
Teleportation and spin squeezing utilizing multimode entanglement of light with atoms

K. Hammerer,1 E. S. Polzik,2,3 and J. I. Cirac1

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse, D-85748 Garching, Germany
2QUANTOP, Danish Research Foundation Center for Quantum Optics, DK 2100 Copenhagen, Denmark

3Niels Bohr Institute, DK 2100 Copenhagen, Denmark
�Received 3 August 2005; published 11 November 2005�

We present a protocol for the teleportation of the quantum state of a pulse of light onto the collective spin
state of an atomic ensemble. The entangled state of light and atoms employed as a resource in this protocol is
created by probing the collective atomic spin, Larmor precessing in an external magnetic field, off resonantly
with a coherent pulse of light. We take here full account of the effects of Larmor precession and show that it
gives rise to a qualitatively different type of multimode entangled state of light and atoms. The protocol is
shown to be robust against the dominating sources of noise and can be implemented with an atomic ensemble
at room temperature interacting with free-space light. We also provide a scheme to perform the readout of the
Larmor precessing spin state enabling the verification of successful teleportation as well as the creation of spin
squeezing.
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I. INTRODUCTION

Quantum teleportation—the disembodied transport of
quantum states—has been demonstrated so far in several
seminal experiments dealing with purely photonic �1� or
atomic �2� systems. Here we propose a protocol for the tele-
portation of a coherent state carried initially by a pulse of
light onto the collective spin state of �1011 atoms. This
protocol—just like the recently demonstrated direct transfer
of a quantum state of light onto atoms �3�—is particularly
relevant for long-distance entanglement distribution, a key
resource in quantum-communication networks �4�.

Our scheme can be implemented with just coherent light
and room-temperature atoms in a single vapor cell placed in
a homogeneous magnetic field. Existing protocols in quan-
tum information �QI� with continuous variables of atomic
ensembles and light �4� are commonly designed for setups
where no external magnetic field is applied such that the
interaction of light with atoms meets the quantum nondemo-
lition �QND� criterion �5,6�. In contrast, in all experiments
dealing with vapor cells at room temperature �3,7� it is, for
technical reasons, absolutely essential to employ magnetic
fields. In experiments �3,7� two cells with counter-rotating
atomic spins were used to comply with both the need for an
external magnetic field and the one for an interaction of
QND character. So far it was believed to be impossible to
use a single cell in a magnetic field to implement QI proto-
cols, since in this case—due to the Larmor precession—
scattered light simultaneously reads out two noncommuting
spin components such that the interaction is not of QND
type.

In this paper we not only show that it is well possible to
make use of the quantum state of light and atoms created in
this setup but we demonstrate that—for the purpose of tele-
portation �8,9�—it is in fact better to do so. As compared to
the state resulting from the common QND interaction the
application of an external magnetic field enhances the cre-
ation of correlations between atoms and light, generating
more and qualitatively different multimode types of en-

tanglement. The results of the paper can be summarized as
follows.

�i� Larmor precession in an external magnetic field en-
hances the creation of entanglement when a collective
atomic spin is probed with off-resonant light. The resulting
entanglement involves multiple modes and is stronger as
compared to what can be achieved in a comparable QND
interaction.

�ii� This type of entangled state can be used as a resource
in a teleportation protocol, which is a simple generalization
of the standard protocol �8,9� based on Einstein-Podolsky-
Rosen �EPR� type of entanglement. For the experimentally
accessible parameter regime the teleportation fidelity is close
to optimal. The protocol is robust against imperfections and
can be implemented with state of the art techniques.

�iii� Homodyne detection of appropriate scattering modes
of light leaves the atomic state in a spin-squeezed state. The
squeezing can be the same as attained from a comparable
QND measurement of the atomic spin �10,11�. The same
scheme can be used for atomic-state readout of the Larmor
precessing spin, necessary to verify successful teleportation.

We would like to note that it was shown recently in �12�
that the effect of a magnetic field can enhance the capacity of
a quantum memory in the setup of two cells. Teleportation in
the setup of a single cell without magnetic field was ad-
dressed in �13�.

The paper is organized as follows. The three points above
are presented in Secs. II, III, and IV, in this order. Some of
the details in the calculations of Secs. III and IV are moved
to Appendixes B and C.

II. INTERACTION

We consider an ensemble of Nat alkali-metal atoms with
total ground-state angular momentum F, placed in a constant
magnetic field causing a Zeeman splitting of �� and initially
prepared in a fully polarized state along x. The collective
spin of the ensemble is then probed by an off-resonant pulse
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which propagates along z and is linearly polarized along x.
Thorough descriptions of this interaction and the final state
of light and atoms after the scattering can be found in
�14–18� and especially in �19–22� for the specific system we
have in mind. We derive the final state here with a special
focus on the effects of Larmor precession and light propaga-
tion in order to identify the light modes which are actually
populated in the scattering process.

In Appendix A we show that the interaction is adequately
described by a Hamiltonian

H = Hat + Hli + V ,

Hat =
��

2
�X2 + P2� ,

V =
��

�T
Pp�0� , �1�

and where Hli is the Hamiltonian for the free radiation field.
The canonical conjugate variables X , P describe in the
Holstein-Primakoff approximation �23� transverse compo-
nents of the collective angular momentum in the y and z
directions, respectively. They satisfy �X , P�= i and have zero
mean and a normalized variance �X2=�P2=1/2 for the ini-
tial coherent spin state. In analogy to light field quadratures
we will denote the normalized transverse spin components
X , P also as spin quadratures. For the light field only its
linearly polarized component along y is relevant and is de-
scribed in terms of quadratures of spatially localized modes
�24,25� x�z� , p�z�, which obey �x�z� , p�z���= ic��z−z��. Be-
fore the interaction process, this polarization component is in
vacuum such that initially �x�z��= �p�z��=0 and �x�z�x�z���
= �p�z�p�z���=c��z−z�� /2. The dimensionless coupling con-
stant is given by �=�NphNatFa1�� /2A� where Nph is the
overall number of photons in the pulse, a1 a constant char-
acterizing the ground state’s vector polarizability, � the scat-
tering cross section, � the decay rate, � the detuning and A
the effective beam cross section.

