �t�Sy ,

where M�
z �t�, M�

x �t�, and M�
y �t� are the unknown parameters

to be determined. Using Wick’s theorem, as in Refs. �32–34�,
we have that

M�
x �t� = M�

y �t� = 0. �3�

Therefore, the single-site density matrix of the evolved state
is of the form

��
1�t� =

1

2
I + 2M�

z �t�Sz,

so that we are left with determining just the single parameter

M�
z �t� = tr�Sz��

1�t�� ,

which is the �transverse� magnetization of the system.
Let us now consider the two-site density matrix ��

12 of the
evolved state. A general two-qubit state is of the form

��
12�t� =

1

4
I � I + �

j=x,y,z
M�

j �t��Sj
� I + I � Sj�

+ �
j,k=x,y,z

T�
jk�t�Sj

� Sk, �4�

where

T�
jk�t� = 4 tr�Sj

� Sk��
12�t��

are the two-site correlation functions. We already have
M�

x �t�=M�
y �t�=0. By applying Wick’s theorem again, one

can find that the x-z and the y-z correlations are vanishing.
Therefore, the two-site density matrix of the evolved state is
of the form

��
12�t� =

1

4
I � I + M�

z �t��Sz
� I + I � Sj� + T�

xy�t��Sx
� Sy

+ Sy
� Sx� + �

j=x,y,z
T�

j j�t�Sj
� Sj . �5�

To find out the remaining �nonvanishing� parameters of
the single- and two-particle states ���

1�t� and ��
12�t�, respec-

tively�, explicit use of diagonalizing transformations �Jordan-
Wigner, Fourier, and Bogoliubov transformations� must be
made �32–34�. Using them, one finds that the �transverse�
magnetization of the evolved state is given by �33�

M�
z �t� =

1

2�
�

0

�

d	

tanh	1

2
�
�a�



�a�
2�0�

� „�cos�2
�0�t��2a sin2 	�

− cos 	��cos 	 − a�cos 	 + �2 sin2 	�… , �6�

where 
�a� and 
�0� are obtained from 
(h�t�)= ��2 sin2 	
+ �h�t�−cos 	�2�1/2. The nearest-neighbor correlations
of the evolved state are given by �34� T�

xy�t�=S��1, t� / i,
T�

xx�t�=−G��−1, t�, T�
yy�t�=−G��1, t�, and T�

zz�t�=4�M�
z �t��2

−G��1, t�G��−1, t�+S��1, t�S��−1, t�, where G��R , t� and
S��R , t�, for R= ±1, are given by

G��R,t� =
�

�
�

0

�

d	 sin�	R�sin 	

tanh	1

2
�
�a�



�a�
2�0�

� ��2 sin2 	 + �cos 	 − a�cos 	

+ a cos 	 cos�2
�0�t��

−
1

�
�

0

�

d	 cos�	R�
tanh	1

2
�
�a�



�a�
2�0�
� „��2 sin2 	

+ �cos 	 − a�cos 	�cos 	

− a�2 sin2 	 cos�2
�0�t�… , �7�

S��R,t� =
�ai

�
�

0

�

d	 sin�	R�sin 	
sin�2t
�0��

�a�
�0�

. �8�

III. MEASURE OF ENTANGLEMENT: LOGARITHMIC
NEGATIVITY

Let us now specify the measure of entanglement, which
we will use to quantify entanglement of the nearest-neighbor
spins of our infinite spin chain. There are several ways to
quantify entanglement �see, e.g., �19,35��, and in fact there
exists no “canonical” entanglement measure. In this paper,
we will consider logarithmic negativity �LN� �36�. It should
be stressed, however, that the results do not depend on the
choice of the entanglement measure. To define logarithmic
neagativity, let us first introduce negativity. The negativity
N��AB� of a bipartite state �AB is defined as the absolute value
of the sum of the negative eigenvalues of �AB

TA , where �AB
TA

denotes the partial transpose of �AB with respect to the A part
�37�. The logarithmic negativity is defined as

EN��AB� = log2�2N��AB� + 1� .

