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We discuss an alternative to relative entropy as a measure of distance between mixed quantum states. The
proposed quantity is an extension to the realm of quantum theory of the Jensen-Shannon divergence �JSD�
between probability distributions. The JSD has several interesting properties. It arises in information theory
and, unlike the Kullback-Leibler divergence, it is symmetric, always well-defined, and bounded. We show that
the quantum JSD shares with the relative entropy most of the physically relevant properties, in particular those
required for a “good” quantum distinguishability measure. We relate it to other known quantum distances and
we suggest possible applications in the field of the quantum information theory.
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I. INTRODUCTION

Distance measures play a central role in quantum theory,
in particular in the context of quantum computation and
quantum information. On one side they allow us to establish
precisely the problem of quantum state discrimination �1�; on
the other they are associated to the definition of the degree of
entanglement, just to mention two very significant subjects
�2�.

Several distances between quantum states have been in-
troduced. Many of them were defined as distances �diver-
gences� between probability distributions and then extended
as distances between quantum states. This is the case of the
Hellinger distance, which, for two �discrete or continuous�
probability distributions P�x� and Q�x� reads

H�P,Q� = �
x

��P�x� − �Q�x��2 �1�

and its quantum mechanical version is expressed as

H�� � �� = Tr��� − ���2, �2�

where � and � are two density operators and Tr stands for the
trace operator. Analogously the Kullback-Leibler divergence
S�P ,Q�=�xP�x�log�P�x� /Q�x�	 and the Kolmogorov dis-
tance K�P ,Q�= 1

2�x
P�x�−Q�x�
 are extended to the realm of
quantum mechanics. In the first case the resulting distance is
known as the relative entropy �3,4�; in the second one the
quantum counterpart is given by �5�

K�� � �� =
1

2
Tr
� − �
 .

Alternatives to these quantum distances have been recently
proposed �6–8�.

As we mentioned previously a basic issue in quantum
information theory is to distinguish two quantum states by
quantum measurement. In a seminal paper Wootters investi-
gated this problem and introduced a “distinguishability dis-
tance” between two pure states �9�. He defines this distance
as the number of distinguishable intermediate states between

the two states. Braunstein and Caves extended this distance
to density operators for mixed states �10� and framed it in a
general geometric formulation of quantum states space �11�.

In a recent paper we revised the Wootters’s distinguish-
ability distance in terms of the Jensen-Shannon divergence
�JSD� �12�. The JSD between the probability distributions
P�x� and Q�x� is defined by

JS�P,Q� � S�P,
P + Q

2

 + S�Q,

P + Q

2



= HS�P + Q

2

 −

1

2
HS�P� −

1

2
HS�Q� , �3�

where S�P ,Q� is the Kullback-Leibler divergence and
HS�P�=−�xP�x�log P�x� is the Shannon entropy. This quan-
tity was introduced by Rao �13� and Lin �14� as a symme-
trized version of the Kullback-Leibler divergence and has
been recently applied to the analysis of symbolic sequences
as well as to other problems of interest in statistical physics
�15�. It originates in information theory, it is always well-
defined and bounded, and its square root is a true metric for
the probability distributions space �i.e., its square root is
symmetric, null only when the probability distributions coin-
cide and it verifies the triangle inequality� �16�. It has several
interesting interpretations; for example, in statistical infer-
ence theory it gives both the lower and upper bounds to
Bayes’ probability error �14�. In the framework of informa-
tion theory the JSD can be related to mutual information
�15�.

From some results of harmonic analysis it is possible to
show that the metric space �XN

+ ,�JS�, where XN
+ denotes the

discrete probability distributions space, can be isometrically
mapped into a subset of a Hilbert space �17,18�. This result
establishes a connection between information theory and dif-
ferential geometry, which, we think, could have interesting
consequences in the realm of quantum information theory.

In Ref. �14�, Lin proposed a generalization of Eq. �3� as a
distance for several probability distributions. In fact, let
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P1�x� , . . . , PN�x� be a set of probability distributions and let
�1 , . . . ,�N be a collection of non-negative numbers such that
�i�i=1. Then the JSD of the probability distributions
Pi�x� , i=1, . . . ,N is defined by

JS��1,. . .,�N��P1, . . . ,PN� = HS��
i=1

N

�iPi
 − �
i=1

N

�iHS�Pi� .