Changing to a rotating frame with respect to Hat by de-
fining XI�t�=exp�−iHatt�X exp�iHatt� and evaluating the
Heisenberg equations for these operators yields the following
Maxwell-Bloch equations:

�tXI�t� =
�

�T
cos��t�p�0,t� , �2a�

�tPI�t� =
�

�T
sin��t�p�0,t� , �2b�

��t + c�z�x�z,t� =
�c
�T

�cos��t�PI�t�

− sin��t�XI�t����z� ,

��t + c�z�p�z,t� = 0,

where �t�z� denotes the partial derivative with respect to t�z�.
These equations have a clear interpretation. Light noise com-

ing from the field in quadrature with the classical probe piles
up in both the X and P spin quadratures, but it alternately
affects only one or the other, changing with a period of 1/�.
Conversely atomic noise adds to the in-phase field quadra-
ture only and the signal comes alternately from the X and P
spin quadratures. The out-of-phase field quadrature is con-
served in the interaction.

To solve this set of coupled equations it is convenient to
introduce a new position variable �=ct−z, to eliminate the z
dependence. New light quadratures defined by x̄�� , t�=x�ct
−� , t� , p̄�� , t�= p�ct−� , t� also have a simple interpretation: �
labels the slices of the pulse moving in and out of the en-
semble one after the other, starting with �=0 and terminating
at �=cT. The Maxwell equations now read

�tp̄��,t� = 0, �2c�

�tx̄��,t� =
�c
�T

�cos��t�PI�t�

− sin��t�XI�t����ct − �� . �2d�

The solutions to Eqs. �2a�, �2b�, and �2c� are

XI�t� = XI�0� +
�

�T
	

0

t

d	 cos��	�p̄�c	,0� , �3a�

PI�t� = PI�0� +
�

�T
	

0

t

d	 sin��	�p̄�c	,0� , �3b�

p̄��,t� = p̄��,0� �3c�

and the formal solution to Eq. �2d� is

x̄��,t� = x̄��,0� +
�

�T
�cos���/c�PI��/c�

− sin���/c�XI��/c�� . �3d�

As mentioned before, both atomic spin quadratures are
affected by light but, as is evident from the solutions for
X�t� , P�t�, they receive contributions from different and, in
fact, orthogonal projections of the out-of-phase field. As we
will show in the following, the corresponding projections of
the in-phase field carry in turn the signal of atomic quadra-
tures after the interaction. It is therefore convenient to ex-
plicitly introduce operators for these modes �21�. We define a
cosine component before the interaction

pc
in =�2

T
	

0

T

d	 cos��	�p̄�c	,0� , �4a�

xc
in =�2

T
	

0

T

d	 cos��	�x̄�c	,0� �4b�

and a sine component ps
in ,xs

in with cos��	� replaced by
sin��	�. In frequency space these modes consist of spectral
components at sidebands 
c±� and are closely related to the
sideband modulation modes introduced in �26� for the de-
scription of two-photon processes. It is easily checked that
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these modes are asymptotically canonical, �xc
in , pc

in�
= �xs

in , ps
in�= i�1+O�n0

−1��
 i, and independent, �xc
in , ps

in�
=O�n0

−1�
0, if we assume n0�1 for n0=�T, the pulse
length measured in periods of Larmor precession.

In terms of these modes the atomic state after the interac-
tion Xout=XI�T� , Pout= PI�T� is given by

Xout = Xin +
�

�2
pc

in, Pout = Pin +
�

�2
ps

in. �5a�

The final state of cosine �sine� modes is described by
xc�s�

out , pc�s�
out , defined by Eqs. �4� with x̄�c	 ,0� , p̄�c	 ,0� replaced

by x̄�c	 ,T� , p̄�c	 ,T�, respectively. Since the out-of-phase
field is conserved we have trivially

pc
out = pc

in, ps
out = ps

in. �5b�

Deriving the corresponding expressions for the cosine and
sine components of the field in phase, xc

out ,xs
out, raises some

difficulties connected to the back action of light onto itself.
This effect can be understood by noting that a slice � of the
pulse receives a signal of atoms at a time � /c �see Eq. �3d��
which, regarding Eqs. �3a� and �3b�, in turn carry already the
integrated signal of all slices up to �. Thus, mediated by the
atoms, light acts back on itself. The technicalities in the treat-
ment of this effect are given in Appendix B where we iden-
tify relevant “back action modes” xc,1 , pc,1 ,xs,1 , ps,1, in terms
of which one can express

xc
out = xc

in +
�

�2
Pin + ��

2
�2

ps
in +

1
�3

��

2
�2

ps,1
in , �5c�

xs
out = xs

in −
�

�2
Xin − ��

2
�2

pc
in −

1
�3

��

2
�2

pc,1
in . �5d�

The last two terms in both lines represent the effect of back
action, part of which involves the already defined cosine and
sine components of the field in quadrature. The remaining
part is subsumed in the back action modes which are again
canonical and independent from all other modes.

