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We address the problem of springlike coupling between bosons in an open-chain configuration where the
counter-rotating terms are explicitly included. We show that fruitful insight can be gained by decomposing the
time-evolution operator of this problem into a pattern of linear-optics elements. This allows us to provide a
clear picture of the effects of the counter-rotating terms in the important problem of long-haul entanglement
distribution. The analytic control over the variance matrix of the state of the bosonic register allows us to track
the dynamics of the entanglement. This helps in designing a global addressing scheme, complemented by a
proper initialization of the register, which quantitatively improves the entanglement between the extremal
oscillators in the chain, thus providing a strategy for feasible long-distance entanglement distribution.
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I. INTRODUCTION

The development of reliable strategies for quantum com-
munication and information transfer has gained, in these re-
cent years, an increasing importance in the quantum-
information-processing �QIP� panorama. The reliable
implementation of a quantum channel for the exchange and
distribution of information is indeed central in many poten-
tial QIP applications �1,2�. Intuitively, one could think about
a scenario in which the quantum channel and the processing
device are two different entities which have to be interfaced
at the right time of a given protocol. This implies the ability
of switching on and off the interfacing interaction with suf-
ficient degree of accuracy and a reliable control at the single-
qubit level, which are very demanding requirements in gen-
eral. On the other hand, the idea of exploiting collective
interactions of intrinsically multipartite systems, governed by
external potentials which globally address the entire register,
has very recently encountered the interest of the QIP com-
munity �3�. A global addressing scheme offers advantages in
terms of controllability of the device and protection from the
decoherence channels unavoidably opened by any sort of
local external intervention.

Inspired by the progresses performed in the design, cou-
pling and management of bosonic nanostructures, which can
behave quantum mechanically �4�, important efforts have
been produced in order to better understand the role that
multipartite systems of coupled bosons have in the transfer
and propagation of quantum information �5,6�. The applica-
tion of global addressing techniques to continuous-variable
�CV� bosonic systems is appealing for a less demanding
implementation of CV quantum information processing.

In this work, we reconsider the issue of entanglement gen-
eration in a chain of harmonic oscillators coupled through
nearest-neighbor springlike forces induced by an external po-
tential which addressed the whole system. One of the points
of interests in our analysis is the role played by counter-
rotating terms �present in the interaction Hamiltonian� in the
entanglement generation process. This point, anticipated by
the studies in �5�, is analyzed here by a change of perspec-
tive. Instead of solving by brute force the dynamical equa-

tions ruling the evolution of the bosonic register, we look for
a formal decomposition of the time-evolution operator in
terms of linear optics elements, following the successful
route initiated in �6�. Our technique is based on the use of
quantum-mechanical transformations which allow us to
change a set of mutually interacting bosons into a register of
formally noninteracting harmonic oscillators. We believe that
this alternative approach clarifies the entanglement dynamics
within the register and provides a more transparent picture of
the role of the counter-rotating terms in such a process. En-
tanglement is found to be always present if the counter-
rotating terms are included in the interaction Hamiltonian.
However, we find the degree of bipartite entanglement be-
tween the first and last oscillators to be very small �a feature
that is evident, although it was not stressed, in the analyses in
�5��. In order to quantitatively improve the entanglement
settled between the ends of an open chain, we design a strat-
egy based on proper initialization of the register �performed
by locally acting on the state of the extremal oscillators only�
and global addressing, following the same lines depicted in
quantum state transfer protocols �7�. We show how, physi-
cally, this improvement is possible because of the symmetry
properties of the bosonic system.

The reminder of the paper is organized as follows. In Sec.
II we introduce the interaction model here at hand. We dis-
cuss the technical tools used in order to derive effective de-
compositions of the time-evolution operator into linear-
optics operations. Effective all-optical setups can be
introduced, which provide a visual picture of the evolution of
an N-element register and we give an explicit example for a
simple case. In Sec. III, the entanglement generated in an
open chain is quantified by means of the corresponding
equivalent decompositions. We show that, as long as only the
quantum correlations generated by the counter-rotating terms
alone are considered, end-to-end entanglement in the chain is
not favored. Strong quantum correlations, which never dis-
appear, are found between the first and the second oscillators
in the chain. On the other hand, the entanglement between
the first and the last oscillators is always very weak. A trans-
parent physical interpretation of the time delay with which
entanglement appears in the first-last oscillator subsystem is

PHYSICAL REVIEW A 72, 052307 �2005�

1050-2947/2005/72�5�/052307�8�/$23.00 ©2005 The American Physical Society052307-1

http://dx.doi.org/10.1103/PhysRevA.72.052307


possible through the analysis of the corresponding all-optical
setup. Section IV addresses a way to improve the results
discussed in Sec. III. By considering the physical system as a
fictitious two-terminal quantum black box, we show that
simple local presqueezing of the first and last elements of the
channel allows us to obtain several interesting effects. The
end-to-end degree of entanglement can be quantitatively im-
proved and any other bipartite 1→ j quantum correlation �j
=2, . . . ,N−1� can be correspondingly suppressed.