In our case, the bipartite states are states of two qubits, so
that �AB

TA has at most one negative eigenvalue �38�. Moreover,
for two-qubit states, a positive LN implies that the state is
entangled and distillable �37,39�, while EN=0 implies that
the state is separable �37�.
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IV. DYNAMICAL PHASE TRANSITION OF THE XY SPIN
CHAIN

In this section, we consider the nearest-neighbor entangle-
ment of the evolved state in the XY model of the infinite spin
chain, at a fixed time t. We assume that the initial state is a
state of thermal equilibrium at zero temperature, in the pres-
ence of the transverse field. We find that the nearest-neighbor
entanglement shows a critical behavior, which we call a dy-
namical phase transition. Precisely, the nearest-neighbor
logarithmic negativity of the evolved state, when considered
at a given time, shows a criticality as a function of the initial
transverse field. Moreover, the character of this dynamical
phase transition depends on whether we are near or far from
the initial time of disturbance. The observed phase transition
is generic, as it occurs for a wide range of the anisotropy �.

Note here that the evolved state at the time t may be
considered as a stationary state of the system, provided the
dynamics is turned off after time t, i.e., the Hamiltonian �2�
is set to zero at time t. We stress that turning off the Hamil-
tonian at time t is experimentally feasible �9,10�.

Let us first consider the behavior of the nearest-neighbor
entanglement with respect to the initial transverse field a, at
a time t that is near the initial time of disturbance. In Fig. 1,
we plot the nearest-neighbor LN of the evolved state with
respect to a, at t=1, and for the anisotropy �=0.5. Entangle-
ment exhibits criticalities, as the system parameter a, i.e., the
initial transverse field is changed: EN vanishes at a critical

value ac and revives at another critical value āc. Note that a
similar phenomenon is absent for magnetization. We will see
in the succeeding section that for values of the initial field
that is close to the critical regions, entanglement of the
evolved state behaves nonmonotonically as a function of the
temperature of the initial equilibrium state.

Similar DPT’s of entanglement, as the system parameter a
changes, can be seen for other values of the time t, suffi-
ciently near to the initial moment of disturbance, as well as
for other values of the anisotropy �.

However, as the time grows, the nature of the DPT
changes significantly. In Fig. 2, we plot the nearest-neighbor
LN for a time that is comparatively far away from t=0,
against the initial field a. Again, a dynamical phase transition
is observed, but one that is different from the one observed in
Fig. 1. In Fig. 2, the system undergoes a phase transition
from the entangled phase to the separable phase at ac, but no
reentrance behavior is observed. Moreover, in the suceeding
section, we show that the nonmonotonicity of entanglement
is no longer present in this case of large t. A signature of
dynamical phase transition is absent for magnetization for
both small and large t.

To obtain a global perspective of the behavior of entangle-
ment, we plot it with respect to both t and a, at a fixed value
of the anisotropy ���=0.5� in Fig. 3. Note that a similar
behavior is absent in magnetization, as seen in Fig. 4.

An interpretation of the results for small and large a �as
compared to the region of phase transitions� is the following:
For small a, the initial state is entangled, and its entangle-
ment survives even for long times t �see Fig. 2�. On the other
hand, for large a, the initial state is close to a separable state.

FIG. 1. The nearest-neighbor logarithmic negativity �EN� of the
evolved state, plotted as a function of the initial transverse field a,
at a time that is near the time of initial disturbance �t=1�. We fix the
anistropy at �=0.5. The initial state of evolution is a state of ther-
mal equilibrium at zero temperature. EN vanishes at a critical value
ac and revives at āc. We will show in Sec. V that for values of the
initial field in the region near the phase transitions, entanglement
behaves nonmonotonically with respect to the temperature of the
initial equilibrium state. The transverse magnetization �Mz� of the
evolved state is also plotted; it does not show a similar critical
behavior as a function of a.

FIG. 2. The nearest-neighbor logarithmic negativity �EN� of the
evolved state ��

12�t� is plotted against the initial transverse field a, at
t=10, which is comparatively large, as compared to that of Fig. 1.
We again fix the anistropy �=0.5, and �→�, as in Fig. 1. Here we
observe again a kind of criticality, but of a significantly different
character than the one in Fig. 1. In Sec. V, we show that entangle-
ment behaves monotonically as a function of temperature of the
initial equilibrium state, for a
ac in this regime of t’s.
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This state is, however, very different from any eigenstate of
the Hamiltonian, and is thus very strongly affected by the
dynamics, generating significant entanglement for small
times t. The case of large a is therefore similar to that in
Refs. �22,26�, where the time-independent Ising Hamiltonian
with interaction in the z direction is made to act on a product
of eigenstates of �x.