Equations �5� describe the final state of atoms and the
relevant part of scattered light after the pulse has passed the
atomic ensemble and are the central result of this section.
Treating the last terms in Eqs. �5c� and �5d� as noise terms, it
is readily checked by means of the separability criteria in
�27� that this state is fully inseparable, i.e., it is inseparable
with respect to all splittings between the three modes. For the
following teleportation protocol the relevant entanglement is
the one between atoms and the two light modes. Figure 1
shows the von Neumann entropy EvN of the reduced state of
atoms in its dependence on the coupling strength � and in
comparison with the entanglement created without magnetic
field in a pure QND interaction of atoms and light. The
amount of entanglement is significantly enhanced.

III. TELEPORTATION OF LIGHT ONTO ATOMS

In this section we will show how the multimode entangle-
ment between light and atoms generated in the scattering
process can be employed in a teleportation protocol which is

a simple generalization of the standard protocol for continu-
ous variable teleportation using EPR-type entangled states
�8,9�. We first present the protocol and evaluate its fidelity
and then analyze its performance under realistic experimen-
tal conditions.

A. Basic protocol

Figure 2 depicts the basic scheme which, as usually, con-
sists of a Bell measurement and a feedback operation.

FIG. 1. von Neumann entropy of the reduced state of atoms
versus coupling strength � for the state of Eq. �5� �full line� and for
the state generated without magnetic field in a pure QND interac-
tion �dashed line� with the same coupling strength. Application of a
magnetic field significantly enhances the amount of light-atom
entanglement.

FIG. 2. Scheme for teleportation of light onto atoms. As de-
scribed in Sec. II, a classical pulse �linearly polarized along x�
propagating along the positive z direction is scattered off an atomic
ensemble contained in a glass cell and placed in a constant mag-
netic field B along x. Classical pulse and scattered light �linearly
polarized along y� are overlapped with a coherent pulse �linearly
polarized along z� at beam splitter BS. By means of standard polar-
ization measurements Stokes vector components Sy and Sz are mea-
sured at one and the other port, respectively, realizing the Bell mea-
surement. The Fourier components at Larmor frequency � of the
corresponding photocurrents determine the amount of conditional
displacement of the atomic spin which can be achieved by applying
a properly timed transverse magnetic field b�t�. See Sec. III A for
details.
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1. Input

The coherent state to be teleported is encoded in a pulse
which is linearly polarized orthogonal to the classical driving
pulse and whose carrier frequency lies at the upper sideband,
i.e., at 
c+�. The pulse envelope has to match the one of the
classical pulse. As is shown in Appendix B, canonical opera-
tors y ,q with �y ,q�= i describing this mode can conveniently
be expressed in terms of cosine and sine modulation modes,
analogous to Eqs. �4�, defined with respect to the carrier
frequency. One finds

y =
1
�2

�ys + qc�, q = −
1
�2

�yc − qs� . �6�

A coherent input amounts to having initially �y2=�q2

=1/2 and an amplitude �y� , �q� with mean photon number
nph= ��y�2+ �q�2� /2.

2. Bell measurement

This input is combined at a beam splitter with the classi-
cal pulse and the scattered light. At the ports of the beam
splitter Stokes vector components Sy and Sz are measured by
means of standard polarization measurements. Given the
classical pulse in x polarization this amounts to a homodyne
detection of in- and out-of-phase fields of the orthogonal
polarization component. The resulting photocurrents are nu-
merically demodulated to extract the relevant sine and cosine
components at the Larmor frequency �20�. Thus one effec-
tively measures the commuting observables

x̃c =
1
�2

�xc
out + yc�, x̃s =

1
�2

�xs
out + ys� ,

q̃c =
1
�2

�pc
out − qc�, q̃s =

1
�2

�ps
out − qs� . �7�

Let the respective measurement results be given by X̃c, X̃s,

Q̃c, and Q̃s.

3. Feedback

Conditioned on these results the atomic state is then dis-

placed by an amount X̃s− Q̃c in X and −X̃c− Q̃s in P. This can
be achieved by means of two fast radio-frequency magnetic
pulses separated by a quarter of a Larmor period. In the
ensemble average the final state of atoms is simply given by

Xfin = Xout + x̃s − q̃c, Pfin = Pout − x̃c − q̃s. �8�

This description of feedback is justified rigorously in Appen-
dix C. Relating these expressions to input operators, we find
by means of Eqs. �5�, �6�, and �7�

Xfin = �1 −
�

2
�Xin −

1
�2

�1 −
�

2
�2

pc
in +

1
�2

xs
in −

1
�6

��

2
�2

pc,1
in

+ y , �9a�

Pfin = �1 −
�

2
�Pin −

1
�2

�1 −
�

2
�2

ps
in −

1
�2

xc
in −

1
�6

��

2
�2

ps,1
in

+ q . �9b�

This is the main result of this section.

4. Teleportation fidelity

Taking the mean of Eqs. �9� with respect to the initial
state all contributions due to input operators and back action
modes vanish such that �Xfin�= �y� and �Pfin�= �q�. Thus, the
amplitude of the coherent input light pulse is mapped on
atomic spin quadratures as desired. In order to prove faithful
teleportation also the variances have to be conserved. It is
evident from Eq. �9� that the final atomic spin variances will
be increased as compared to the coherent input. These addi-
tional terms describe unwanted excess noise and have to be
minimized by a proper choice of the coupling �. As a figure
of merit for the teleportation protocol we use the fidelity, i.e.,
squared overlap, of input and final state. Given that the
means are transmitted correctly the fidelity is found to be
F=2�1+2��Xfin�2��1+2��Pfin�2��−1/2. The variances of the
final spin quadratures are readily calculated taking into ac-
count that all modes involved are independent and have ini-
tially a normalized variance of 1 /2. In this way a theoretical
limit on the achievable fidelity can be derived depending
solely on the coupling strength �. In Fig. 3 we take advan-
tage of the fact that the amount of entanglement between
light and atoms is a monotonically increasing function of �

FIG. 3. �a� Theoretical limit on the achievable fidelity F versus
entanglement between atoms and light measured by the von Neu-
mann entropy EvN of the reduced state of atoms. The gray area is
unphysical. For moderate amounts of entanglement our protocol is
close to optimal. �b� Coupling strength � versus entanglement. The
dashed lines indicate the maximal fidelity of F=0.77 which is
achieved for �=1.64.
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such that we can plot the fidelity versus the entanglement.
This has the advantage that we can compare the performance
of our teleportation protocol with the canonical one �8,9�
which uses a two-mode squeezed state of the same entangle-
ment as a resource and therefore maximizes the teleportation
fidelity for the given amount of entanglement. No physical
state can achieve a higher fidelity with the same entangle-
ment. This follows from the results of �30� where it was
shown that two-mode squeezed states minimize the EPR
variance �and therefore maximize the teleportation fidelity�
for given entanglement. The theoretical fidelity achievable in
our protocol is maximized for �
1.64 corresponding to F

0.77. But also for experimentally more feasible values of
�
1 the fidelity can well exceed the classical limit �28,29�
of 1/2 and, moreover, comparison with the values achievable
with a two-mode squeezed state shows that our protocol is
close to optimal.

B. Noise effects and Gaussian-distributed input

Under realistic conditions the teleportation fidelity will be
degraded by noise effects like decoherence of the atomic
spin state, light absorption, and reflection losses and also
because the coupling constant � is experimentally limited to
values �
1. On the other hand the classical fidelity bound to
be beaten will be somewhat higher than 1/2 since the coher-
ent input states will necessarily be drawn according to a dis-
tribution with a finite width in the mean photon number n̄. In
this section we analyze the efficiency of the teleportation
protocol under these conditions and show that it is still pos-
sible to surpass any classical strategy for the transmission
and storage of coherent states of light �28,29�.

During the interaction atomic polarization decays due to
spontaneous emission and collisional relaxation. Including a
transverse decay the final state of atoms is given by

Xout = �1 − ��Xin +
�

�2
pc

in� + ��fX, �10a�

Pout = �1 − ��Pin +
�

�2
ps

in� + ��fP, �10b�

as follows from the discussion in Appendix A. � is the
atomic decay parameter and fX , fP are Langevin noise opera-
tors with zero mean. Their variance is experimentally found
to be close to the value corresponding to a coherent state
such that �fX

2�= �fP
2 �=1/2.

Light absorption and reflection losses can be taken into
account in the same way as finite detection efficiency. For

example the statistics of measurement outcome X̃s will not
stem from the signal mode x̃s alone but rather from the noisy
mode �1−x̃s+�fx,s where  is the photon loss parameter
and fx,s is a Langevin noise operator of zero mean and vari-
ance �fx,s

2 �=1/2. Analogous expressions have to be used for
the measurements of x̃c, q̃s, and q̃c which will be adulterated
by Langevin terms fx,c, fq,s, and fq,c respectively. In principle
each of the measurement outcomes can be fed back with an
independently chosen gain but for symmetry reasons it is
enough to distinguish gain coefficients gx ,gq for the mea-

surement outcomes of sine and cosine components of x and
q, respectively. Including photon loss, finite gain, and atomic
decay, as given in Eq. �10�, Eqs. �8�, describing the final state
of atoms after the feedback operation, generalize to

Xfin = �1 − �Xout + ��fX + gx��1 − x̃s + �fx,s�

− gq��1 − q̃c + �fq,c� , �11a�

Pfin = �1 − �Pout + ��fP − gx��1 − x̃c + �fx,c�

− gq��1 − q̃s + �fq,s� . �11b�

For nonunit gains a given coherent amplitude ��y� , �q��
will not be perfectly teleported onto atoms and the corre-
sponding fidelity will be degraded by this mismatch accord-
ing to

F��y�,�q�� =
2

��1 + 2��Xfin�2��1 + 2��Pfin�2�

�exp�−
��y� − �Xfin��2

1 + 2��Xfin�2 −
��q� − �Pfin��2

1 + 2��Pfin�2 � .

If the input amplitudes are drawn according to a Gaussian
distribution p��y� , �q��=exp�−��y�2+ �q�2� /2n̄� /2�n̄ with
mean photon number n̄ the average fidelity �with respect to
��y� , �q��� is readily calculated. The exact expression in terms
of initial operators can then be derived by means of Eqs. �5�,
�6�, �7�, and �11� but is not particularly enlightening. In Fig.
4 we plot the average fidelity, optimized with respect to gains

FIG. 4. �a� Average fidelity achievable in the presence of atomic
decay �, reflection, and light absorption losses =8%, 0.12%,
0.16%, coupling �=0.96, and Gaussian-distributed input states with
mean photon number n̄=4. The fidelity benchmark is in this case
5/9 �dashed line�. �b� Corresponding optimal values for gains gx

�solid lines� and gq �dashed lines�.
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gx ,gq, in its dependence on the atomic decay � for various
values of photon loss . We assume a realistic value �
=0.96 for the coupling constant and a mean number of pho-
tons n̄=4 for the distribution of the coherent input. For fea-
sible values of � , �0.2 the average fidelity is still well
above the classical bound on the fidelity �28,29�. This proves
that the proposed protocol is robust against the dominating
noise effects in this system.