II. THE MODEL AND THE EFFECTIVE DECOMPOSITION

We consider N oscillators labeled by j� �1,N� and ar-
ranged in an open linear chain. The coupling between the
oscillators is provided by a nearest-neighbor springlike force
settled by an external potential. By including the free dynam-
ics of each harmonic oscillator, the corresponding Hamil-
tonian reads

Ĥchain =
�

2 �
j=1

N−1

�q̂j
2 + p̂j

2� + ��
i=1

N−1

q̂jq̂j+1 �� = 1� �1�

with q̂j = �b̂j + b̂j
†� /�2 and p̂j = i�b̂j

†− b̂j� /�2 the position and
momentum quadrature operators of the jth oscillator, respec-

tively, and b̂j �b̂j
†� the corresponding annihilation �creation�

operator �8�. The coupling rates � are real and time indepen-
dent. A sketch of the interaction configuration is provided in
Fig. 1.

The form of the coupling terms deserves some comments
as it is straightforward to see that each �q̂jq̂j+1 in Eq. �1�,
expressed by means of the annihilation and creation opera-
tors, reads

�q̂jq̂j+1 =
�

2
�b̂jb̂j+1 + b̂jb̂j+1

† + b̂j
†b̂j+1 + b̂j

†b̂j+1
† � . �2�

Equation �2� includes corotating terms �b̂jb̂j+1
† +H.c.� as well

as counter-rotating �CR� terms �b̂jb̂j+1+H.c.� �8�.
In this paper, we treat the CR terms on the same footage

as the corotating ones, analyzing their relevance in entangle-
ment generation processes in interacting bosonic systems. In
order to analyze the time evolution of the chain, we look for

an effective decomposition of the propagator Û�t�=e−iĤchaint

in terms of linear-optics elements. We order the quadrature

operators as x̂= �q̂1 , q̂2 , . . . , q̂N , p̂1 , p̂2 , . . . , p̂N�T and divide

Ĥchain as Ĥchain= Ĥchain
p + Ĥchain

q , where Ĥchain
q �Ĥchain

p � involves
only the q part �p part� of x̂. In matrix form

Ĥchain
q =

1

2�
� � 0 0 ¯ 0 0

� � � 0 � 0 0

0 � � � � 0 0

] � � � � 0 0

] � � � � � �

0 0 ¯ ¯ ¯ � �

� . �3�

This is an N�N tridiagonal matrix whose dimension de-
pends on the number of elements in the register. The formal

diagonalization of Ĥchain
q guides us in expressing the q part of

Eq. �1� in a picture defined by eigenoperators which are lin-

ear superpositions of q̂j’s. On the other hand, Ĥchain
p is al-

ready diagonal in the x̂ basis and its form is not changed by
orthogonal transformations. Therefore, we discard this part
of Eq. �1� from our explicit analysis and will include it only
when necessary.

The simple form of Eq. �3� allows for an efficient diago-
nalization �9�, which helps us in identifying a proper pattern

of coupling operations for the decomposition of Û. In order
to keep our analysis general, we will refer to the well-known
beam-splitter �BS� operator B jk���=exp�i��q̂jp̂k− p̂jq̂k�� of its
reflectivity sin2 � as a coupler operator because this term can
be used for both optical fields and mechanical oscillators. In
the eigenoperator basis we write

Ĥchain
q,N = �

j=1

N

Ej
N�ÔEj

N �2, �4�

where the Ej
N’s are the eigenfrequencies of Eq. �3� and ÔEj

N

=�k=1
N � jk

N q̂k �j=1, . . . ,N� are the corresponding eigenopera-
tors, expressed as normalized superpositions of the q̂k

quadratures with coefficient � jk
N . The set 	Ej

N , ÔEj

N 
 is param-
etrized by the dimension N of the chain. As an explicit ex-
ample, we consider the first nontrivial case represented by an
open chain of N=3 where we have 	E1

3 ,E2
3 ,E3

3
= 	� /2 , ��
+�2�� /2 , ��−�2�� /2
. We introduce the matrix of coeffi-
cients � jk

3

�3 =
1
�2�

1 0 − 1

1
�2

+ 1
1
�2

1
�2

− 1
1
�2
� . �5�

Thus, the spectrum of Ĥchain
q,3 is a ladder, symmetric with re-

spect to the bare eigenfrequency � /2. This is a general result
for an odd number of oscillators: by increasing the dimen-

sion of the register, the spectrum of Ĥchain
q,2l+1 �l�Z� is never

degenerate and consists of l different pairs of frequencies
symmetrically shifted with respect to � /2.

