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We find that the asymptotic entanglement of assistance of a general bipartite mixed state is equal to the
smaller of its two local entropies. Our protocol gives rise to the asymptotically optimal Einstein-Podolsky-
Rosen (EPR) pair distillation procedure for a given tripartite pure state, and we show that it actually yields EPR
and Greenberger-Horne-Zeilinger (GHZ) states; in fact, under a restricted class of protocols, which we call
“one-way broadcasting,” the GHZ rate is shown to be optimal. This result implies a capacity theorem for
quantum channels where the environment helps transmission by broadcasting the outcome of an optimally
chosen measurement. We discuss generalizations to m parties and show (for m=4) that the maximal amount of
entanglement that can be localized between two parties is given by the smallest entropy of a group of parties
of which the one party is a member, but not the other. This gives an explicit expression for the asymptotic
localizable entanglement and shows that any nontrivial ground state of a spin system can be used as a perfect
quantum repeater if many copies are available in parallel. Finally, we provide evidence that any unital channel
is asymptotically equivalent to a mixture of unitaries and any general channel to a mixture of partial isometries.
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I. MULTIPARTITE QUANTUM STATES

One of the big ongoing program of quantum information
theory is the classification of multipartite (pure) quantum
states /"7 and the understanding of the possible transfor-
mations between them allowing only local operations and
classical communication (LOCC). As entanglement presents
a resource that can be used for, e.g., quantum communica-
tion, it is especially interesting to study the asymptotic
Shannon-theoretic limit. In this scenario, a few parties hold
asymptotically many copies of identical states distributed
among them, only joint operations between the particles at
the same site and classical communication between the par-
ties are allowed, and the conversion of states occurs with
vanishing errors in the asymptotic limit.

In the bipartite case, this question is well understood: ev-
ery pure state yB=|)(y[*? is asymptotically reversibly
equivalent to maximally entangled [Einstein-Podolsky-
Rosen (EPR)] states,

1
D, = V—E(IO>AIO>B+ A1),

at rate E()=S(y/)=S(A), the entropy of entanglement [1]
(Note our notation convention ¢/*=Try ¢/*? for the restriction
of the state ¢/*# to A.) So not only can we quantify the exact
yield of the useful EPR states, but the latter serve as a normal
form in general.
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For multipartite states, the situation becomes more com-
plex: there does not exist any longer a single state suited as a
“gold standard;” e.g., it is quite evident that an EPR state
|®,)"8 can never be equivalent to any quantity of
Greenberger-Horne-Zeilinger (GHZ) states of three parties,

TyABC %(|0>A|0>3|0>C +[DA1)P1)6).

So one has to aim at a “(minimal) reversible entanglement
generating set” (MREGS) [2], about which little is known,
except that apart from the easy candidates of |®,)45, |D,)EC,
|®,)A€, and |[T)AEC [3], an MREGS has to contain at least
another state and possibly infinitely many. See [4] for an
instructive case study.

Usually the two parts of the multiparty entanglement
program—classification and possible transformations—are
viewed as one, but as we have seen, the first is really
much harder: this is because it involves studying the trans-
formations between pairs of states which are asymptotically
reversible.

In this paper, we have a more modest goal: we want to go
from (many copies of) a given state to particular, interesting
states, like the EPR and GHZ states. To be precise, one
would like to “distill” as many as possible of these target
states, with high fidelity in the limit of n— e, and will care
primarily about optimality of these processes and not so
much for reversibility.

II. THE TASK(S)

Given many copies of a (pure) tripartite state ¢/*#€, which
“standard” entangled states like EPR states @, between any
pair of parties or GHZ states I, can the three parties distill by
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local operations and classical communication (LOCC)?

We shall focus on three scenarios in succession: first, we
study optimal distillation of EPR states between a given pair
of players from a tripartite state; second, we recast the pro-
tocol as one of distilling EPR and GHZ states at the same
time and show that for this target set and a restricted class of
protocols it gives optimal yield; and third, we look at
m-partite states and how many EPR states between a pre-
scribed pair of players can be distilled by local measure-
ments on the other m—2 parties.

Scenario 1 was studied in [5-7] under the name of “en-
tanglement of assistance” in a nonasymptotic setting: given a
mixed state /*8=Tr(|¢*BC)(y*BC]|) shared between A and B,
there exists a unique purification *2¢ up to local unitary
operations on C, and the question was asked how much EPR-
type entanglement can be created between A and B when C
is doing local measurements and communicates the results to
A and B. In this paper we completely solve that question in
the asymptotic setting.

About scenario 2 very little has appeared in the literature,
except for upper-capacity bounds—e.g., [3]—and a few (qu-
bit) protocols which, however, remain largely in the single-
copy setting [8,9].

The third scenario has been studied in the context of spin
chains under the name of localizable entanglement [10]. The
present work will reveal some intriguing connections be-
tween the concept of entropy of a block of spins and the
entanglement length in spin systems.

The main results are as follows.

Theorem 1. Given a pure tripartite state ¢*#C, then the
optimal EPR rate distillable between A and B with the help
of C under LOCC is

E;(*5¢) = min{S(A),S(B)}.

(Our notation is such that the first two parties obtain EPR
states and the remaining is the helper.) This is the asymptotic
entanglement of assistance [6]. .