The experimental feasibility of the proposal is illustrated
with the following example. Consider a sample of Nat
=1012 cesium atoms in a glass cell placed in a constant mag-
netic field along the x direction causing a Zeeman splitting of
�=350 kHz in the F=4 ground-state multiplet. The atoms
are pumped into mF=4 and probed on the D2 �F=4→F�
=3,4,5� transition. The classical pulse contains an overall
number of Nph=2.5�1013 photons, is detuned to the blue by
�=1 GHz, has a duration T=1 ms, and can have an effective
cross section of A
6 cm2 due to thermal motion of atoms.
Under these conditions the tensor polarizability can be ne-
glected �� /
hfs
10−1�. Also n0=�T=350 justifies the use
of independent scattering modes. The coupling �
1 and the
depumping of ground-state population �
10−1 as desired.

IV. SPIN SQUEEZING AND STATE READOUT

In this section we present a scheme for reading out either
of the atomic spin components X , P by means of a probe
pulse interacting with the atoms in the one way as described
in Sec. II. The proposed scheme allows one, on the one hand,
to verify successful receipt of the coherent input subsequent
to the teleportation protocol of Sec. III and, on the other
hand, enables to generate spin squeezing if it is performed on
a coherent spin state.

It is well known �15,31� and was demonstrated experi-
mentally �10,11� that the pure interaction V, as given in Eq.
�1�, can be used to perform a QND measurement of either of
the transverse spin components. At first sight this seems not
to be an option in the scenario under consideration since the
local term Hat, accounting for Larmor precession, commutes
with neither of the spin quadratures such that the total
Hamiltonian does not satisfy the QND criteria �5,6�. As we
have shown in Sec. II Larmor precession has two effects:
Scattered light is correlated with both transverse components
and suffers from back action mediated by the atoms. Thus, in
order to read out a single spin component one has to over-
come both disturbing effects.

Our claim is that this can be achieved by a simultaneous
measurement of xc

out , ps
out , ps,1

out or xs
out , pc

out , pc,1
out if, respec-

tively, X or P is to be measured. In the following we consider
in particular the former case but everything will hold with
appropriate replacements also for a measurement of P.

As shown in Fig. 5 the set of observables xc
out , ps

out , ps,1
out

can be measured simultaneously by a measurement of Stokes
component Sy after a � /2 rotation is performed selectively
on the sine component of the scattered light. The cosine
component of the corresponding photocurrent will give an
estimate of xc

out and the sine component of ps
out. Multiplying

the photocurrent’s sine component by the linear function de-
fining the back action mode, Eq. �B1�, will give in addition

an estimate of ps,1
out. Note that the field out of phase is con-

served in the interaction such that

ps,1
out = ps,1

in , pc,1
out = pc,1

in , �12�

i.e., the results will have shot-noise-limited variance. It is
then evident from Eq. �5c� that the respective photocurrents
together with an a priori knowledge of � are sufficient to
estimate the mean �X�.

The conditional variances after the indicated measure-
ments are

�X2�xc
out,ps

out,ps,1
out� = ��Xin�2 2

2 + �2 , �13a�

�P2�xc
out,ps

out,ps,1
out� = ��Pin�22 + �2

2
, �13b�

corresponding to a pure state. Obviously the variance in X is
squeezed by a factor �1+�2 /2�−1. Note that the squeezing
achieved in a QND measurement without magnetic field but
otherwise identical parameters is given by �1+�2�−1. From
this we conclude that the quality of the estimate for �X�, as
measured for example by input-output coefficients known
from the theory of QND measurements �5,6�, can be the
same as in the case without Larmor precession albeit only for
a higher coupling �.

Equations �13� are conveniently derived by means of the
formalism of correlation matrices �32�. For the operator-

valued vector R� = �X , P ,xc , pc ,xs , ps ,xc,1 , pc,1 ,xs,1 , ps,1� Eqs.

�5�, �12�, and �B2� define via R� out=S���R� in a symplectic lin-
ear transformation S���. The contributions of pc,2

in and ps,2
in to

xs,1
out and xc,1

out as given in Eq. �B2� are treated as noise and do
not contribute to the symplectic transformation S but enter
the input-output relation for the correlation matrix as an ad-
ditional noise term as follows. The correlation matrix is as
usually defined by �i,j =tr��RiRj +RjRi��. The initial state is
then a 10�10 identity matrix and the final state is �out

=S���S���T+�noise where the diagonal matrix �noise

=diag�0,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0��� /2�4 /15 accounts for noise
contributions due correlations to second order back action

FIG. 5. Scheme for spin measurement. After the scattering a
� /2 rotation is performed on the scattered light modulated at the
Larmor frequency such as to affect only the sine �cosine� compo-
nent. Standard polarization measurement of Sy and appropriate post-
processing allow one to read out the mean of X�P�, leaving the
atoms eventually in a spin-squeezed state.
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modes; cf. Eqs. �B2�. In order to evaluate the atomic vari-
ances after a measurement of xc

out , ps
out , ps,1

out the correlation
matrix �out is split up into blocks,

�out = � A C

CT B
� ,

where A is the 2�2 subblock describing atomic variances.
Now, the state A� after the measurement can be found by
evaluating �32�

A� = A − lim
x,n→�

C
1

� + B
CT

where �=diag�1/x ,x ,x ,1 /x ,n ,n ,x ,1 /x� corresponds to the
measured state. Note that the limit n→�, i.e., the projection
of the unobserved mode xc,2 , pc,2 onto the identity, does not
need to be taken explicitly since, remarkably, the atomic
state after the measurement decouples form this mode. The
conditional variances in Eq. �13� are then just �half the� di-
agonal entries of A�.

