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We propose a scheme for implementing a controlled unitary gate between two distant atoms directly com-
municating through a quantum transmission line. To achieve our goal, only a series of several coherent pulses
are applied to the atoms. Our scheme thus requires no ancilla atomic qubit. The simplicity of our scheme may
significantly improve the scalability of quantum computers based on trapped neutral atoms or ions.
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I. INTRODUCTION

A quantum optical system utilizing trapped neutral atoms
or ions for qubits is one of the promising candidates for
implementing a quantum computer �1�. Actually, there have
been numerous theoretical �2,3� and experimental �4�
achievements showing the positive prospects for it. The
number of qubits in such a system is, however, obviously
limited by the size of the trapping structure, while one of the
essential factors for a useful quantum computer is the scal-
ability. This difficulty could be overcome by connecting par-
tially implemented quantum computation nodes to form a
quantum network.

For any unitary operation for the whole quantum network
to be possible, controlled unitary operations between two
nodes should be performed as well as local unitary opera-
tions at each node �5�. There have been various ways for
doing it by means of one or more ancilla qubits �1�. The
underlying idea is to use ancilla qubits to transfer the quan-
tum information between two nodes and perform local two-
qubit operations at the nodes so that the overall process in
effect results in the desired global two-qubit operation. One
method to accomplish the task is to shuttle ancilla qubits or a
quantum node itself physically to a particular position where
local interaction between an ancilla qubit and a quantum
node is possible �3�. This method, however, cannot be di-
rectly applicable to neutral atom quantum computers. An-
other method feasible for neutral atom quantum computers
as well is to exploit a photon-mediated interaction between
two nodes, such as in entanglement generation �6�, quantum
state transfer �7�, and quantum teleportation �8�. On the other
hand, there has also been a scheme in which no ancilla qubit
is involved �9�. The scheme, however, uses a quantum inter-
ferometer and the complex atomic structure of several hyper-
fine levels instead.

In this work, we introduce a simple scheme to do a con-
trolled unitary operation between two distant atoms. A com-
mon quantum communication setup �7�, in which two atoms
each trapped in an optical cavity directly communicate
through a quantum transmission line such as an optical fiber
connecting the two cavities, is considered. In contrast to ear-
lier methods, no ancilla atomic qubit is involved in our
scheme and the gate operation is done by a simple coherent
process.

II. THE SCHEME

The schematic representation of our scheme is depicted in
Fig. 1. Atom A and B are trapped in cavity A and B, respec-
tively, and two cavities are connected through an optical fiber
of length L. The decay rate of the cavity is � and the spon-
taneous emission rate of the atom is �. The outside mirror,
i.e., the mirror on the side not connected to the fiber, of each
cavity is assumed to be of 100% reflectivity. Each solid ar-
row represents a transition by a classical field of Rabi fre-
quency �i�t� �i=A ,1B ,2B�, and each dotted arrow repre-
sents a transition by a cavity mode of atom-cavity coupling
rate gi �i=A ,B�. We assume the Lamb-Dicke limit �10�, thus
gi is assumed to be a constant. Each transition is detuned by
an amount of � or �+�� as shown in Fig. 1. A qubit is
represented by two ground hyperfine levels �g0� and �g1�. �g0�
does not participate in the transition.

The desired two qubit operation is the controlled phase
shift operation, which is accomplished in three steps as the
following:

FIG. 1. The schematic representation of the controlled phase
shift gate between two distant atoms. Two atoms are each trapped in
an optical cavity and the two cavities are connected with a fiber.
Each solid arrow represents a transition by the classical field and
each dotted arrow a transition by the cavity mode. A qubit is en-
coded in two atomic ground levels �g0� and �g1�.
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� . �1�

In the first step, only the state �g1�B is transferred to �g2�B
while other states remain unchanged. It is done with high
precision by the well-known technique of adiabatic passage
�11�. For this step, two classical fields of Rabi frequency
�2B�t� and �1B�t� are applied adiabatically to atom B in
order. Here, detuning parameter �� must be much larger than
atom-cavity coupling rate gB ����gB� for no cavity photon
to be generated during the adiabatic passage process. The
third step is simply the inverse of the first step, and is also
achieved by adiabatic passage. The most important and non-
trivial part of our scheme is the second step, in which only
the state �g1�A�g2�B acquires a phase � while other states
remain unchanged. In the remainder of this paper, we con-
centrate on explaining the second step of operation �1�.