Writing the tripartite state as |)*#C=3 \g;|;)*#|)€, with
orthogonal |j)—corresponding to to a pure state decomposi-
tion yAB=3q|y) (Y [AP—let E=Z,q,E(y;) be the average
entanglement of the pure state decomposition. Define finally
x=min{S(A),S(B)}-E.

Theorem 2. Let /*BC be a pure tripartite state. Then, for
€,6>0 and sufficiently large n, there exists a protocol in-
volving only an instrument on C" and broadcast of the mea-
sured result, followed by local operations on A" and B",
which effects the transformation

(WABC)IXM N (FABC)®n(X—5) ® ((D2AB)®11(E—5),

with fidelity 1-e.

Observe that the minimal value of E above is the en-
tanglement of formation Er(y/B) of the mixed state % be-
tween Alice and Bob [11]. In the limit of many copies we
have to substitute the entanglement cost E-(/*®) [12]. This
outcome is better than theorem 1, as we can always (irrevers-
ibly) turn GHZ states into EPR states and achieve the previ-
ous EPR rate. Theorem 9 in Sec. V shows that the corre-
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sponding GHZ rate min{S(A),S(B)}-E-(y*8) is indeed
optimal under an important class of protocols.

Theorem 3. For an m-party state ¢*#€1""Cn-2, the optimal
rate R of EPR states distillable between A and B with the
help of the C; via LOCC satisfies

R< min  S(AS). (1)

SC{Cy.Crpn}
This bound is achievable for all m, which is therefore the
expression for the asymptotic version of the localizable en-
tanglement. Furthermore, the bound is achieved by a proto-
col where each helper C; takes a single turn in which he
measures his state and communicates the result to the re-
maining parties.

We prove this here for m=4; the general proof is given in
[13]. Observe that the right-hand side in Eq. (1) is the mini-
mum pure state entanglement over all bipartite cuts of the
systems which separate Alice and Bob.

The remainder of the paper is structured as follows: In
Sec. III we present a protocol and prove theorem 1. Section
IV presents an application of this first result to quantum
transmission with a classical helper in the channel environ-
ment. In Sec. V we show how to make the basic protocol
coherent, such that it also gives GHZ states, and prove theo-
rem 2. Its GHZ rate we prove to be optimal under a subclass
of protocols which we call one-way broadcast. Then, in Sec.
VI we generalize the basic protocol to more than one helper
(proof of theorem 3 for m=4) and discuss the connection
between the concept of localizable entanglement and entropy
of blocks of spins. Finally, in Sec. VII we discuss possible
applications and/or extensions of our main result to
asymptotic normal forms of quantum channels and conclude
in Sec. VIIL

III. ASYMPTOTIC ENTANGLEMENT OF ASSISTANCE

In [5,6], the following quantity was introduced under the
name of entanglement of assistance of a bipartite mixed state
p*® (with purification yABC):

EA(PAB) = EA(WABC) = max{z PiE('»”?B)ipAB = 2 Pi‘ﬂl‘w}'

The idea is that by varying a measurement, i.e. a positive
operator valued measure (POVM) on C, the helper
Charlie can effect any pure state ensemble decomposition
pP=3 ¥ for Alice and Bob’s state [14]. In this sense, E,
gives the maximum amount of entanglement obtainable be-
tween Alice and Bob with the (remote) help from Charlie. Of
course, we are primarily interested in the operational
asymptotic rate of EPR states, EZC, which will turn out to be
given by the regularization of Ej,:

- 1
E{(p) = lim —E,(p™").

Now we argue the upper bound E(p"®)<S(A), which
was noted in [6], operationally: whatever can be done under
three-party LOCC is contained in protocols which allow gen-
eral transformations on BC and LOCC with respect to the cut
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A vs BC. But in this latter formulation, we are in a bipartite
pure state situation, for which the maximum yield of EPR
states is well known to be S(A) [1]. By an identical argu-
ment, we have the same bound with S(B), and hence we
obtain

E;(p"") < min{S(A),S(B)}. )

Note that this upper bound is not additive under general
tensor products (compare [6]): consider strictly mixed states
p*B=]0)0[A® p? and o2 =c* ©|0)(0|?"; they have both
E,=0, because the entropy upper bound is 0. However,
Es(p® ) >0. A less trivial example of superadditivity of E
is given in [6] for two copies of the same state. Here is a very
easy one.

Example 4 (superadditivity of E4). Consider the three-
qutrit determinant (or Aharonov) state

1
| a)ABC = —%(|o12> +[120) +[201) - [210) — [102) - [021)).
\!

The restriction o”*® is proportional to the projector onto the
(3 X 3)-antisymmetric subspace, and it is well known that
this subspace consists entirely of “singlets”—i.e., states
[v)v")=|v")v), with (v|v’)=0. Hence E,(a)=1 [and by the
way also Ep(a*B)=Eq(a"*P)=1 [15]]. However, E (a® a)
=12.5, since a® a can be presented as a uniform mixture of
states (U1 ® Uy?® UY' @ US?)| @), with

|yt = %@mow — [1o)*1#1 @ (|01) - [10))4272

+([12) = 21)MBr @ (]12) - [21))422].

It is easily established that the Schmidt spectrum of this
state is [i,i,%,é,é,%], so its entropy of entanglement is
E(@)=2.5.