�4�

A remarkable feature of this generalized JSD is that it is
possible to assign different weights to the distributions Pi.
This might be of importance in the study of quantum statis-
tical inference problems �19�.

In this work we extend the JSD into the context of quan-
tum theory as a distance measure between mixed quantum
states. We show that it shares with the relative entropy many
of the most physically relevant properties. We also relate it to
other commonly used distances as well as we suggest its
applicability as a good measure of entanglement and fidelity.
We see that, when expression �4� is extended to quantum
theory, it can be interpreted as the upper bound for quantum
accessible information.

The structure of the paper is as follows. In the following
section we review the basic properties of the relative entropy,
mainly to guide us in our investigation of the properties sat-
isfied by the quantum JSD �QJSD�. In Sec. III we introduce
the QJSD and enumerate its basic properties. Finally we dis-
cuss possible applications of the QJSD in the field of quan-
tum information theory.

Notation remark: We will use the following notation: D�,�
denotes a distance defined between probability distributions;
D��� denotes the corresponding distance between quantum
states.

II. RELATIVE ENTROPY

Let H be the Hilbert space associated to a quantum sys-
tem and let S be the set of density operators describing the
states of the system; i.e., S is the set of self-adjoint, positive,
and trace unity operators.

The relative entropy of an operator �, with respect to an
operator �, both belonging to S, is given by

S�� � �� = Tr���log � − log ��� , �5�

where log stands for logarithm in base two. S�� ��� is non-
negative and vanishes if and only if �=�. It is nonsymmetric
and unbounded. In particular, the relative entropy is well-
defined only when the support of � is equal to or larger than
that of �. Otherwise, it is defined to be +� �3� �the support of
an operator is the subspace spanned by the eigenvectors of
the operator with nonzero eigenvalues�. This is a very restric-
tive requirement which is violated in some physically rel-
evant situations, for example, when � is a pure reference
state �8�.

Now we list the fundamental properties of the relative
entropy. For the proofs and a detailed discussion see Refs.
�4,20�.

�1� S is invariant under unitary transformations, that is

S�U�U† � U�U†� = S�� � �� �6�

for any unitary operator U. This is a quite natural property to
be satisfied by a distance, because a unitary transformation
represents a rotation in the Hilbert space and the distance
between two states should be invariant under a rotation of
the states.

�2� “Generalized H-theorem.” For any complete positive,
trace preserving map � given by

�� = �
i

Vi�Vi
† and �

i

Vi
†Vi = 1, �7�

S��� � ��� � S�� � �� . �8�

This is a very significant result because the most general way
that an open quantum system evolves is mathematically rep-
resented by a map of the type given by Eq. �7�. Technically,
this kind of map is known as a CP map. Therefore the mean-
ing of Eq. �8� is that nonunitary evolution decreases distin-
guishability between states. Of course, a unitary evolution is
a particular case of a CP map. Another example of a CP map
is given by �iPi�Pi with Pi being a complete set of orthogo-
nal projectors �Pi

†= Pi and Pi
2= Pi�. Therefore

S�Pi�Pi � Pi�Pi� � S�� � �� . �9�

�3� S is jointly convex:

S��
i

	i�
�i� � �

i

	i�
�i�
 � �

i

	iS���i� � ��i�� , �10�

where the 	i are positive real numbers such that �i	i=1.
�4� Let �AB and �AB be two density matrices of a compos-

ite system AB �represented by the Hilbert space HA � HB�.
Then

S��A � �A� � S��AB � �AB� ,

S��B � �B� � S��AB � �AB� , �11�

with �A=TrB �AB and �B=TrA �AB �here TrA and TrB repre-
sent the partial trace operators�. These inequalities have a
very natural interpretation: to take the trace over a part of a
system leads to a loss of information and therefore it be-
comes more difficult to distinguish between two states of the
composite system.