FIG. 1. �Color online� Diagrammatic scheme of the coupling
configuration in Eq. �1�. We consider N harmonic oscillators, in an
open linear chain, coupled through nearest-neighbor interactions.
The squeezing operations performed onto oscillators 1 and N are
part of the tagging by squeezing scheme suggested in Sec. IV.
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Coming back to our example, the structure of the eigen-

operators ÔEj

3 �j� �1,3�� turns out to be very informative in
the search for a set of operations that can be used, starting
from Eq. �3�, in order to get the diagonal form �4�. Indeed,
Eq. �5� suggests that a 50:50 coupler operator B13 simplifies
the structure of the coupling terms, leaving us with oscillator
1 being decoupled from the dynamics of the rest of the reg-

ister. Then, a 50:50 B̂23 operation will complete the diago-

nalization of Ĥchain
q :

Ĥchain
q ——→

B̂23B̂13 �

2
q̂1�

2 +
� − �2�

2
q̂3�

2 +
� + �2�

2
q̂2�

2 �6�

with q̂j� which are the new quadratures after the BS’s to be
put in the proper correspondence with OEj

3 ’s. The matching
with Eq. �4� is evident. Thus, the explicit diagonalization
procedure of the q part of the chain’s Hamiltonian gives us
information about the pattern of BS operations which have to
be applied to the bare expression Eq. �3� in order to get Eq.
�4�.

In Fig. 2 we provide the sequence of BS’s to apply in
order to diagonalize the interaction Hamiltonian for N=3, 4
and 5 �panels �a�, �b�, and �c�, respectively�. Straight lines
represent 50:50 BS’s, while curved ones stand for unbal-
anced BS’s. Some comments are in order. First, there is a
striking difference between the even and odd number of os-
cillators. For the odd-number case, up to N=7, a single un-
balanced BS is required in order to diagonalize Hchain

q . On the
other hand, the BS pattern for the even-number case appears
to be more complicated already for N=4, which is the first
nontrivial configuration with even N, involving two unbal-
anced BS’s between the pairs of oscillators �1,2� and �3,4�.
We stress that there might be other, inequivalent orderings of
coupler operations that diagonalize the interaction Hamil-
tonian. Other important differences between chains of oppo-
site parity will be highlighted in Secs. II A and II B, where
we address in more detail the two separate cases.

A. Odd number of oscillators

By specializing the discussion to the odd number of os-
cillators, we remark that the eigenspectrum of Hchain

q admits
the bare frequency � /2 so that the set 	E j

N
 can be written as
	� /2 ,E1

N , . . . ,EN−1
N 
 with the subset 	E j

N
 arranged in increas-
ing order of frequencies �with ��0�. This is graphically
shown in the bottom part of Figs. 2�a� and 2�c�. After the

action of the collective coupling operator B̂coll, which col-
lects the pattern �for a given odd N� discussed above, the

total Hamiltonian of the chain reads B̂coll
† ĤchainB̂coll= �� /2�

���Ô�/2
N �2+� j=1

N �P̂Ej

N �2�+� j=1
N−1E j

N�ÔEj

N �2. Here, 	P̂Ej

N 
 is the
new set of momentum quadrature operators determined by
the application of the coupler operations to 	p̂j
.

The next step in order to find the decomposition of Û�t� is
the introduction of proper operations �acting on the elements
of the register, oscillator 1 excluded� which balance the dif-
ferences between � /2 and E j

N. Conceptually, this balancing is
an important step as it would allow us to look at the register
as a set of new noninteracting harmonic oscillators. It is im-
mediate to recognize that this is possible through the use of

single-oscillator squeezing Ŝj�sj�=exp��i /2�sj�ÔEj

N P̂Ej

N

+ P̂Ej

N ÔEj

N ��, which realizes ÔEj

N →e−sjÔEj

N , P̂Ej

N →esjP̂Ej

N . We

can thus formally write Ŝcoll
† B̂coll

† Û�t�B̂collŜcoll= R̂coll�t�
� � j=1

N R̂j(	 j�t�), where R̂j�	 j�=ei	j��ÔEj

N �2+�P̂Ej

N �2� is the phase-
space representation of a rotation operator of its angle 	 j and