In the second step, a classical field of Rabi frequency
�A�t� is applied to atom A adiabatically, whereas both the
classical fields of Rabi frequencies �1B and �2B for atom B
are turned off. Let us assume that �A�t� has a Gaussian form,

�A�t� = �0 exp	− 
 t − tc

�t
�2� . �2�

If the initial state of atom A is �g0�A, this operation has no
effect on the system. If atom A is initially in state �g1�A,
however, this operation transfers the population to �g2�A, dur-
ing which a single photon is generated in cavity A and emit-
ted out of the cavity �10,12�. The time width � f of the emit-
ted photon pulse is of order �t. With that in mind, we
investigate the system in two regimes.

III. SHORT-DISTANCE REGIME

First, we consider the short-distance regime in which the
interaction time between two distant cavities is sufficiently
short so that the whole system can be regarded to remain in
a steady state at all times. This regime is represented by the
following condition:

�t � 2L/c , �3�

where c is the speed of light. In this case, the whole system
can be treated within the context of adiabatic theorem.

If the system is initially in state �g1�A�g0�B, the Hamil-
tonian in the rotating frame is written as

H = HA + HB + HC,

HA = �� − i�/2��e�Ae� + ��A�t��e�Ag1� + gAaA�e�Ag2� + H.c.� ,

HB = 0,

HC = �
n=−�

�

n�	 cn
†cn + i�� �

n=−�

�

�aA
†cn + �− 1�naB

†cn − H.c.� ,

�4�

where HA ,HB, and HC are the Hamiltonians for atom A, atom
B, and the fiber, respectively, aA�aB� is the field operator for
cavity A �cavity B�, cn is the field operator for the nth fiber
mode, �	=
c /L is the frequency difference between two
adjacent fiber modes, and ������	 /2
 is the effective cav-
ity decay rate. The factors �−1�n are introduced to model the
phase difference 
 between two ends of the fiber for every
second modes. Hamiltonian HA has the dark state

�D�t��A = cos �A�t��g1,0�A − sin �A�g2,1�A, �5�

where �A�t� is given by tan �A�t�=�A�t� /gA. Here, we repre-
sent a state of the atom-cavity system as �x ,n� where x is the
atomic state and n is the cavity photon number. The dark
state of the total Hamiltonian H is also derived as

�D�t��AB � �D�t��A�g0,0�B�0�C + sin �A�t��g2,0�A�g0,1�B�0�C

− i�� �
n=−�

�
2 sin �A�t�
�2n + 1��	

�g2,0�A�g0,0�B�12n+1�C, �6�

where �0�C and �1 j�C denote the vacuum fiber and one photon
in the jth fiber mode, respectively. From this expression, it is
clear that after the classical pulse operation given by Eq. �2�
the system just returns to its initial state since both the initial
and the final values of �A are 0, i.e., �A�initial�=�A�final�
=0. During this operation, the dark state acquires no dynami-
cal phase since the energy of dark state �D�t��AB is 0. Conse-
quently, �g1�A�g0�B→ �g1�A�g0�B in the second step of opera-
tion �1� is justified.

If the system is initially in state �g1�A�g2�B, the Hamil-
tonian �4� is modified so that the atom-cavity interaction in
cavity B is involved. We assume a large detuning ��
�gB ,�� and take advantage of adiabatic elimination �13�.
The effective Hamiltonian for atom B now reads

HB = −
gB

2

�
aB

†aB�g2�Bg2� . �7�

This Hamiltonian can be regarded as a perturbation to
Hamiltonian �4�. Let �D��t��AB be the perturbed eigenstate of
dark state �6� �with g0→g2� and E�0�t� be its eigenenergy.
The value of E�0�t� is no longer zero for nonzero �A�t�. After
the classical pulse of Eq. �2�, the system also returns to its
initial state �g1�A�g2�B as in the previous case. During this
operation, however, the state �D��t��AB acquires a dynamical
phase � given by