�5� S is additive in the sense that

S��1 � �2 � �1 � �2� = S��1 � �1� + S��2 � �2� �12�

with �1 ,�1
SA and �2 ,�2
SB.
�6� The relative entropy verifies Donald’s identity �21�:

Let us suppose that the density operators �i occur with prob-
ability pi, yielding an average state �=�ipi�i and let � be an
arbitrary density operator. Then

�
i

piS��i � �� = �
i

piS��i � �� + S�� � �� . �13�

III. AN ALTERNATIVE TO THE RELATIVE ENTROPY

We define the quantum Jensen-Shannon divergence
�QJSD� as
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JS�� � �� =
1

2
�S�� �

� + �

2

 + S�� �

� + �

2

� , �14�

which can be rewritten in terms of the von Neumann entropy,
HN���=−Tr�� log ��, as

JS�� � �� = HN�� + �

2

 −

1

2
HN��� −

1

2
HN��� . �15�

If � and � are density operators with complete sets of
eigenvectors �
ri�	 and �
si�	, such that �=�iri
ri��ri
 and �
=� jsj
sj��sj
, then the QJSD between � and � is expressed as

JS��
�� =
1

2��
k,i


�tk
ri�
2ri log�2ri

�k



+ �
k,j


�tk
sj�
2sj log�2sj

�k

� . �16�

with �k=�iri 
 �tk
ri � 
2+�jsj
�tk 
sj � 
2 and �tk
 a complete set of
normalized eigenvectors of �+�.

This quantity is positive, null if and only if �=�, symmet-
ric and always well-defined. In fact, the restriction imposed
on the supports of � and � for the relative entropy is lifted
for the QJSD.

If � and � commute they are diagonal in the same basis,
that is

� = �
i

ri
i��i
 � = �
i

si
i��i
 �17�

with 
i� an orthonormal basis. Then

JS�� � �� = JS��ri	,�si	� . �18�

The QJSD is bounded. In fact, as it is known, the von
Neumann entropy satisfies the following inequality �1�: if �
=�ipi�i is a mixture of quantum states �i with pi a set of
positive real numbers such that �ipi=1, then

HN��
i

pi�i
 � �
i

piHN��i� + HS��pi	� .

The equality is attained if and only if the states �i have
support on orthogonal subspaces. By putting p1= p2= 1

2 and
�1=� and �2=� in the inequality above we have

0 � JS�� � �� � 1. �19�

Properties 1 to 4 of relative entropy are inherited by the
QJSD and their validity can be checked directly from the
representation �14�. For example, property 2 for the QJSD
can be proved as follows:

JS��� � ��� =
1

2
�S��� �

�� + ��

2

 + S��� �

�� + ��

2

�

=
1

2
�S��� �

��� + ��
2


 + S��� �
��� + ��

2

�

�
1

2
�S�� �

� + �

2

 + S�� �

� + �

2

�

= JS�� � �� . �20�

Additivity does not remain valid for the QJSD. However,
the QJSD verifies a “restricted additivity”:

JS��1 � �2 � �1 � �2� = JS��1 � �1� �21�

with �1, �1
SA, and �2
SB. This is an important point that
deserves some attention. We claim that Eq. �21� is enough to
prove property �4� for the QJSD. To prove this, we follow the
same steps as Nielsen and Chuang in their book where the
relative entropy is studied �1�. It can be shown that there are
unitary transformations Uj on the space corresponding to the
part B and numbers 	 j , �� j	 j =1� such that

�A
�

I

d
= �

j

	 jUj�
ABUj

†

for all density operators �AB of the composite system AB.
Here d is the dimension of the Hilbert space of part B and I
its identity operator. Hence, from convexity, the invariance
under unitary evolution, and the restricted additivity verified
by the QJSD, we have

JS��A � �A� = JS��A
�

I

d
� �A

�
I

d



� �
j

	 jJS�Uj�
ABUj

† � Uj�
ABUj

†�

� �
j

	 jJS��AB � �AB� = JS��AB � �AB� . �22�

Of course, due to the linearity of the partial trace operator,
this property can be derived from the analogous ones satis-
fied by the relative entropy.