This example contains a valuable insight: for a given
single-copy decomposition of p, one can form superpositions
of tensor products of component states and increase the en-
tanglement. A little consideration reveals that this is so be-
cause the tensor products have some local distinguishability.
Hence, in the general case we should try to enforce local
distinguishability of the states we put in_superposition.

Proof of theorem 1. Write |)*5¢=3 q;|1y;)*8]j)€, with an
orthonormal basis {|j)} of C. Let

Xa = Xg5 )} = SA) = X 4;8(4), (3)
J

XB=X{(qj,l//f)}=S(B)—Equ(wf) (4)
J

denote the Holevo information of the given ensembles; ob-
serve the common term

2 qSW)=E=2 q5W7).

We may assume without loss of generality that S(A) <S(B),
and hence y, < 3.
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For n copies of , the sequences J=j,...,j, and, conse-
quently, the states |Jy=|j;)---|j,) fall into (polynomially
many) type classes: we say that J is of type P (which is a
probability distribution on the letters j) if j occurs exactly
nP(j) times in J. This is relevant because the probability
45=4;," "4, the product of the letter probabilities, of a se-
quence is constant across a type class. We can write the state
as

() en = g B |D<,

J

where [¢)=[¢; )---|¢; ) and A"=A A, A, are Alice’s n
copies of system A, etc. The goal of Charlie’s strategy will be
to project this state down to a superposition of terms |y, 5"
which are as orthogonal as possible on both Alice’s and
Bob’s systems: because then Alice’s (say) reduced state is

roughly an orthogonal mixture of the states WJAH and we can
easily calculate its entropy.

More precisely, Charlie’s measurement consists of two
steps: first, a projection into the subspaces of constant type—
say, P:

I1(P) := span{J.J is of type P}.

Note that, for any %>0, with probability 1-¢, ||P—gl,=< 7,
if only 7 is sufficiently large (otherwise, abort). Here, ||-||; is
the total variational distance (or one-norm distance) of prob-
ability distributions. By Fannes’ inequality (stated below as
lemma 5), then (with §=—7log 7+27log d),

5(2 P(j)w;‘) -3 PGISW) = xa- 0.
J J

Second, for each such type P, letting N=[2"Xa=29| define
states depending on a set J={J©, ..., J™ D} of sequences of
type P and a number @=0,... ,N—1:

N-1

1 .
|tj(a)> — /__2 e2maB/N|]<B)>,
VN g=0

Clearly, with an appropriate constant ¢ >0, the collection
((¢/N)|t Aa)){t A@)]) 7, forms a POVM on the type P sub-
space; i.e., these operators sum up to II(P). This is the sec-
ond (rank-1) POVM of Charlie.

By the Holevo-Schumacher-Westmoreland (HSW) theo-
rem, stated as lemma 6 below, the vast majority of the sets J
are good codes for the classical-quantum channel j— W;‘ and
simultaneously for j— 1//? . For a good code J and any a,
consider the projected state |3) of AB (up to normalization),
dropping the superscript n from the registers:

N-1
1 .
|0> — \’% 2 e—2ma,B/N| 1,01(5)>AB«
IN p=0

Because Alice and Bob have good decoders for f—i.e.,
POVM’s (D?;) g and (Dg) g—they can locally extract 8 with
high reliability. We can always think of these measurements
as (local) isometries—for example, for Alice,
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Vo= > \Dhe B,
B

and a similar expression Vy for Bob. This pair of unitaries
takes the state |9) to

1) =(Vy @ Vp)l9) =3 (VD & VDB o [ |n)°.
By

Since we have (with high probability) a good code both for
Alice’s and Bob’s channels, we expect that

N-1
1By = =3 27y B By

VN p=0
i.e., the fidelity between both states is close to 1, which in-
deed can be shown (see the proof of theorem 2 below). Here
we need something only slightly weaker:

When tracing over BB’, we can assume that Bob’s POVM
is actually performed (i.e., the register B’ observed); using
the fact that both Alice’s and Bob’s POVM’s have average
error probability <e, we get

<2(2e¢),

—~ 1 /_ ’
E R VD@ Byl
B 1

with the trace norm ||-||; on (density) operators. Furthermore,
by the gentle measurement lemma 7, stated below for con-
venience, this yields (for e<1)

— I
=4e+\V8e="TVe.
1

~ 1 A !
9 =2 Ui © BB
B
Hence, for the entropy (choosing € and 7 small enough),

S() =S(H) = S(%E Wrip ® |,3><,3|A’) —-né
B

1
=log N+ 2 E(fp) —nd
B

=log N+ nz P(j)E(l,U;’B) -n8=n(S(A)-496),

J

where we have used the Fannes inequality, the fact that all
JP have the same type P, and Fannes inequality once more.

Lemma 5 (Fannes inequality [16]). For any
states p and o on a d-dimensional Hilbert space: if
[p—olli<e<1/e, then |S(p)-S(0)|=<mn(e)+elogd, with
7(x)=—xlog x.

Lemma 6 (HSW theorem [17]). For a classical-quantum
channel W:x— W, on the Hilbert space H and a probability
distribution P, let U be independent and indentically dis-
tributed (i.i.d.) uniformly random from the sequences of
length n of type P. Then for every €,5>0 and sufficiently
large n, if In N<n(x{(P(x),W,)}-9),

Pr{C: (UMY, has error at most €} = 1 — €.