Ŝcoll= � j=2
N Ŝj�sj�. By inverting the above relation, we find the

formal expression

Û�t� = B̂collŜcollR̂coll�t�Ŝcoll
† tBcoll

† . �7�

A feature specific of the odd-N case is that the formal col-
lective rotation involves nontrivial rotation angles for all the
oscillators but the one associated with the bare eigenfre-

quency � /2. Moreover, the rotations R̂j(	 j�t�) contain the

entire time dependence of Û�t�. The balancing induced by
the squeezing operations imposes, in general, time-
independent conditions as it relates the squeezing parameters
sj to the elements of the set 	E j

N
. On the contrary, the formal

identification of Ŝcoll
† B̂coll

† Û�t�B̂collŜcoll with R̂coll imposes that
the rotation angles 	 j carry an explicit time dependence. As
an example, we consider again N=3, where we have that the
nontrivial parameters read

s2,3 =
1

4
ln�2E2,1

3 /��, 	2,3 =
t

2
�2E2,1

3 � . �8�

The decomposition Eq. �7� is a central result of our study. It
allows us to provide a clear physical picture of the dynamics
occurring within the linear chain, without explicitly solving
the dynamical equations of motion of the oscillators �5�. In-

deed, once the explicit form of B̂coll is found, one can
straightforwardly infer the evolution of the oscillator con-
figuration simply by considering proper squeezing and rota-
tions. This is equivalent to designing formal interferometric
setups which could be used for proof-of-principle experi-
ments where, at least for a few elements, the effects of CR

FIG. 2. �Color online� Pattern of coupler operators �or BS op-

erators� for the diagonalization of Ĥchain for N=3,4 ,5 oscillators
�a�, �b�, and �c�, respectively. Straight �curved� lines denote 50:50
�unbalanced� BS’s. The time order of the BS operations is such that
Bi precedes B j if i
 j. The bottom part of the figure shows the
correspondences between oscillators and eigenfrequencies induced
by the corresponding BS pattern.
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terms could be simulated and observed. Motivated by these
arguments, in Fig. 3 we show the equivalent interferometer
for N=3.

By inspection, we see that this equivalent configuration
results in concatenated Mach-Zehnder interferometers where
the oscillators involved are subject to different squeezing and
rotation operations. In going from N=3 to 5, the overall con-
catenated structure of the setup is preserved, with just more
oscillators being involved.

B. Even number of oscillators

In the case of even N, the absence of the bare frequency

� /2 from the spectrum of Ĥchain
q,2l allows us to identify 	Ej


= 	E j
. This implies that the total Hamiltonian after the action

of the collective coupler operator now reads B̂coll
† ĤchainB̂coll

= �� /2�� j�P̂Ej
�2+� jE j�ÔEj

N �2 �10�. In turn, this means that the
squeezing operations needed to balance the asymmetry be-
tween the p part and the diagonalized q part of the Hamil-
tonian would involve the entire set of oscillators, without
exclusions. This is the most striking parity-induced differ-
ence in the problem at hand which affects the qualitative and
quantitative analysis of the two different configurations.
From this point on, a line analogous to that drawn for the odd
number case can be followed and an equation formally
equivalent to Eq. �7� can be written. This time, however, we

have to consider a collective squeezing Scoll= � j=1
N Ŝj�sj� with

the parameters sj which are related to the E j in a way per-
fectly similar to the case sketched in Eq. �8�.

The intrinsic differences between even and odd cases are
more clearly evident if we consider once more the equivalent
all-optical setups. For the case of N=4, shown as an example
in Fig. 4, the setup turns out to be more complicated than the
one corresponding to N=5, with squeezing involving the en-
tire register, as already stressed.

C. Role of the CR terms

Another issue which has to be discussed here in relation
to Eq. �7� �or its analog for the case of even N� is the role of
the CR terms. It is easy to be convinced that the version of

Ĥchain where the CR terms are excluded would have a con-
tribution having the form �� j=1

N−1p̂jp̂j+1. Now the p part of the
chain Hamiltonian is also nondiagonal, with the same tridi-

agonal structure in the quadrature operators basis discussed
in Eq. �3�. Therefore, the orthogonal transformation which

diagonalizes Ĥchain
q �and the corresponding pattern of BS’s�

can be used in order to reduce the p part as well, getting the
same set of eigenfrequencies. The corresponding eigenopera-
tors are superpositions of just the p̂j quadrature operators

with the same numerical coefficients � jk
N ’s appearing in ÔEj

N ’s.
This implies that, for the odd-N case, after the application of

B̂coll, we end up with B̂coll
† ĤchainB̂coll= �� /2���Ô�/2

N �2

+ �P̂�/2
N �2�+� j=2

N E j��ÔEj

N �2+ �P̂Ej

N �2�, where P̂Ej

N =�k=1
N � jk

N p̂k.
Evidently, no squeezing is required in this case as the q and
p parts of the Hamiltonian are already balanced by the di-
agonalization procedure. Thus, the corresponding time-
evolution operation could be immediately reinterpreted as
the tensorial product of formal rotation operators, one for
each oscillator, showing that in this case the interferometric
configurations sketched above are still valid: we only need to
remove the squeezing operations.