V. CONCLUSIONS

In conclusion we have presented a simple and realistic
protocol for teleportation of a coherent state, carried by a
propagating pulse of light, onto the collective spin of an
atomic ensemble, a suitable stationary carrier of quantum
information of continuous variables. The scheme can be
implemented with state of the art techniques and allows one
to surpass any classical strategy for the transmission and
storage of coherent states under realistic experimental condi-
tions. The basic resource in the protocol is a multimode en-
tangled state as it results from the interaction of light with
atoms in the presence of an external magnetic field. We
showed that Larmor precession enhances the creation of en-
tanglement quantitatively and qualitatively. Though the inter-
action is not of QND type it is still possible to perform a
state readout on the atomic spin as well as to create signifi-
cant spin squeezing. We expect that a proper tailoring of the
Larmor rotation with time-dependent magnetic fields would
open up interesting possibilities to further enhance the cre-
ation of entanglement and to deliberately shape scattering
modes.
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APPENDIX A: HAMILTONIAN

In this appendix we present a short derivation of the basic
Hamiltonian �1� in order to introduce the notation used
throughout this paper. More detailed descriptions can be
found in �14–21�. The Hamiltonian of the system is given by
H=Hat+Hli+V where the atomic part Hat=���iFx

�i� ac-
counts for the external magnetic field along x causing a

ground-state Zeemann splitting of �� , Hli is the free-space
Hamiltonian for light and the interaction term V is the level
shift operator �22,33�

V =	 d3r E� �−��r���J�r��E� �+��r�� , �A1�

which appropriately describes the interaction of off-resonant
light with atoms. We assume here implicitly that the electric
field contains only frequency components within a band-
width b around the carrier frequency 
c of the off-resonant
coherent probe pulse satisfying ��b��F� where the detun-
ing �F�=
c−
F,F�.

The atomic polarizability density tensor introduced in Eq.
�A1� is

�J�r�� = �
i

�J�i���r� − r��i�� �A2�

where r��i� is the position of atom i. The single-atom ground-
state polarizability �J�i� consists in general of a scalar, vector,
and tensor part,

�J = d2��01 + �1F� � + �2TJ� ,

where d is the relevant reduced dipole matrix element of the

probed transition, 1 is the 3�3 identity matrix, and F� � has

to be understood to give the vector cross product of F� with
the vector to the right. Each of the coefficients � j is a sum of
contributions from transitions to all excited-state manifolds
F�. If the detuning is much larger than the typical excited
states’ hyperfine splitting, ��
hfs, one finds that �2→0
such that the second-rank polarizability can be neglected. In
this case

�J =
d2

��� − i�/2�
�a01 + ia1F� � � �A3�

with real dimensionless coefficients aj of order unity and �
the excited states’ decay rate. The non-Hermitian part of the
resulting Hamilton operator describes the effect of light ab-
sorption and loss of ground-state population due to depump-
ing in the course of interaction. In the following we will
focus on the coherent interaction and, for the time being,
take into account only the Hermitian component. The effects
of light absorption and atomic depumping are treated below.

1. Coherent interaction

Since scattering of light occurs predominantly in the for-
ward direction �22� it is legitimate to adopt a one-
dimensional model such that the �negative frequency compo-
nent of the� electric field propagating along z is given by

E� �−��z,t� = E�−��z�e�y + E�−��z,t�e�x,

E�−��z� = ��
c�	
b

d
 a†�
�e−ikz,
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E�−��z,t� = ��
c��4�Nph/Te−i�kcz−
ct�

where ��
�=��
c /4�0Ac and A denotes the pulse’s cross-
sectional area, Nph the overall number of photons in the
pulse, and T its duration. We restrict the field in x polariza-
tion to the classical probe pulse, since only the coupling of
atoms to the y polarization is enhanced by the coherent
probe. Furthermore we implicitly assume for the classical
pulse a slowly varying envelope such that it arrives at z=0 at
t=0 and is then constant for a time T. Combining this ex-
pression for the field with expressions �A2� and �A3� for the
atomic polarizability in Eq. �A1� yields

V = −
i��

�4�JT
	

b

d
	 dz j�z��a�
�e−i��kc−k�z−
ct� − H.c.�

where we defined a dimensionless coupling constant �
=�NphJ
ca1d2 /�0cA� and an atomic spin density jz�z�
=�iFz

�i���z−z�i��. In this expression we skipped terms propor-
tional to a0 which will give rise only to a global phase shift
and included for convenience the square root factor with J
=NatF where Nat is the number of atoms. Note that the cou-
pling can be expressed as �=�NphJa1�� /2A� with � the
scattering cross section on resonance.

We now define field quadratures for spatially localized
modes �24,25� as

x�z� =
1

�4�
	

b

d
�a�
�e−i�kc−k�z + H.c.� , �A4a�

p�z� = −
i

�4�
	

b

d
�a�
�e−i�kc−k�z − H.c.� �A4b�

with commutation relations �x�z� , p�z���= ic��z−z�� where
the � function has to be understood to have a width on the
order of c /b. Since we assumed that ��b, the time it takes
for such a fraction of the pulse to cross the ensemble is much
smaller than the Larmor period 1/�. During the interaction
with one of these spatially localized modes the atomic state
does not change appreciably and we can simplify the inter-
action operator to V=���JT�−1/2Jzp�0� where Jz=�iFz

�i� and
we assumed that the ensemble is located at z=0 and changed
to a frame rotating at the carrier frequency 
c.

A last approximation concerns the description of the
atomic spin state. Initially the sample is prepared in a coher-
ent spin state with maximal polarization along x, i.e., in the
eigenstate of Jx with maximal eigenvalue J. We can thus
make use of the Holstein-Primakoff approximation �23�
which allows us to describe the spin state as a Gaussian state
of a single harmonic oscillator. The first step is to express
collective step up or down operators �along x�, J±=Jy ± iJz, in
terms of bosonic creation and annihilation operators, �b ,b†�
=1, as

J+ = �2J�1 − b†b/2Jb, J− = �2Jb†�1 − b†b/2J .