Here we call a collection of codewords “e-good” if there
exists a POVM (D)., on H®" such that
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FIG. 1. Alice prepares an input to (many copies of) the isometry
U, which gives part of the state to Bob and part to Charlie. The
latter measures a POVM M on his system and classically commu-
nicates his result x to Bob, who executes a unitary V, depending on
Charlie’s message to recover Alice’s sent state.

N
1
— 2 Ti(W)wD)=1-e.
lezl (U()) €

(In this form, the theorem is proved in [18].) O

Lemma 7 (gentle measurements [19]). Let p be a state
(actually, p=0 and Tr p=<1 are enough) and 0<X<=1, such
that Tr(pX)=1-¢. Then, ||p—\XpVX]||; <\8e. O

IV. CHANNEL CAPACITY WITH CLASSICAL
HELPER IN THE ENVIRONMENT

Gregoratti and Werner [20] have considered the following
channel model with helper in the environment:

UZHA - HB ® Hc,

described by an isometry from Alice’s input system A to the
combination of Bob’s output system B and the environment
C. Assume that the environment system may be measured
and the classical results of the observation forwarded to
Bob—attempting to help him in error correcting quantum
information sent from Alice.

We are interested in the quantum capacity of this scenario
from Alice to Bob, in the asymptotic limit of block-coded
information (and collectively measured environment). The
setup is illustrated in Fig. 1.

We want to mention a related model, discussed by Hay-
den and King [21], where the objective is to transmit classi-
cal information rather than quantum. Of course, the corre-
sponding capacity will usually be higher, since the helper in
the environment can learn part of the message and forward
this information to Bob.

Theorem 8. The environment-assisted quantum capacity
of a noisy quantum channel 7:A — B is

Q4(T) = max, min{S(p),S(T(p))}.

The same capacity is obtained allowing unlimited LOCC be-
tween Alice, Bob, and Charlie.

Proof. Let us first deal with the converse: whatever the
detailed strategy, Alice will eventually input the A" part of
some state |P)Y'4" into the channel (there is no loss of gen-
erality in assuming that the players keep all ancillas around
and hence the state pure). After the channel, the three players
share the state

|(/I>A’B"C" — (1 ® U®n)|¢)>A'A".

By the same argument as for the upper bound in theorem 1,
the pure state entanglement between Alice and Bob cannot
exceed either
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S = 2 S = 2 S(@*) = nS(p')
k k
or
S = 2 S = 2 S(T(@*) = nS(T(p*),
k k

with pA=(1/n)=, D4

For the direct part, let p be the optimal input state for the
maximum in the theorem and denote a purification of it
|¢>AIA, which is used in the following as “test state.”

Let Charlie pick, for some n, an optimal measurement
(M,), for the entanglement of assistance of (n copies of)

l)=(1® U)|$y*"4, according to theorem 1. Then we can de-
fine a new quantum channel

T":A" — B"B’

@ 2 Tral(M, @ D(UeUM] ® [x)x[F,

which, by theorem 1, has on the test state |¢)®" the coherent

information [22]
I( A"YB"B')=S(B"B') = S(A’B"B’)
= n(min{S(p),S(T(p))} - J).

Invoking the quantum channel coding theorem [23-25],
there are block codes for 7’ achieving this rate asymptoti-
cally. O

V. GHZ DISTILLATION

Now we will show how to modify the protocol of theorem
1 by “making it coherent” (after the model of [23,26]) such
that part of its yield is in the form of GHZ states. We shall
freely use the notation introduced in the proof of theorem 1.

Proof of theorem 2. By possibly embedding C into a
larger space, we can write |¢>ABC=2]-\5;J-| P*B[j)C, for any
pure state decomposition of 2 into an ensemble {a;. W;‘B}.

Consider sets J={J©,...,JND} of N=[2xa=29)
(integer part) type-P sequences of length n, with, as before,
[P-qll; < 7. Now construct the projectors

N-1

0.,= > [tAa)XiAa)
a=0

)

so that we have a POVM (c® ;) 1, a coarse graining of the
measurement used in the proof of theorem 1.

Charlie’s measurement is again in two parts: first he mea-
sures the type subspace I1(P), and P is close to g as above
with high probability (otherwise abort). Then he measures
(O ) 7 if the operator ® ; acts, the projected state is (drop-
ping the superscript n from the register names)

N-1
1
007 == gl S
VN p=0

Most of the sets J are good codes for both the channels

ng[/_?,(ﬂjg. Hence, with large probability, we can use the
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same local isometries V, and V3 as before to extract 8 with
little state disturbance and a local unitary V. mapping
|7®)— | B). These isometries map |{) to

N-1

-~ ’ ’ ! 1 ! ! r
[DABE'C ~ =3 |y B | BB
VN g=0

and because the J# are all of the same type, they are per-
mutations of each other, so the states |1ﬁ,(/3))AB can be taken to
a standard state |i;)"B—say, the lexicographically first se-
quence of type P—by (controlled) permutations of the n sub-
systems. So they arrive at the state