It should be clear, up to this stage, that the exchange of
any information encoded in the elements of the bosonic reg-
ister occurs entirely by means of the effective collective op-

eration B̂coll. The remainder of the decomposition we have
found, indeed, involves single-element operations which do
not mutually mix the oscillators. Thus, by considering coro-

tating terms only, we can see that the structure of B̂coll, for a
given N, is unchanged. This observation paves the way to the
following consideration: the removal of CR terms from

Ĥchain prevents the spontaneous creation of excitations in the
system. In terms of the equivalent all-optical setups, this
means that by preparing the register in a classical initial
state, no inter-oscillator entanglement has to be expected, in
this case. Indeed, in Ref. �11� it is shown that nonclassicality
at the inputs of a BS is a fundamental prerequisite for the
entanglement of its outputs. In presence of CR terms, the
single-oscillator squeezing provides the necessary nonclassi-
cality for interoscillator entanglement. We will come back to
this point later, when the entanglement generation is quanti-
tatively addressed.

It is worth comparing the decomposition in Eq. �7� �or its
analog for even N� with what has been found for a star-
shaped bosonic configuration �6�. In an open linear chain,

B̂coll induces multibody interactions between the element of
the chain. In particular, from Fig. 2 we see that an exchange

FIG. 3. �Color online� Equivalent interferometric setup corre-
sponding to the decomposition of the time-evolution operator for an
open chain of N=3 oscillators. BS stands for beam splitter �i.e.,
coupler�, R indicates rotation, and S squeezing. M stands for a
mirror.

FIG. 4. �Color online� Interferometer for the time evolution of
an open chain of N=4 oscillators. The notation used here is the
same as in Fig. 3. Noticeably, for even N, oscillator 1 has to be
squeezed.
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of information is always required between the first and last
element in a chain, a feature which holds regardless of N
�12�. In the star-shaped configuration, on the other hand, any
exchange of information occurs via a preferential way pass-
ing through the central component �6�.

III. ENTANGLEMENT IN AN OPEN CHAIN: SYMMETRY
OF THE VARIANCE MATRIX

In order to investigate the dynamics of the entanglement
generated among the oscillators in an open chain, we con-
centrate on Gaussian states and rely on the powerful tools
provided by the variance matrix formalism. Indeed, the sta-
tistical properties of a Gaussian state, i.e., a state whose char-
acteristic function is Gaussian, are entirely specified by the
knowledge of its variance matrix. The variance matrix V is
defined as V��= �	x̂� , x̂�
 �� ,�=1, . . . ,2N�, where x̂= q̂ , p̂
and, for convenience, we have adopted the ordering of the
quadrature operators x̂= �q̂1 , p̂1 , . . . , q̂N , p̂N�T. Throughout the
paper, we assume that the Gaussian peak of each oscillator is
at the origin of the respective phase space. V is in one-to-one
correspondence with the characteristic function of a Gauss-
ian CV state which, in turn, gives information about the state
of the system �13�.

When applied to an N-oscillator input Gaussian state, the
operations involved in Eq. �7� give an output state which is
also Gaussian. They can be formally described by means of
the transformations TRj

�	 j�=cos 	 j1+ i sin 	 j�y for single-
oscillator rotation and TSj

�sj�=e−sj�z for single-oscillator
squeezing, where �� ��=y ,z� is the � Pauli matrix. For a
two-oscillator BS we have

TBjk
�rjk,tjk� = � tjk1 − rjk1

rjk1 tjk1
� , �9�

where tjk ,rjk stand for the transmittivity and reflectivity of
the BS acting on elements j and k �with tjk

2 +rjk
2 =1� �13�.