It is easily checked that these operators satisfy the correct
commutation relations �J+ ,J−�=2Jx if one identifies Jx=J
−b†b. The fully polarized initial state thus corresponds to the
ground state of the harmonic oscillator. Note that this map-

ping is exact. Under the condition that �b†b��J one can
approximate J+
�2Jb , J−
�2Jb†, and therefore Jz


−i�J /2�b−b†�. Introducing atomic quadratures X= �b
+b†� /�2 and P=−i�b−b†� /�2 finally yields the desired ex-
pression for the interaction V=��T−1/2Pp�0�.

In terms of atomic quadratures the free Hamiltonian for
atoms is H=�� /2�X2+ P2�. In the frame rotating at the car-
rier frequency the action of Hli on the light quadratures
x�z� , p�z� is simply i /��Hli ,x�z��=−c�zx�z� and likewise for
p�z�.

2. Noise effects

The anti-Hermitian part of the level shift operator �A1�
describes depumping of ground-state population and photon
absorption. The effect of the latter process can—as far as it
concerns the performance of the teleportation protocol—be
treated on equal footing with mode mismatch and finite de-
tector efficiency. This is done in Sec. III B. Loss of ground-
state population, on the other hand, will eventually cause
degrading of atomic polarization due to spontaneous emis-
sion events. For a single atom the dominating term describ-
ing this process stems from the scalar part of the polarizabil-
ity and is given by Vloss= i��1 /4T where �
=Npha0
c�d2 /2��20Ac=Npha0��2 /4A�2. It is possible to
have ��1 and at the same time a large coupling �
1. For
a thermal cloud of atoms an additional source of decoherence
is light-assisted collisions which in fact dominate the decay
process. Assuming a transverse relaxation at an overall rate
� /T with ��0.2 the exponential decay during the interac-
tion can to a good approximation be treated linearly which
leads to Eqs. �10�. The Langevin noise operators fX,P can in
principle be derived by a microscopic model as is done in
�17� for dephasing due to spontaneous emission.

APPENDIX B: BACK ACTION AND INPUT MODES

1. Back action

We evaluate here the input-output relations �5c� and �5d�
for the cosine and sine components of the in-phase field. For
the former we take Eq. �3d� at �=c	 , t=T, multiply by
�2/Tcos��	�, and integrate over 	 from 0 to T. Using Eqs.
�3a� and �3b� and the approximate orthogonality of cos��	�
and sin��	� one finds

xc
out = xc

in +
�

�2
Pin

+
�2�2

T3/2 	
0

T

d		
0

	

d	��cos��	�2sin��	��p̄�c	�,0�

− cos��	�sin��	�cos��	��p̄�c	�,0�� .

After interchanging the order of integration �0
Td	�0

	d	�
→�0

Td	��	�
T d	 one can perform the integration over 	. Ne-

glecting all terms of order n0
−1 or less where n0=�T�1 one

finds
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xc
out = xc

in +
�

�2
Pin +

�2�2

T3/2 	
0

T

d	
T − 	

2
sin��	�p̄�c	,0� .

The last term represents back action of light onto itself. It
can be expressed as a sum of two terms, one proportional to
ps

in and another one proportional to

ps,1
in = �3� 2

T
�3/2	

0

T

d	�T

2
− 	�sin��	�p̄�c	,0� . �B1�

It is easily verified that the back action mode defined by this
equation and the corresponding expression for xs

back is ca-
nonical �xs,1

in , ps,1
in �= i�1−O�n0

−2��
 i and independent from all
the other modes introduced so far, i.e., �xs

in , ps,1
in �=O�n0

−2�

0. The variance is thus ��ps,1

in �2=1/2. Repeating the calcu-
lation for xs

out with appropriate replacements and a definition
of pc,1

in analogous to Eq. �B1� finally yields Eqs. �5c� and
�5d�.

In a similar way input-output relations for the back action
modes itself are derived. In particular for the in-phase com-
ponents one finds

xc,1
out = xc,1

in −
1
�3

��

2
�2

ps
in +

1
�15

��

2
�2

ps,2
in , �B2a�

xs,1
out = xs,1

in −
1
�3

��

2
�2

pc
in +

1
�15

��

2
�2

pc,2
in . �B2b�

In both equations the third terms on the right-hand side de-
scribe contributions of second-order back action modes de-
fined by

ps,2
in = 6�10

T5�1/2	
0

T

d	�T2

6
− T	 + 	2�sin��	�p̄�c	,0� ,

and similarly for xs,2
in and the cosine component. These

modes are again canonical and independent. As an aside we
note that, formally, it is possible to define scattering modes
of arbitrary order whose mode functions are given in general
by products of Legendre polynomials and cos��t��sin��t��
resulting in a hierarchy of input-output relations similar to
Eq. �B2�.

2. Input state

The input field, propagating along the positive y direction
and polarized along z �see Fig. 2�, is described by operators
�b�
� ,b†�
���=��
−
�� in frequency space and
�ŷ�y� , q̂�y���= ic��y−y�� in real space. �ŷ is the quadrature
operator for the field in phase and y on the other hand is the
position along the y direction.� In analogy to Eq. �A4� these
bases are connected via

ŷ�y� =
1

�4�
	

b

d
�b�
�e−i�kc−k�y + H.c.� ,

q̂�y� = −
i

�4�
	

b

d
�b�
�e−i�kc−k�y − H.c.� .