! ! ! 1 N_l ! ’ !
ZyMBEC < |ypiP o —= 3 (BB |,
VN g=0

This concludes the proof, since the rate of N is asymptoti-
cally x4, and the rate of E( 1,03—13) is asymptotically E. O

Remark. We have presented the POVM’s of theorems 1
and 2 in the simplest possible terms. One can also minimize
these POVM’s by not taking all sets 7. This can be done as
shown in [18,27], yielding for theorem 1 a rank-1 measure-
ment with =~2"5(C) elements; for theorem 2 the POVM has
~2H@-xal operators. O

Now we show that theorem 2 is in a certain sense optimal:
namely, it gives the largest GHZ rate among all protocols
which consist only of (i) a local operation with measurement
at C, (ii) sending the classical information obtained in the
measurement to A and B, and (iii) local operations of A and
of B depending on the message. In particular, we allow no
feedback communication and no communication between
Alice and Bob. These are severe restrictions, but at least the
protocol from theorem 2 is of this type: we call it one-way
broadcast.

Theorem 9. Under one-way broadcast protocols from C to
AB, the asymptotic GHZ rate from the state /8¢ cannot
exceed min{S(A),S(B)}-E(y'B).

Proof. We show actually a bit more: the rate of three-way
common randomness distillable by such protocols is asymp-
totically bounded by the same number. This problem was
studied in [27] for two players with one-way communication,
and the relevant observation here is that with one-way broad-
cast, the task is equivalent to two simultaneous two-player
common randomness distillations: from C to A and from C
to B.

The setup is the following: the sender C and the receiver
(A or B) initially share a quantum state and by local opera-
tions and one-way classical communication want to distill a
maximum amount of shared randomness, which, however,
has to be independent of the communicated message(s).

A particular protocol for doing this is to distill GHZ states
by a one-way broadcast protocol and then all three measure
these states in the computational basis—by purity of the
measured state, the resulting perfect shared randomness is
independent of everything else in the protocol.

It was shown in [27] that the maximum rate achievable
between C and A is the maximum of Eq. (3)—actually regu-
larized for many copies of the state—and similarly between
C and B the—regularized—maximum of Eq. (4). The
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smaller of these numbers clearly is just min{S(A),S(B)}
—Ec(y*®). 0

Remark. In general, the GHZ rate obtainable from a pure
state |¢)2C by general LOCC has the easy upper bound
min{S(A),S(B),S(C)}. Remarkably, our protocol of theorem
2 achieves this for a broad class of states—namely, when one
of the reduced states /2, Y€, or yC is separable. O

Example 10 (Groisman, Linden, and Popescu [4]). Con-
sider the family of states

Y )€ = af 075 + Bl1)" | D7),

with 0<a<p and o&’+ %=1, interpolating between a state
|®,)8€(a?=0) and |T)*B€ (a?=1/2; up to local unitaries).
Observe that it is certainly possible to obtain one EPR state
between B and C from Y.

In [4] it is observed that the local entropies of Y, are
consistent with the hypothetical existence of an asymptoti-
cally reversible transformation into

Hy(e?) [[Y*¥Cand  [1-Hy(a?)]|d))¢ ©)

per copy of the state, but the authors present heuristic argu-
ments for its impossibility.

Let us see what our results tell us about the distillability
of GHZ and EPR states: by applying theorem 2 with B (or
equivalently C) in the role of the helper, we obtain (since
YA€ is separable) a GHZ rate of H,(a?), but no EPR states.
The GHZ rate is evidently optimal under general LOCC pro-
tocols, as it coincides with Alice’s entropy (i.e., her entangle-
ment with the rest of the players). By applying theorem 2
with A as the helper, we have to calculate the entanglement
cost of the Bell mixture Y€, which happens to be known by
[28,29]:

EY") = EgY7) = 1y § - ap).

Hence we get distillation of

{1 - H2<% - a,B)} |TYABC and H2(% - a,B) |,)¢

per copy of the state, and theorem 9 shows that this GHZ rate
is optimal among all one-way broadcast protocols from A to
BC. Note that the GHZ rate is slightly worse than the one
stated in Eq. (5).

Example 11 (W-State). Another interesting example is
provided by the W-state [8]

1
[W) =7 (1001) +[010) + 100},
AY

which is interesting because it cannot be converted to a GHZ
state even probabilistically (on a single copy).

Theorem 1 tells us that any two parties can obtain a rate
of Hz(é)%0.918 EPR states, with assistance from the third.
Since two EPR pairs between different players can be con-
verted into a GHZ state, we can obtain a GHZ rate of at least
SHy(5) ~0.459.

However, using theorem 2, we can do a bit better:
the entanglement of formation of any two-party reduced

PHYSICAL REVIEW A 72, 052317 (2005)

state is evaluated with the help of [29], and we get rates of
Hy(3)=Hy((1-15/9)/2)=0.368 for GHZ states and of
Hz((l—\e’%)/2)20.550 for EPR states between any pair
of players. Converting the EPR states to GHZ states as
before, we arrive at an overall GHZ rate of H2(%)—%H2((1
—5/9)/2), which is =0.643.

VI. SINGLET DISTILLATION WITH THE HELP OF
MANY (DISTANT) FRIENDS: ASYMPTOTIC
LOCALIZABLE ENTANGLEMENT

Consider now the m-party generalization of scenario 1:
distillation of EPR pairs between A and B with the help of
Cy,...,C,_, from an m-partite pure state, by LOCC.