Explicitly, these transformations change an input variance
matrix V to V�j

=T�j

T VT�j
��=S ,R� for a single-oscillator

2�2 variance matrix and VBjk
=TBjk

T VTBjk
for a two-

oscillator 4�4 variance matrix. From now on, we indicate
with V f

N the final variance matrix resulting from the applica-

tion of all the transformations involved in Û�t� for a given N.
In this section we focus attention onto the case in which all
the oscillators are prepared in the vacuum state, so that the
initial variance matrix of the joint state of the chain is V
= � j=1

N 1 j. By using Eq. �7� it can be shown that, for N=3, the
final variance matrix reads

V f
3 = � L1 C12 C13

C12
T L2 C12

C13
T C12

T L1
� , �10�

where L1=1+C13 and L2=1+2C13 account for the local
properties of the oscillators while C12= �1/�2�� j=2

3 �−1� j+1c j

and C13= �1/2�� j=2
3 c j describe the interoscillator correla-

tions. We have introduced the elementary correlation matri-
ces �which depend on the effective squeezing and rotations
of oscillators j=2,3�

c j = �− e−2sj sin2�	 j�sinh�2sj�
1
2 sin�2	 j�sinh�2sj�

1
2 sin�2	 j�sinh�2sj� e2sj sin2�	 j�sinh�2sj�

� .

�11�

It is remarkable in Eq. �10� that the oscillators 1 and 3 have
the same local properties, which are different from those of
the mediator oscillator 2. Moreover, the correlations between
oscillators 1 and 2 appear to be the same as those between 2
and 3, which indicates an evident degree of symmetry in the
bosonic system ruled by Eq. �1�. The proportionality of the
correlation matrix C12 to the difference c3−c2 is important,
in this analysis, and is in striking contrast with the inherent
structure of the correlations between the end points of the
chain. These observations will be crucial in the upcoming
discussion relative to the improvement of the end-to-end en-
tanglement. The structure of Eq. �10� is found to hold for
larger registers. Indeed, as still manageable examples, we

mention that for N=4 and 5 the decomposition of Û�t� is
such that

V f
4 =�

L1 C12 C13 C14

C12
T L2 C23 C13

C13
T C23

T L2 C12

C14
T C13

T C12
T L1

� , �12�

which extends the symmetry already manifested in V f
3. In

fact, the symmetry is a general property of V f
N: it is straight-

forward to see that V f
5 exhibits symmetry with respect to the

central element of the chain, whose local properties are
unique in the system. The expressions of C jk in terms of
elementary correlation matrices analogous to c j in Eq. �11�
are, in general, quite cumbersome.

We address the generation of quantum correlations among
the elements of an N-oscillator open chain as well as a
simple strategy suitable for the improvement of the perfor-
mances of this bosonic system as a long-haul entanglement
distributor. The Gaussian-preserving nature of the transfor-
mations TRj

�	 j�, TSj
�sj�, and TBjk

�rjk , tjk� allows us to exploit
the well-known necessary and sufficient conditions for the
entanglement of two-body CV Gaussian states �13,14�. The
explicit object of our investigation will be the evaluation of
the bipartite entanglement between the first and the jth oscil-
lators in a chain of N oscillators. Therefore, we consider the
reduced variance matrices v1j of the pairs �1, j� which are
found from V f by extracting the 4�4 submatrices �j
=2, . . . ,N�

v1j =�
V1,1 V1,2 V1,2j−1 V1,2j

V2,1 V2,2 V2,2j−1 V2,2j

V2j−1,1 V2j−1,2 V2j−1,2j−1 V2j−1,2j

V2j,1 V2j,2 V2j,2j−1 V2j,2j

� . �13�

As a measure of entanglement we use the logarithmic nega-
tivity which provides an upper bound to the entanglement of
distillation �15� and is strictly related to the extent to which a
given state violates the Peres-Horodecki criterion for separa-
bility �16�. For bipartite Gaussian states, this entanglement
measure can be easily calculated starting from the symplectic
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spectrum of the partial transposition of the variance matrix
vab. In the phase space, the partial transposition with respect
to oscillator b corresponds to the time-reversal operation
which flips the sign of the momentum quadrature operator of
b. This can be represented by the action of the matrix P=1
� �z onto vab. We introduce the matrix �ab=�a � �b, where
�m= i�y,m �m=a ,b� is the symplectic matrix of oscillator m
�14�. The symplectic eigenvalues of vab� = PvabP are the ei-
genvalues of �i�abvab� �, which are always equal in pairs. By
calling n� �n=1,2� the representative of each pair, the in-
equality minn�n���1 is a necessary and sufficient condition
for the separability of vab. The logarithmic negativity �ng

ab is
then evaluated as �ng

ab=�nmax�0,−log2 n�� �15�.
The calculation of �ng

1j for N=3, j� �2,3�, and � /�=0.1
leads to the plots shown in Fig. 5, where the bipartite en-
tanglement between the three oscillators in the open chain is
plotted against the rescaled interaction time �=�t. The
choice for the ratio � /� is dictated by the fact that, experi-
mentally, a weak-coupling regime of ��� is the only real-
istic situation �5,6�.