The nonincreasing character of the QJSD upon a CP map
has the following consequence: Let �E�	 be a set of positive-
operator-valued measure �POVM�, that is, a set of Hermitian
operators E�
0 that satisfy ��E�=1. It is known that every
generalized quantum measurement can be described by a
POVM �1�. Given two operators � and � belonging to S, we
can introduce the probability distributions

p� = Tr��E��, q� = Tr��E�� .

Following Vedral �20� we define

JS1�� � �� = sup
�E�	

JS��p�	,�q�	� ,

where the supremum is taken over all POVMs. Given that
S�� ���
S1�� ��� with S1�� ���=sup�E�	S��p�	 , �q�	�, we can
derive the inequality

JS�� � �� 
 JS1��p�	,�q�	� . �23�

Of course the map �→Tr��E�� is a CP map.
To conclude the listing of properties satisfied by the QJSD

we note that starting from Donald’s identity, we can obtain a
useful representation for the QJSD:

2JS�� � �� = S�� � �� + S�� � �� − 2S�� + �

2
� �
 , �24�

JENSEN-SHANNON DIVERGENCE AS A MEASURE OF… PHYSICAL REVIEW A 72, 052310 �2005�

052310-3



where � is an arbitrary density operator. This identity allows
us to evaluate the QJSD between two density operators in
terms of a third arbitrary one.

In the following discussion we investigate the relation be-
tween the QJSD and other quantum distances. In Ref. �12�
we showed that the JSD is a good approximation to the
Wootters distance �up to third order in their power expan-
sion�. To search for a similar relationship between the QJSD
distance and that introduced by Braunstein and Caves, let us
consider two neighboring density operators, � and �+d�.
The QJSD between them reduces to �up to second order in ��

JS�� � � + d��

=
�2

8 ��
j

� j j

pj
+ �

j,k
�pj − pk��log pj − log pk�
akj
2� ,

�25�

where we have assumed that d����, with ��1. The � jk are
the matrix elements of � in the basis that diagonalizes �, that
is �=� jpj
j��j
, and the eigenvectors of �+d� are written �up
to first order in �� in the form:


j�1�� = �
k

��kj + �ajk�
k� .

By expanding

log pj − log pk = 2�pj − pk�/�pj + pk�

− 4�pj − pk�3/�pj + pk�3 + . . .

and after some algebra, the expression �25� can be rewritten
as

JS�� � � + d�� =
�2

8 ��
j

� j j

pj
+ 2�

j,k

�pj − pk�2

pk + pj

akj
2� + �

�26�

with � a term that involves sums of powers of �pj − pk� of
even order not lower than four. The two first terms coincide
with the metric introduced by Braunstein and Caves as a
generalization of the Wootters’s distance, dsDO �10�:

JS�� � � + d�� �
1

8
dsDO

2 .

As these authors further note, the metric dsDO is related to
the Bures’ metric, B�� ���=�2�1−Tr��1/2��1/2�1/2�1/2:

4B2�� � �� + d��� � dsDO
2 .

Therefore we can conclude that for two neighboring states

B�� � � + d�� � �2JS�� � � + d�� . �27�

To finish this section, we proceed to evaluate the QJSD in
a particular case. Let us consider the density operator �W
corresponding to a Werner state, for a system of two
1/2-spin particles �22�:

�W = F
�−���−
 +
1 − F

3
�
�+���+
 + 
�+���+
 + 
�−���−
� ,

with 
�±�=1/ �2�
↑ ↓ �± 
↓ ↑ �� and 
�±�=1/ �2�
↑ ↑ �
± 
↓ ↓ ��. F is the purity of the state �W with respect to the
reference state �= 
�−���−
. Then, in terms of the purity F,
the QJSD between �W and �, results:

JS��W � �� =
1

2
�F log F − �1 + F�log�1 + F

2

� . �28�

The fact that we can evaluate the JS�� ��� when one of its
arguments is a pure state is a clear advantage of the QJSD
over the relative entropy, which becomes divergent in this
case.

IV. DISCUSSION

In this section we suggest possible applications of the
QJSD in the context of quantum information theory. Here we
show that the proposed distance is useful to generate an en-
tanglement measure, as well as an alternative concept of fi-
delity. We also give an interesting interpretation of QJSD as
the upper bound for the accessible quantum information. A
more detailed study of each one of these proposals will be
presented in a future work.