Note here that in contrast to the case of small a, there is
no revival of entanglement with respect to time t, for large a
and large t �compare Fig. 1 and Fig. 2�. This feature is dif-
ferent from that in the Ising Hamiltonian, or from that in spin
glass �40�, where the state reenters to the entangled and sepa-
rable phases again and again after certain time intervals. The
continuous character of the spectrum of the infinite XY chain
is most probably responsible for this effect: The dynamics is
mixing the states in such a way that for large a, the revival of
entanglement is possible only for relatively short times t, or
alternatively, that for large t, there is no entanglement at
large a.

V. NONMONOTONICITY OF ENTANGLEMENT WITH
TEMPERATURE

In the preceding section, we have obtained the DPT of
nearest-neighbor entanglement of the evolved state of the
infinite spin chain. The DPT was controlled by the transverse
field a. The initial state of the evolution, however, was taken
to be the equilibrium state at zero temperature. In this sec-
tion, we will study this criticality and the monotonicity of
nearest-neighbor entanglement, considered as a function of
the temperature of the initial equilibrium state.

For definiteness, consider the dynamical phase transition
of Fig. 1, observed for the nearest-neighbor entanglement of

the evolved state at time t=1, and for the anisotropy �=0.5.
The evolution there had started from the equilibrium state at
zero temperature. Consider now the evolution in which the
initial state is the equilibrium state ��

eq, at a certain tempera-
ture T=1/�. We again look at the nearest-neighbor entangle-
ment of the evolved state at time t=1 and for anisotropy
�=0.5, but now as a function of the temperature T of the
initial equilibrium state, and for a given value of the initial
transverse field. It turns out that the behavior of entangle-
ment �with respect to temperature� is qualitatively different,
depending on whether we are near or far away from the

FIG. 4. �Color online� The magnetization �Mz� of the evolved
state ��→�

12 �t� is plotted against the initial transverse field a and time
t for the anisotropy �=0.5.

FIG. 5. The logarithmic negativity EN of the state ��
12�t� is plot-

ted as a function of the inverse temperature � of the initial equilib-
rium state ��

eq. We choose t=1 and �=0.5, just as in Fig. 1. The
transverse field a is chosen to be 0.5, which is supposed to be
comparatively far away from the critical regions in Fig. 1 �in com-
parison to the values of a used in Figs. 7 and 8 below�. We find that
entanglement increases monotonically with decreasing T �increas-
ing with ��. For reference and comparison, we also plot the trans-
verse magnetization Mz of ���t�.

FIG. 3. �Color online� The nearest-neighbor logarithmic nega-
tivity �EN� of the evolved state ��→�

12 �t� is plotted against the initial
transverse field a and time t for the anisotropy �=0.5. On the EN

=0 plane, there are two curves of DPTs, both of which start at
around �a=0.8, t=0�, and then they diverge off with increasing t,
forming a “river” of separable states between themselves. The t
=1 and t=10 slices of this surface were already discussed before.
For the t=0 slice, entanglement is seen to vanish, as it should, as a
grows. Note that this is different from the t=1 slice behavior, where
the entanglement converges to a positive value.
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dynamical phase transition of entanglement in Fig. 1. We
find that it is possible to obtain three qualitatively different
regions of the transverse field a, according to the behavior of
entanglement with respect to the temperature of the initial
equilibrium state.

�i� The initial transverse field a is far away (either lower
or higher) from the critical regions. In this case, the nearest-
neighbor LN is monotonic with respect to the temperature of
the initial equilibrium state. As temperature is lowered, LN
increases monotonically, and ultimately converges to a non-
zero value. This is illustrated in Fig. 5, for an exemplary
value of a=0.5, that is comparatively far away from the criti-
cal region �in comparison to the cases considered in item
�iii��.