� = �
t0

t1

E�0�t�dt , �8�

where �t1− t0� is the operation time. The value of � depends
linearly on the width �t of the classical pulse �2� and in-
creases as the height �0 increases. The dependency of � on
�0 can be obtained by numerical simulation.
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We carry out numerical simulations, by directly solving
the Schrödinger equation without adiabatic approximations,
for the second step of operation �1� with a set of selected
parameters, �=gA /10=gB /10=� /500=�	 /7.5=� and �t
=125/�. In the numerical simulation, we also take into ac-
count the photon loss in the fiber by introducing photon loss
rate � f of the fiber and adding terms −i�n=−�

� �� f /2�cn
†cn in

Hamiltonian �4�. If a photon is lost due to the lossy fiber or
the spontaneous decay of the atom, the system collapses into
one of the ground states losing its phase information. In the
case of the system being collapsed into �g1�A or �g2�B, it only
takes the effect of lowering the fidelity of the whole opera-
tion. If the system is collapsed into �g2�A or �g1�B, however,
we are faced with another problem that the third step of
operation �1� does not transform the state into one in the
qubit subspace. In order that the resulting state be confined in
the qubit subspace, we thus perform optical pumping, after
the second step, by applying two classical fields correspond-
ing to transitions �g2�A↔ �e�A and �g1�B↔ �e�B, which induce
population transfers from �g2�A to �g1�A and from �g1�B to
�g2�B, respectively. Such an optical pumping process takes no
effect when the state already exists in the desired subspace.
For the initial state �g1�A�g0�B, let P1 be the probability that
no photon is lost during the operation, and let �1 be the
phase that is acquired when no photon is lost. Let us also
assign a probability P2 and a phase �2 in the same manner
for the initial state �g1�A�g2�B. The whole process is then sum-
marized as the following operator-sum representation �5�
�omitting indices A and B for brevity�:

 → �
i=1

3

MiMi
†, �9�

where

M1 = �g0g0�g0g0� + �g0g2�g0g2� + �P1ei�1�g1g0�g1g0�

+ �P2ei�2�g1g2�g1g2� ,

M2 = �1 − P1�g1g0�g1g0� ,

M3 = �1 − P2�g1g2�g1g2� .

In Fig. 2�a�, we plot sin �1 �solid curve� and sin��2−�1�
�dotted curve� with respect to �0. Our numerical results in-
dicate that the acquired phases are nearly independent of the
fiber loss rate � f in our parametric regime. As predicted
above, the initial state �g1�A�g0�B acquires only a small phase
�1, whereas the initial state �g1�A�g2�B acquires a phase �2
which increases as �0 increases. The small phase change �1
can be compensated by means of a single-qubit phase opera-
tion so that ��2−�1� becomes the only relevant phase. In
Fig. 2�b�, we plot P1 �solid curve� and P2 �dotted curve� with
respect to � f. Here, we have chosen �0=0.465gA, in which
case ��2−�1� is found to be 
. Given an initial state
�00�g0g0�+�02�g0g2�+�10�g1g0�+�12�g1g2�, the fidelity of the
operation is easily derived as

F = ����00�2 + ��02�2 + ��10�2�P1 + ��12�2�P2�2

+ ��10�4�1 − P1� + ��12�4�1 − P2��1/2. �10�

With the same parameters as above and an initial state
1
2 �g0g0�+ 1

2 �g0g2�+ 1
2 �g1g0�+ 1

2 �g1g2�, we plot in Fig. 2�c� the
fidelity F with respect to � f. The fidelity decreases with the
fiber loss, but it remains high as long as � f ��. This obser-
vation, along with the fact that the photon loss is dominated
by the spontaneous decay of the atom when � f ��, leads to
a conclusion that the spontaneous decay of the atom does not
have critical effect since it is suppressed due to dark state
evolution and the large detuning.

IV. LONG-DISTANCE REGIME

Now, we consider another regime, namely, the long-
distance regime in which the time width � f of the single
photon pulse leaking out from cavity A satisfies the follow-
ing condition:

� f � L/c . �11�

In this case, the input and/or output process at each cavity
can be treated separately. We set the detuning parameter as
�=0 for this regime.