The periodic behavior of the functions plotted is the sig-
nature of the time dependence of the collective rotation

R̂coll�t�. As seen in the symmetry of V f
3, we have �ng

12 =�ng
23

�Fig. 5, dotted curve�. The peak of �ng
12 occurring at �=�*

�44.2 corresponds to �sin 	 j��0.998. At this instant of time
all the off-diagonal elements of the c j’s do not exceed �5
�10−3. On the other hand, it is evident that �ng

13 �Fig. 5, solid
line� is smaller than �ng

12 practically for any value of �, en-
tirely disappearing at �*. Thus, even though the CR terms are
responsible for the for-free generation of entanglement, a
passive approach in which the bosonic register evolves freely
without external intervention is evidently unsuitable for the
creation of a reliable end-to-end entangled channel. On the
contrary, almost all the quantum correlations within the sys-

tem are localized among the nearest-neighbor oscillators
�subsystems 1+2 and 2+3�. The trend is common to any
other case we have checked: �ng

12 can be almost an order of
magnitude larger than any other �ng

1j �see Fig. 6, for ex-
ample�. Moreover, it is apparent that the behavior of each
entanglement function persists by enlarging the register.
Only small modifications are observed in �ng

1j when N→N
+1, the most evident of which is that �ng

1N becomes nonzero
after an increasing time delay. This can be understood by
considering the effective all-optical setup �as the one
sketched in Fig. 3�: when all the oscillators are initially pre-
pared in their vacuum state, the first set of BS’s �on the
left-hand side of the figure� are ineffective as they superim-
pose �0 states. As soon as the squeezing of oscillators
2 , . . . ,N is performed, the second set of BS’s, on the right-
hand side of the figures, is responsible for the generation and
propagation of quantum correlations. Obviously, the number
of operations which precede the coupling between 1 and N,
this latter carrying all the necessary non-classicality, in-
creases with the dimension of the register, thus retarding the
settlement of their entanglement. Again, the decomposition
Eq. �7� sheds additional light onto the important features of
the entanglement dynamics throughout the system, comple-
menting the results highlighted by previous analyses �5�.

IV. TAGGING BY SQUEEZING

For the purpose of creating an entangled state of the ex-
tremal oscillators in the channel, it is certainly desirable to
look for strategies which quantitatively improve the en-
tanglement settled between 1 and N. Moreover, we would
like to find out a way to make �ng

1N dominant with respect to
any other �ng

1j . The approach we are going to follow does not
rely on local control over the elements of the chain between
the first and the last oscillators. We assume that 1 and N are
held by two spatially separated parties who can perfectly
control the preparation of the respective oscillator and, if
required, can measure their state. On the other hand, the
interactions between the oscillators in the chain are set in a
global way by a potential which collectively addresses all the
elements at the same time. This approach is entirely within
the rules of the global addressing strategies exemplified by
quantum state transfer and phase-covariant cloning in quan-
tum spin chains �7,17� and by always-on computational
schemes �3�. In this perspective, the chain is seen as a two-
terminal device whose intermediate stage is embodied by the
N−2 oscillators between the ending terminals 1 and N. This
central section is a black box whose dynamics are out of the
grasp.

FIG. 5. �Color online� Logarithmic negativity �ng
1j �j=2,3�, for

a three-element open chain, plotted against the dimensionless inter-
action time �=�t, for � /�=0.1. The dotted line represents the be-
havior of �ng

12 =�ng
23, the solid line �ng

13.

FIG. 6. �Color online� �a� Logarithmic nega-
tivity �ng

1j �j=2,3 ,4�, for a four-element open
chain, plotted against the dimensionless interac-
tion time �=�t, for � /�=0.1. The dot-dashed
line is for �ng

12, the dotted line is for �ng
13, and,

finally, the solid line represents �ng
14. �b� Same as

�a� but for N=5. The thick dotted line is for �ng
12,

the thin dot-dashed curve is for �ng
14, and the

dashed one is for �ng
13. Finally, the solid line

shows �ng
15.
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Intuitively, one would like to magnify the inherent dis-
tinction of the pair of oscillators 1 and N, shown by Eqs. �10�
and �12�, from the rest of the register. Therefore, any local
action performed onto the ending terminals of the device in
Fig. 7, has to be designed so that the local properties of
oscillators 1 and N still remain mutually equal. By consider-
ing the analysis performed in Sec. II and the role that non-
classical states have in the entanglement by means of coupler
operators �11�, we look for an initial preparation of the reg-
ister which can result in a quantitative increase of the end-
to-end degree of entanglement. After a close inspection of
the decomposition, we conjecture that single-oscillator
squeezing operations onto 1 and N should improve the de-
gree of entanglement between them.