As shown in Sec. III A we can teleport the mode

y =
1
�2

�ysin + qcos�, q = −
1
�2

�ycos − qsin� ,

and the claim is that this corresponds to a pulse at the upper
sideband 
c+�. Using the definitions of cosine and sine

modes �4� as well as ŷ̄�c	 ,0�= ŷ�−c	 ,0� and the same for
q̂�y� we have

y =
1
�T
	

0

T

d	�sin��	�ŷ̄�c	,0� + cos��	�q̂̄�c	,0��,

=
− i

�4�T
	

0

T

d		
b

d
�b�
�ei�
c+�−
�	 − H.c.� ,

q = −
1
�T
	

0

T

d	�cos��	�ŷ̄�c	,0� − sin��	�q̂̄�c	,0��

=
− 1

�4�T
	

0

T

d		
b

d
�b�
�ei�
c+�−
�	 + H.c.� .

To explicitly see that this corresponds to a pulse centered at
the upper sideband it is convenient to change to a more pre-
cise model by replacing the 1/�T factor, which is just the
pulse’s slowly varying amplitude function in a simple
square-well approximation, by a function A�	� of dimension
s−1/2 normalized such that �0

Td	�A�	��2=1. Its Fourier trans-
form A�
�= �1/�2���0

Td	 A�	�exp�i
	� is centered at zero
and has a width 1/T=�
�� in accord with our condition
1��T. Replacing now 1/�T by A�	� �of course inside the
integral over 	� in the expressions for y and q yields

y =
− i

�4�
	

0

T

d	 A�	�	
b

d
�b�
�ei�
c+�−
�	 − H.c.�

=
− i
�2
	

b

d
�A�
c + � − 
�b�
� − H.c.� ,

q =
− 1
�2
	

b

d
�A�
c + � − 
�b�
� + H.c.� .

This is evidently a mode whose spectral mode function is the
same as that of the classical pulse but is centered at 
c+�.

APPENDIX C: FEEDBACK

The feedback in continuous-variable quantum teleporta-
tion is sometimes described by equations equivalent to �8�
but with a classical random variable describing the measure-
ment outcome in place of the operators corresponding to the
chosen displacement, which—though giving the right
result—is mathematically questionable. We point out that re-
lations �8� hold stricto sensu as operator identities. This is
true for mixed and even for non-Gaussian states, as we will
show below.

Consider a bipartite system of N+1 modes and denote the
first mode as system A and the remaining N modes as system
B. Let the state of the compound system be given by �AB.
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Our aim here is to describe protocols that consist of the fol-
lowing steps.

Measurement. On system B a set of commuting observ-
ables r̂1 ,… , r̂N� is measured where each of the operators r̂i

is either xi or pi, one of the quadratures of mode i in B. Let
the corresponding measurement outcomes ri be arranged in a

vector R� B= �r1 ,… ,rN�. With the eigenvalue equation r̂i�ri�B

=ri�ri�B, where �ri�B is the generalized eigenstate of r̂i, the
normalized state of system A conditioned on the measure-
ment outcomes is

�A
�1��R� �=B�r1,…,rN��AB�r1,…,rN�B/p�R� � .

p�R� � is the probability to get the measurement outcomes R�

and is normalized as �dNr p�R� �=1.
Feedback. Depending on the measurement outcomes sys-

tem A is then displaced in xA and pA by an amount R� g�x
T and

R� g�p
T, respectively, where g�x�p� are any real N-dimensional

�row� vectors determining the strength with which each out-
come is fed back into system A. In teleportation protocols
these coefficients are usually referred to as gains. The state
of system A after the feedback operation is then

�A
�2��R� � = DA

†�A
�1��R� �DA.

DA=DA�R� g�x
T ,R� g�p

T��exp�iR� g�x
TpA�exp�−iR� g�p

TxA� is the unitary
displacement operator effecting the desired transformations

DAxADA
† =xA+R� g�x

T and DApADA
† = pA+R� g�p

T.
Ensemble average. On average over all measurement out-

comes, weighted with their respective probabilities, the state
of system A is

�̄A =	 dNr p�R� ��A
�2��R� � .

Combining this with the expressions for �A
�2� and �A

�1� above
one can express

�̄A =	 dNr DA
†

B�r1,…,rN��AB�r1,…,rN�BDA

=	 dNr B�r1,…,rN�DAB
† �ABDAB�r1,…,rN�B

= trBDAB
† �ABDAB� �C1�

where the trace in the last equality is now taken with respect
to both systems A and B. In going from the first to the second
equality we made use of the identity

�r1,…,rN�BDA = DAB�r1,…,rN�B �C2�

with the unitary operator DAB defined as DAB

=DAB�R�̂ g�x
T ,R�̂ g�p

T��exp�iR�̂ g�x
TpA�exp�−iR�̂ g�p

TpA� where R�̂

= �r̂1 ,… , r̂N� is now the vector of operators r̂i
B and DAB acts

on both systems A and B. Note that identity �C2� is valid
only for commuting observables r̂i

B. The resulting equation
�C1� is the key point in this consideration.

Observables in the ensemble average. Consider finally the
mean of, for example, xA after the measurement and feed-
back procedure, i.e., with respect to the ensemble-averaged
state �̄A. It is given by

�xA� = trAxA�̄A� = trABDABxADAB
† �AB� = trAB�xA + R�̂ g�x

T��AB� .

From this identity and the corresponding expression for �pA�,
which both are true for all initial states �AB, we can deduce
the operator identities

xA
fin = xA + R�̂ g�x

T, pA
fin = pA + R�̂ g�p

T

where xA
fin , pA

fin describe the final state of system A in the
Heisenberg picture and means have to be taken with respect
to the unchanged initial state of both systems A and B. If �AB
is a pure Gaussian state the last two equations fully deter-
mine the final state �̄A. This was used in Eq. �8�. Note that
these considerations are easily extended to situations in
which system A consists of more than one mode.
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