First, we consider the output process at cavity A. As we
have considered in the previous regime, Hamiltonian HA has

FIG. 2. In the short-distance regime, �a� sin �1 �solid curve� and
sin��2−�1� �dotted curve�. �1 and �2 denote the acquired phases
during the operation for the initial states �g1�A�g0�B and �g1�A�g2�B,
respectively. In case of �0=0.465gA, �b� probabilities P1 �solid
curve� and P2 �dotted curve�, and �c� fidelity F for an initial state
1
2 �g0�A�g0�B+ 1

2 �g0�A�g2�B+ 1
2 �g1�A�g0�B+ 1

2 �g1�A�g2�B. The selected nu-
merical parameters are �=gA /10=gB /10=� /500=�	 /7.5=� and
�t=125/�.
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the dark state �D�t��A=cos �A�t��g1 ,0�A−sin �A�g2 ,1�A. If
atom A is in state �g1�A initially, the population is transferred
to �g2�A as �A�t� is gradually increased from zero. During
this adiabatic passage process, a single photon leaks out from
the cavity. In the adiabatic limit, the pulse shape f�t� of the
emitted photon can be calculated analytically as �10�

f�t� = �� sin �A�t�exp
−
�

2
�

0

t

sin2 �A���d�� . �12�

The output photon propagates through the fiber and re-
flects at cavity B. The input and/or output process at cavity B
is described by the boundary condition �14�

cout�t� = cin�t� − ��aB�t� , �13�

and the quantum Langevin equation

ḃ = − i�b,HB� − �b,aB
†�
�

2
aB − ��cin�t��

+ �b,aB�
�

2
aB

† − ��cin
† �t�� , �14�

where cin�t� and cout�t� are the input and output field operator,
respectively, and b is any operator for atom-cavity system B.
Let us assume that the time derivative of any operator for

system B vanishes, i.e., ḃ�0. This assumption is justified
since the input photon pulse is generated by an adiabatic
process. We also assume the strong coupling limit gB��.

For the initial state of �g0�B, the Hamiltonian reads HB
=0. The time derivative of aB�t� is thus derived from Eq.
�14� as ȧB�t�=−�� /2�aB�t�+��cin�t��0. From this equation,
we get aB�t���2/���cin�t�, and by substituting it into Eq.
�13� the relationship between the cavity input and output is
derived as cout�t��−cin�t�. On the other hand, the Hamil-
tonian for the initial state of �g2�B reads

HB = gB�aB�e�Bg2� + aB
† �g2�Be�� . �15�

In this case, we derive the time derivative of �g2�Be�
as �d /dt���g2�Be��=−iaB��g2�Bg2�− �e�Be���0. Since
��g2�Bg2�− �e�Be�� has a nonzero value, we come to a con-
clusion that aB�t��0. Thus the input and/or output relation-
ship reads cout�t��cin�t�. Consequently, the single photon re-
flected at cavity B acquires a different phase 0 or 

according to the state of atom B �15�.

After the reflection at cavity B, the photon finally reaches
cavity A. By applying an appropriate classical field of Rabi
frequency �A�t�, the photon is completely absorbed in atom
A and the atomic population is transferred to �g1�A by adia-
batic passage �16�. Complete absorption of the photon is
guaranteed if no photon is reflected during this operation, for
which �A�t� must be adjusted to satisfy the following condi-
tion �17�:

−
d

dt
ln sin �A�t� +

d

dt
ln f�t� =

�

2
sin2 �A�t� . �16�

The different phase of 0 or 
 acquired at atom B results in
the different phase of the final atomic state. The resulting
atomic state thus acquires a conditional phase �=
 as given

in the second step of operation �1�. We note that the value of
� is insensitive to the particular system parameters, which is
a strong point of the scheme.