In analogy to the upper bound, Eq. (2), we can easily
obtain an upper bound on the achievable rate R in this sce-
nario: surely, the distillable entanglement can only go up if
we allow Alice to team up with a subset S of the helpers C;
and Bob with the complement S={1, ... ,m—2}\S, such that
all collective operations on AS and on BS are allowed, and
LOCC between these two groups. Thus, R<S(AS), and we

get Eq. (1),

R < min S(AS) = min S(BS).
S S

[Note that this reduces to the inequality (2) for m=3.]

In [30] it was shown that whenever the right-hand side in
the above equation is nonzero, then one of Alice and Bob
can, with LOCC help from the other parties, distill EPR pairs
at nonzero rate.

It turns out, however, that the right-hand side is achiev-
able for any m, and we show here how to do it in the case of
m=4 (the general case requires different arguments and is
solved in [13]).

Proof of theorem 3 for m=4. Only the achievability of the
minimum cut entanglement is left to be proved. For
m=4—i.e., two helpers Charlie and Debbie—this means we
are looking at R=min{S(A),S(B),S(AC),S(BC)}.

Our goal will be to construct a measurement on D" such
that for nearly all projected states |19)A'1Bncn,

min{S(9*"),S(9%")} = n(R - 9,

with arbitrary >0 and sufficiently large n. L.e., we want to
preserve (up to a small loss) the minimum cut entanglement,
while disengaging Debbie. If we succeed doing this, we can
invoke theorem 1 for the residual tripartite state.

Pic_k any basis of D, so that we can write
=3 g,y B[j)P. As in the previous proofs, we have re-
duced state ensembles with Holevo information x4, Xz, Xacs
and ypc. By possibly swapping A and B, we may assume that
Xa< xp- Invoking monotonicity of the Holevo information
under partial trace, x4 < xuc and xp=< xpc, We are left with
one of the following orderings of the four quantities:

| ¢>ABCD

XA < XB'S Xac S Xaes

or
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XA Xac< XB S Xae-

Define y,:=min{xz,Xac} and consider random codes 7 of
rate yo— 0 where, in a slight variation of the proof of theorem
1, the codewords are drawn from the distribution g®"—this
is the original form of the HSW theorem [17], and the con-
clusion of lemma 6 holds true. Now construct a rank-1 mea-
surement on D, in the same way as we did there. What can
we say about the projected state

1 )
|ﬁ>ABC — TK/E e—2ma/3’/N| l,[/j(ﬁ)>ABC?
NIV

For the bipartition B|AC, essentially the same argument
from that proof shows that with high probability, the en-
tanglement of ¥ is

E(981C) = n(min{S(B),S(AC)} - &) = n(R - 5).

For the bipartition A|BC this only works when x,=xo.
to make the rate of the codes smaller than either Holevo
information. So let us assume x4 <x, and 6 so small that
Xa+ 0= xo— 0. The rate of the code is still smaller than ypc,
so there exists a (hypothetical) “local” decoding of B from
the register BC. Le., with respect to the bipartite cut A|BC,
the state |9) is equivalent to

_ I : BC
| IYBC ~ _IFVE e—2maﬁ/N| i B)>ABC| B
A% B

where the approximation has the same quality as in the proof
of theorem 1. But then, we have

~ 1
N = X’EB ¢j(5)~

Now we can conclude the proof by invoking lemma 12
below, which states that for a random code (which is what
the POVM will select) the average on the right-hand side is
~(y")®". Hence and using Fannes’ inequality once more,

E(BC) = n(S(A) - &) = n(R - 5),

and we are done. O

Lemma 12 (Density sampling [31]). Consider the
ensemble {(g;,p;)} of states on a d-dimensional Hilbert
space, with average density operator p and Holevo informa-
tion x. Let independent and identically distributed random
variables Xi,...,Xy, drawn from the states pi=p;, @
®p; with probability q5=4;," "4, - Then, for every €,6>0,
N=2"x+9 and sufficiently large n,

L ¥
=D X, - p®|| <e,

N7 .
with probability =1—-e. O
Theorem 3 yields an exact expression for the asymptotic
localizable entanglement [10] (except for the technical issue
that there one has an infinite number of parties, whereas here
we considered only finite m). The concept of localizable en-
tanglement was introduced in the context of quantum spin
systems and allows the definition of a notion of entanglement
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length when these spins are part of a lattice with a given
geometry. More precisely, consider the maximal bipartite en-
tanglement that can be localized between two blocks of spins
as a function of the distance between the blocks; typically
this function is decaying exponentially with the distance,
exp(-L/§), and the entanglement length is defined as the
constant ¢ in this exponent. Theorem 3 gives the exact ex-
pression for the localizable entanglement between two
blocks if asymptotically many realizations of these systems
are available and joint local operations can be performed. If
furthermore we are considering a state with infinitely many
particles and translational symmetry (which is the usual case
in condensed matter systems), then the strong subadditivity
property of the von Neumann entropy enforces the entropy
of a block of spins to grow when more spins are included in
the block. It follows that the asymptotic localizable entangle-
ment in such systems between two blocks is exactly given by
the minimal entropy of these blocks, which proves that the
upper bound given in [10] is actually the exact value for the
localizable entanglement in the asymptotic limit. This is very
surprising: the power of doing local asymptotic operations
allows the distillation of entanglement between two blocks
that are arbitrarily far from one another, and the rate at which
this can be done is independent of the distance. This implies
that any nontrivial ground state can be used as a perfect
quantum repeater if many copies are available in parallel.
The amount of entanglement that can be localized over these
arbitrary distances is solely related to the entropy of a block
of spins and not dependent on the distance. It is interesting to
contrast the translationally invariant case to the one with
random bond interactions [32]; in the latter case, the minimal
entropy over all bipartite cuts will decrease algebraically
with the distance between the blocks. This indicates that the
entanglement in the case of random systems is essentially
different than in the case of translationally invariant ones,
something that is not revealed by looking at the entropy of a
block of spins.