�ii� The initial field is within the separable phase. The
nearest-neighbor LN is nonmonotonic with respect to the
temperature of the initial equilibrium state. In particular,
there are regions of temperature for which entanglement in-
creases with increasing temperature �see also Ref. �31� in this
respect�. A plot of nearest-neighbor LN with respect to the
initial temperature is given in Fig. 6, for an exemplary value
of the transverse field in the separable phase. Note that en-
tanglement in this case is nonvanishing only for moderate
values of T. For very high and very low T, entanglement
vanishes. This is different than in item �iii� below.

�iii� The initial field is in the critical region of the en-
tangled phase. If the transverse field is sufficiently close to
the critical region, but still being in the entangled phase, the

nearest-neighbor LN is again nonmonotonic with respect to
the temperature of the initial state. However, the added fea-
ture is that the entanglement converges to a nonvanishing
value for low T. In case �ii�, the entanglement is vanishing
for sufficiently low T �and hence for sufficiently large �� �see
Fig. 6�. For sufficiently high T, entanglement is of course
again vanishing, just as in the items �i� and �ii� above. The
nearest-neighbor LN, plotted for two exemplary values of a
in the region under consideration, are given in Figs. 7 and 8.

We stress that although we have considered here the case
only for �=0.5, the results are generic and have been nu-
merically checked for several values of �.

It is to be noted that the behavior of transverse magneti-
zation does not seem to alter considerably as we pass from
one entangled phase to another, through the separable phase,
as is seen in Figs. 5, 6, 7, and 8. The absence of this feature
in magnetization, and its presence in entanglement, once
again underlines that complexity of physical phenomena can
be understood in terms of entanglement.

With respect to the nonmonotonicity of entanglement with
the temperature of the initial state, let us note here that the
usual intuition is that entanglement is a fragile quantity, and
therefore it decays with noise. It is also usual to see an in-
crease of temperature as a model of increase of noise in the
system. This is for instance corroborated here in Figs. 5, 6, 7,
and 8, where entanglement vanishes for sufficiently large
temperatures. However, we see here that for moderate values
of T, the fragility of entanglement is a more complex issue.
There can be ranges of temperatures for which entanglement
actually increases with temperature.

FIG. 6. The logarithmic negativity EN of the state ��
12�t� is plot-

ted as a function of the inverse temperature � of the initial equilib-
rium state ��

eq. We choose t=1 and �=0.5, just as in Fig. 1. The
transverse field a is chosen to be 0.78, which is within the separable
phase in Fig. 1. We find that entanglement is nonmonotonic with
respect to temperature. In particular, therefore, there is a range of
temperature for which entanglement is increasing with increasing
temperature. For sufficiently low T �and, as expected, for high T�,
entanglement is vanishing, in contrast to the situation in Figs. 7 and
8 below. Again, for reference and comparison, we also plot the
transverse magnetization Mz of ���t�.

FIG. 7. The logarithmic negativity EN of the state ��
12�t� is plot-

ted as a function of the inverse temperature � of the initial equilib-
rium state ��

eq. We choose t=1 and �=0.5, just as in Fig. 1. The
transverse field a is chosen to be 0.74, which is in a critical region
in Fig. 1, but in the entangled phase �the first entangled phase�. Just
as in Fig. 6, we find that entanglement is nonmonotonic with re-
spect to temperature. However, in contrast to the case in Fig. 6,
entanglement is nonvanishing for low T. For sufficiently low T,
entanglement converges to a nonvanishing value. For comparison,
we also plot the transverse magnetization Mz of ���t�.
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Until now, we have been discussing the temperature ef-
fects for the dynamical phase transitions that were exempli-
fied in Fig. 1 of the preceding section. A different sort of
DPT was also obtained in the preceding section, as exempli-
fied in Fig. 2. Surprisingly, in this case, the nearest-neighbor
entanglement does not behave as in the case of Fig. 1.

In Fig. 2, we plotted the nearest-neighbor LN of the
evolved state at time t=10, which is comparatively far away
from the point of initial disturbance in the transverse field.
The plot was with respect to the system parameter a, and a
criticality was obtained at a
0.8, for the anisotropy �=0.5.
We consider now the nearest-neighbor entanglement of the
evolved state at the time t=10 and for �=0.5, as a function
of the temperature of the initial equilibrium state. As we see,
in contrast to the case of the phase transitions in Fig. 1, the
nearest-neighbor entanglement does not change its behavior
as we choose different values of the transverse field a. In
particular, the nearest-neighbor LN of the evolved state is
monotonic with temperature, and converges to a nonvanish-
ing value for low T �large ��. In Fig. 9, we plot the nearest-
neighbor LN with respect to the initial temperature, for
a=0.8, t=10, �=0.5. However, this feature is generic. We
have also obtained similar features for several values of �.