A. Entanglement

Let H=HA � HB be the Hilbert space of a quantum sys-
tem consisting of two subsystems A and B. According to
Vedral et al. any measure of entanglement E has to satisfy the
following �necessary� conditions �2�.

�i� E���=0 if f � is separable. Let us recall that a state is
separable if it can be expressed as �=� j	 j�1

�j�
� �2

�j� for some
density operators �1

�j�
SA and �2
�j�
SB, and � j	 j =1,	 j 
0.

�ii� E���=E�UA � UB�UA
†

� UB
†� for two arbitrary unitary

operators UA and UB acting on the corresponding Hilbert
space.

�iii� E��� is convex with respect to its argument:

E��
j

	 j� j
 � �
j

	 jE�� j� .

�iv� E��� decreases under generic quantum operations,
that is, if �Vi	 are bounded operators such that �ViVi

†=1, � j

=Vj�Vj
† /	 j, and 	 j =Tr�Vj�Vj

†�, then

E��� 
 �
j

	 jE�� j� .

Vedral and collaborators �2� showed that an entanglement
measure defined as

E��� = inf
�

D�� � �� �29�

satisfies conditions �i�–�iv�, whenever the distance D :S � S
→Re verifies the properties �a� and �b� listed below:

�a� D�� ���
0 and D�� ���=0 for any � ,�
S, and
�b� D��� �����D�� ��� for any Cp map; �.
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In Eq. �29� the infimum is taken over the set of separable
states.

As we showed in the preceding section, the QJSD
JS�� ��� satisfies these two requirements. So we can intro-
duce a new entanglement measure by

EJS��� = inf
�

JS�� � �� �30�

where, once again, the infimum is taken over all separable
states.

B. Fidelity

The fidelity of states � and � is defined as �23,24�

F�� � �� = �Tr�������2. �31�

This quantity is symmetric, invariant under unitary transfor-
mations, and bounded between 0 and 1. For a pure state �
= 
����
, fidelity reduces to the amplitude ��
�
��.

The fidelity is related to the Bures’s metric by the expres-
sion

B2�� � �� = 2�1 − �F�� � ��� . �32�

Taking Eq. �27� into consideration we can introduce an alter-
native definition of fidelity �31�:

FJS�� � �� � �1 − JS�� � ���2. �33�

From inequalities �19�, FJS must be bounded between 0 and
1. In particular, for �=�, FJS=1 and FJS�� ���=0 if and only
if � and � have support on orthogonal subspaces.

The proposal �33� has another justification. As a textbook
exercise it can be shown that the fidelity of states � and �
can be evaluated in terms of purifications of these states as

F�� � �� = max

��


��
��
2, �34�

where 
�� is any fixed purification of �, and the maximiza-
tion is over all the purifications of � �1�. At this point, it
should be recalled that the Wootters’ distance between the
two pure states 
�� and 
�� is given by �9�

W�
�� � 
��� = arccos
��
��
 .

Then, fidelity can be expressed in terms of the Wootters’
distance as

F�� � �� = max

��

cos2�W�
�� � 
����

= max

��

�1 − W2�
�� � 
��� + ¯ � . �35�

Now taking into account the relation between the Wootters’s
distance and the JSD divergence �12�

W�
�� � 
��� � �2JS�
�� � 
��� ,

we can approximate

F�� � �� � max

��

�1 − JS�
�� � 
����2, �36�

which, we think, might be taken as an interesting starting
point to investigate Eq. �33� as a fidelity measure.

C. Quantum information accessibility

Holevo �25� proved that, if a system is prepared in a state
X chosen from one of the density operators �i�i=1, . . . ,n�
with probability pi, then the �mutual� information I�X :Y� that
can be gathered about the identity of the state X by a POVM
measurement, with outcome Y, is bounded according to the
inequality

I�X:Y� � � = HN��
i

pi�i
 − �
i

piHN��i� . �37�

The quantity � is precisely the extension of expression �4� to
density operators with the weights �i replaced by the prob-
abilities pi, that is, ��JS�p1,. . .,pn���1�¯ ��n�. This fact pro-
vides an interesting interpretation of the generalized QJSD.
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