The problem of calculating the entropy of a block of spins
has recently attracted a lot of attention in condensed matter
physics [33], where it was shown that this entropy, in the
case of ground states of one-dimensional systems, saturates
to a finite value or increases logarithmically as a function of
the size of the block, depending on whether the system is
critical or not. The present work provides an operational
meaning to these calculations in the sense of entanglement
theory: this entropy quantifies the amount of entanglement
that can be created at arbitrary distances if this ground state
would be used as a quantum repeater. In higher-dimensional
systems, the entropy of a block of spins grows as the bound-
ary of that block, and therefore there is no bound on the
amount of EPR pairs that could be localized between two
far-away regions by doing joint local measurements on all
the other spins; this is again the consequence of the fact that
the asymptotic operations allow for perfect entanglement
swapping in multipartite states.

VII. ASYMPTOTIC NORMAL FORMS OF UNITAL
AND GENERAL QUANTUM CHANNELS

Based on the well-known linear isomorphism between
completely positive and trace-preserving maps and a set of
quantum states [34]:
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T:A—Bop'B=pr=(id® T) ¢4,

with a pure state |¢>A/A of Schmidt rank d,=dim H, and the
identity map id, we can interpret our findings in theorem 1 as
statements on quantum channels. Note that 7 is an isometry
or unitary, if and only if the state py is pure and the corre-
sponding states of different isometries are equivalent to each
other up to unitaries on the system B. We shall use this
isomorphism in the following with a maximally entangled
state @44 of Schmidt rank d,, unless specified otherwise.

Let 7 be a unital quantum channel on a system—i.e.,
mapping the identity on A to the identity on B (and
assume input and output system to be of the same dimension
d=d,=dy for the moment). The corresponding state has the
properties p®=Try pr=(1/d)l and p* =Trz py=(1/d)l.
Thanks to theorem 1, we know that in the asymptotic sce-
nario the entanglement of assistance of py is given by log d.

Clearly, the unital channels (and, equally, the states with
maximally mixed marginals as above) form a convex set, and
the question of determining its extremal points has attracted
quite some attention [35]. The classical analog of this prob-
lem is about doubly stochastic maps which, thanks to
Birkhoff’s theorem, are known to be exactly the convex
combinations of permutations. For quantum doubly stochas-
tic maps (another popular name for unital trace-preserving
channels) the “obvious” generalization is wrong: there exist
unital channels which are not convex combinations of uni-
taries. Under the Jamiotkowski isomorphism, this means that
the state py is not a convex combination of maximally en-
tangled states; a specimen of this type we have actually stud-
ied in example 4.

However, theorem 1 points a way to resolving this unsat-
isfactory state of affairs in the asymptotic limit: since the
asymptotic entanglement of assistance of py is log d, we can
say that p7" is well approximated by a convex combination
of “almost” maximally entangled states in the sense that their
entropies of entanglement are n(logd—5) for arbitrarily
small 6> 0 and sufficiently large n. We would like to deduce
from this that 7%" is well approximated by a convex combi-
nation of unitaries (in the appropriate norm), but unfortu-
nately the latter is really a stronger statement since it would
give an approximation of p;" by a convex combination of
states that have high fidelity to some maximally entangled
state. And that is not even mentioning the issues of the dif-
ferent norms to be used for comparing states and for chan-
nels.

Similarly, for a general channel and general ¢A,A, the state
py" can be restricted to the typical subspaces [36] of (p/},)‘@”
on Alice’s side and of (p?)®” on Bob’s side, without
changing the state very much. This projected state resides
in a (D, X Dp)-dimensional system, with D,=~2"5") and
Dp~2"S®) By theorem 1 it is well approximated by a
convex combination of pure states with entanglement
n(min{S(A),S(B)}- &), which again is too weak to say that
the components have high fidelity with maximally entangled
states.

Nevertheless, we take these observations as positive evi-
dence for the following conjecture

PHYSICAL REVIEW A 72, 052317 (2005)

Conjecture 13. Let T be a unital quantum channel on a
system or, more generally, a map 7:A — B such that for all
input states p”, S(p) <S(T(p)). Then, for sufficiently large n,
T®" is arbitrarily well approximated by mixtures of isome-
tries (unitaries in the unital case).

In general, T®" is arbitrarily well approximated by mix-
tures of partial isometries between A" and B" (i.e., unitary
transformations between subspaces of systems A" and B").