In Ref. �8�, the authors define an entanglement length
�range of quantum correlations�, which is shown to diverge
at the critical points for a wide range of spin systems. The
definition is in terms of a quantity called localizable en-
tanglement, which is usually hard to compute. However,
there is a useful upper bound of this quantity in terms of the
entanglement of assistance �19�. Considering this upper
bound for the case of the nearest-neighbor density matrix, as
well as for the next-nearest-neighbor density matrix, we have

checked that such definition of entanglement length does not
seem to be able to characterize the dynamical phase transi-
tions discussed in this paper. This indicates that the quantum
phase transitions considered in Ref. �8� are of a different
character from the ones discussed here. Moreover, the behav-
ior of entanglement with temperature of the system can be
seen as an independent candidate for understanding the
phase transitions in the system.

VI. DISCUSSION

In this paper, we have investigated the dynamics of en-
tanglement in the evolution of the infinite asymmetric XY
spin chain, in an initial transverse field. One motivation be-
hind our study is that the dynamics of entanglement in the
evolution of many-body spin systems have been used to
implement quantum computation and short-range quantum
communication �22,23�. We also hope to be able to under-
stand the physical phenomena in complex systems with the
help of entanglement �4,5,8,13�.

For short times, we found a critical behavior of nearest-
neighbor entanglement of the system, with respect to the
initial transverse field. The nearest-neighbor entanglement
vanishes for a certain value of the initial transverse field, to
enter into the separable phase from an entangled phase. For a
higher value of the field, there is a revival of entanglement,
and the system reenters into the entangled phase. For long
times, there is again a criticality as the system moves from
an entangled phase to a separable phase. However, there is

FIG. 8. The logarithmic negativity EN and the transverse mag-
netization Mz of the state ��

12�t� are plotted as functions of the
inverse temperature � of the initial equilibrium state ��

eq. We choose
t=1 and �=0.5, just as in Fig. 1. The transverse field a is chosen to
be 0.81, which is again �just as in Fig. 7� in a critical region of Fig.
1, but in the entangled phase �the second entangled phase�. The
qualitative features of EN are just as in Fig. 7 above.

FIG. 9. The logarithmic negativity EN of the state ��
12�t� is plot-

ted as a function of the inverse temperature � of the initial equilib-
rium state ��

eq. We choose t=10 and �=0.5, just as in Fig. 2. The
transverse field a is chosen to be 0.8, which is approximately just
the point of phase transition in Fig. 2. Although we are almost on
the point of phase transition, we find that in contrast to the case of
near-time phase trasnition, entanglement is monotonic with respect
to temperature. For comparison, we also plot the transverse magne-
tization Mz of ���t�.
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no reentrance into the entangled phase. In both cases studied,
the system evolved from an initial �thermal� equilibrium
state at zero temperature, and then we consider the nearest-
neighbor entanglement of the system at a fixed time. We
refer to the regions of the transverse field, where the transi-
tion from entangled phases to separable phases occurs, as the
critical regions.

Surprisingly, we have shown that the nearest-neighbor en-
tanglement is nonmonotonic with respect to temperature in
these critical regions for short times. Similar behavior can
also be seen in the separable phase. However, for values of
the transverse field that is deep inside the entangled phases,
entanglement is strictly decreasing with temperature, both
for short and long times.

Finally, let us note that it is important to consider the
behavior of entanglement with respect to temperature in
many-body systems, as one of the main challenges in imple-
menting quantum information processing tasks is to preserve
entanglement in a noisy environment. Temperature is a usual

intuitive way to model noise in such systems. Our findings
indicate that the behavior of entanglement with respect to
temperature, at least for moderate values of temperature, is
quite complex. In particular, we found that for some ranges
of temperature, entanglement in the system can grow with
increasing temperature. It is interesting to look for similar
nonmonotonic behavior of entanglement with respect to
noise in the system, in other physical models, to find out how
general such behavior can be.
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