In Fig. 3, we numerically demonstrate a typical gate op-
eration process in this long-distance regime. The selected
numerical parameters are �=gA /8=gB /8=� and �t=50/�.
In Fig. 3�a�, we plot Rabi frequency �A�t� with respect to
time. We set Rabi frequency �A�t� differently from a Gauss-
ian shape given by Eq. �2� to take advantage of an analytic
solution for the cavity input and/or output equations �12� and
�16� �17�. At the beginning of the gate operation, a classical
field of Rabi frequency �A�t� satisfying sin �A�t��
=�2/��t�exp�2t� /�t�sech�2t� /�t�, where t�= t− tc1 and tc1
=200/�, is applied to atom A. This classical field generates a
cavity photon, which leaks out from the cavity with a pulse
shape given by f�t�= �1/��t�sech�2�t− tc1� /�t�. The genera-
tion of the single photon pulse and the reflection of this pulse
at cavity B are simulated numerically. Here cavity B is
assumed to be located at L=600�c /��. In order to absorb
the photon into atom-cavity A without reflection, Rabi fre-
quency �A�t� is finally adjusted to satisfy sin �A�t��
=�2/��t�exp�−2t� /�t�sech�2t� /�t�, where t�= t− tc2 and
tc2− tc1=2L /c, as shown in Fig. 3�a�. We have confirmed
from the numerical results that nearly no photon is emitted
from cavity A during this final process. The real parts of the
amplitudes of states �g1�A�g0�B and �g1�A�g2�B are plotted as a
solid curve and a dotted curve, respectively, in Fig. 3�b�. It is
clearly shown that the acquired phase corresponds to the sec-
ond step of operation �1�.

FIG. 3. Gate operation in the long-distance regime. �a� Rabi
frequency �A�t� of the classical pulse, �b� real parts of the ampli-
tudes of states �g1�A�g0�B �solid curve� and �g1�A�g2�B �dotted curve�,
and �c� fidelity of the operation for an initial state 1

2 �g0�A�g0�B

+ 1
2 �g0�A�g2�B+ 1

2 �g1�A�g0�B+ 1
2 �g1�A�g2�B. The selected numerical pa-

rameters are �=gA /8=gB /8=�, �t=50/�, and L=600�c /��.
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The above rather idealized analysis gives the basis for the
following generalized one in which the photon loss of the
fiber is taken into account. We again introduce two probabili-
ties P1 and P2 as in the previous analysis for the short-
distance regime. P1 and P2 denote the probabilities that no
photon is lost during the operation for the initial states
�g1�A�g0�B and �g1�A�g2�B, respectively. The analysis laid out
in case of the short-distance regime is applied for the current
case in the same manner. By means of the same sort of
optical pumping, the state can be confined in the qubit sub-
space, and the fidelity is also given by Eq. �10�. The above
numerical simulation gives P1 and P2 in case of no photon
loss in the fiber. The values are found to be P1=0.992 and
P2=0.977, which gives the fidelity F=0.997 when the initial
state is chosen as 1

2 �g0�A�g0�B+ 1
2 �g0�A�g2�B+ 1

2 �g1�A�g0�B

+ 1
2 �g1�A�g2�B. If the fiber is not lossless and the photon loss

rate per unit length of the fiber is denoted as �l, we get
modified probabilities P1→ �1−�lL�2P1 and P2→ �1
−�lL�2P2 for the two initial states, respectively. By substitut-
ing these probabilities into Eq. �10� and choosing the initial
state as 1

2 �g0�A�g0�B+ 1
2 �g0�A�g2�B+ 1

2 �g1�A�g0�B+ 1
2 �g1�A�g2�B,

we plot in Fig. 3�c� the fidelity F of the operation with re-
spect to �l. As in the short-distance regime, the numerical
results show that the gate works faithfully when the photon

loss in the fiber is small, namely �lL�1, and the spontane-
ous decay of the atom does not have critical effect.

V. SUMMARY

In summary, we have shown that a two-qubit controlled
unitary operation between two distant atoms is allowed by
simply connecting them through a quantum transmission
line. We have analyzed it in two regimes, namely, the short-
distance regime and the long-distance regime. The scheme is
based on the adiabatic passage and the cavity QED interac-
tion. Provided a single photon is reliably transmitted between
two cavities, the gate works with high fidelity due to the
inherent resistance of the adiabatic evolution against sponta-
neous decay. Since our scheme is much simpler than other
indirect methods, it is expected to improve the scalability of
quantum computers based on trapped neutral atoms or ions.
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