The appropriate distance measure for quantum channels 7
and 7" to be used here is

|T—T"||.p = max4|(id ® T)p— (id © T")

1

the completely bounded norm (cb norm) [37].

In further support of this conjecture, we now outline a
proof for a weaker version of it, where the comparison of
T®" and the mixture T’ of unitaries is done not in the worst
case over all input states, but with respect to a single state
#°": we want [[p7"—(id® T")¢*"||; < €. The significance of
such a statement is that if ¢ is a purification of a mixed state
o on A and {p;, ¢} is any source ensemble on A" with av-
erage 0", then the average error 2,;pi/|T*"(¢) —T' (P, is
also bounded by e.

For simplicity, we assume the S(o) is strictly smaller than
S(T(0)). Note that one could always modify the channel
trivially by padding the output with a sufficiently maximally
mixed state, to enforce this condition.

We can write down a purification of p7 in Schmidt form

| = 2 gl PLie,
Jj
with orthogonal states {|j)}; and {|;)};. By assumption,

Xar = S(0) = 2 q;8(0)) < S(T(0)) = 2 ,8W) = x5,

so we can choose a number R between these two values.
Now we go through the random coding argument in the
proof of theorem 1, but actually in the form of the second
case considered in the proof of theorem 3. Since here we
assume that we have uniform distribution on the j, there is no
need to restrict to the set of typical sequences.

What we get are random codes of N=2"R sequences
J=ji,....ju such that the corresponding states zﬁf(ﬁ) (drop-
ping superscript n as before) form a good code for Bob. That
means that for the superpositions

, 1 .
o= LS oty 0
VN g

(resulting from projecting the system C onto a vector |¢y)),
we obtain, as at the end of the proof of theorem 3, that

M =(1/N)= Bzﬂ’}‘(:g). And exactly as there, we can use lemma

12 to conclude that 9 =~ " with respect to the trace dis-
tance. Both approximations in fact hold with high probability
over the choice of the code. That means that there is a puri-

fication |£yY"'® of o®" such that 94" B~ j;'B.

The connection to channels is now made by using the
Jamiotkowski isomorphism in the other direction: for
the well-behaved 9 as above, there exists an isometry
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Vg:A— B such that |{g)=(1® Vy)|¢*"), and hence our can-
didate mixture of unitaries is

T'(@= X

9 well behaved

wsVaeVi,

where the wy are probability weights. They are obtained as

essentially |“(z| ©"Y" B2, normalized to the probability of
the well-behaved set. It is then straightforward to verify that
indeed [p7"-(id®T")$®"||; is small.

We want to close this section with a few comments on the
difficulties encountered in the attempt to extend this argu-
ment to a proof of our conjecture. Clearly, the vectors |tg)
determine Kraus operators D g for T®" via

C<tﬂ|¢®n>A’BC= (1 ® D0)|¢®n>.

Because the cb-norm difference of 7" and 7" can be upper
bounded by =4||Dg— Vgl (with the operator norm ||-||), it is
tempting to aim at making the latter quantity small. But rela-
tive to the fixed source o, we can hope to make a statement
about the difference D g—V 4 only on the typical subspace of
the source. However, even there our technique gives an ap-
proximation of the channel output only on the average—it is
conceivable, and consistent with our result, that the operator
norms of the Dy—Vy, when restricted to the typical sub-
space, are all large (which would say that the Kraus opera-
tors act very differently in the worst case). In addition, in the
above proof we can make our statements about 9 only “with
high probability” and the probability distribution is also de-
termined by the source o.

VIII. DISCUSSION

We have presented a class of very general procedures to
distill singlets and quantum superposition (“cat”) states, in
both tripartite and multipartite settings. These procedures
give universally the largest EPR rate distillable between any
pair of parties in a multipartite state, when the other players
cooperate. For three parties, this problem and its solution is
equivalent to the previously considered entanglement of as-
sistance. We have shown how GHZ (and higher cat state)
distillation protocols can be constructed from common ran-
domness distillation schemes by “coherification.” It should
be clear that a good number of variations of what we have
shown here can be done. As a consequence, we could solve
the problem of quantum channel coding with maximal clas-
sical help from the environment.
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We stress that even though we look here at pure state
transformations, we did not attempt “entanglement concen-
tration,” which is meant to generalize the asymptotic theory
of bipartite pure states: there we have asymptotic reversibil-
ity, and demanding this leads to the hard MREGS problems.
Instead, we do a “distillation” of specific states, embracing
the possibility of irreversibility, but going for the maximum
rate. We think that understanding these problems will remain
central even assuming the availability of a complete
MREGS.

Thus, starting from the strange entanglement of the assis-
tance problem, we discovered a great number of highly in-
teresting results of multiparty entanglement processing.
These also shed some light on issues like the entanglement
length in spin chains. Perhaps even more important are the
conceptual insights regarding possible asymptotic normal
forms of quantum channels as mixtures of partial isometries.
Finally, we want to mention a spin-off in quite another di-
rection: based on the techniques of Sec. VI and developing
them further, the problem of distributed quantum data com-
pression (with unlimited classical side communication) could
be solved in [13]. The methods of that paper also simplify
some of our arguments regarding EPR distillation (they do
not apply to GHZ distillation, however) and allow us to
prove the equality in theorem 3 for all m.
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