In order to demonstrate our conjecture, we address the
case of N=3 and we consider the preparation of an initial
state whose variance matrix reads V=Vsq,1 � 12 � Vsq,3,
where Vsq,j =e−2r�z,j is the variance matrix of a squeezed state
with its squeezing parameter r. The calculation of the loga-
rithmic negativity for the subsystems 1+2, 1+3, and 2+3
can proceed according to the recipe given in Sec. III. The
corresponding degree of entanglement, from now on, will be
indicated as �ng

jk,tag �j ,k� �1,N��. The results, for r=0.2, are
shown in Fig. 8.

Due to the symmetry of the particular initial preparation,
it is easy to check that we get a final variance matrix having
the same general structure as Eq. �10�, with suitably modified
elementary correlation matrices. Important information
comes from the study of the time behavior of the matrix
elements of C12=C23. Differently from what happens for an
initially prepared vacuum state, when the ending elements
are initially squeezed and for ��46.8, all the elements
�C12� jk simultaneously become very close to zero ���C12�1,1�
�6�10−3, ��C12�2,2��4�10−3 with ��C12�1,2�= ��C12�2,1�=0�,
whereas C13 �at that value of �� becomes diagonal with ma-
trix elements in the range of 0.1. This accounts for the im-
provement of the entanglement settled between 1 and 3 with,

correspondingly, �ng
12,tag
2�10−3. The subsystem 1+3 has

been tagged by the single-element presqueezing to be the
preferential pair of oscillators for the entanglement genera-
tion within the chain. It is worth stressing that this tagging
procedure is possible by virtue of the symmetry existing be-
tween the ending elements of the open chain. An analogous
conclusion has been drawn in Ref. �18�, where a totally sym-
metric N-body CV system has been considered in order to
point out the possibility of a unitary localization of the en-
tanglement. In our case, however, the CV chain exhibits a
degree of symmetry that is inferior to the one treated in Ref.
�18�. Different pairs of oscillators are characterized by dif-
ferent local and correlation properties, which makes the
problem approached in this paper intrinsically different from
the one in �18�. Nevertheless, we have shown that entangle-
ment localization is possible with a lower degree of symme-
try, which is per se an interesting point.

We can generalize the choice for the initial variance ma-
trix in the tagging procedure to the case of N oscillators by
considering V=Vsq,1 � �� j=2

N−11 j� � Vsq,N. Again, an explicit
calculation for the logarithmic negativity can be performed,
which leads to the plots shown in Figs. 9�a� and 9�b�, for the
cases N=4 and 5. In Fig. 9�b�, the time range has been re-
stricted to the interesting region where �ng

15,tag��ng
1j,tag, j

� �2,4�, in order to make the plot more transparent.
It is evident that there is always at least one value of � at

which the end-to-end entanglement dominates, making the
tagging procedure effective. The amount of prerequired
single-oscillator squeezing slightly depends on the dimen-
sion of the register and the plots in this paper show those
values of r at which we have found a good tradeoff between
the degree of entanglement and the effectiveness of the tag-
ging strategy. As we have stressed before, the even and odd
cases are inherently different, as also witnessed by the fact

FIG. 8. �Color online� Logarithmic negativity �ng
1j,tag �j=2,3�

for a tagged three-oscillator open chain, plotted against the dimen-
sionless interaction time �=�t, for � /�=0.1 and r=0.2. The dashed
line is for �ng

12,tag=�ng
23,tag while the solid line shows �ng

13,tag.

FIG. 7. �Color online� Scheme of principle for the end-to-end
entanglement generation procedure. The two-terminal device em-
bodies the bosonic quantum channel over which we assume to have
no local control. On the other end, 1 and N are assumed to be within
the grasp of two parties, which can arbitrarily prepare and measure
the state of the respective oscillator. The interaction that determines
the set of �’s globally addresses the N-element system.

FIG. 9. �Color online� �a� Logarithmic nega-
tivity �ng

1j,tag �j=2,3 ,4� for a tagged four-
oscillator chain against �=�t, for � /�=0.1. The
dot-dashed line is for �ng

12,tag, the dotted line is for
�ng

13,tag, and, finally, the solid line represents
�ng

14,tag. In this panel, r=0.4. �b� Same as panel �a�
but for N=5. The thick black line is for �ng

12,tag,
the thin dot-dashed curve is for �ng

14,tag, and the
dashed one is for �ng

13,tag. Finally, the solid line
shows �ng

15,tag. In this panel, r=0.6.
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that the value of � corresponding to an optimized tagging
operation is larger for N=4 than for N=5. At the same time,
�ng

14,tag, for N=4, is roughly proportional to r, while �ng
1N,tag

�r for all the odd-N cases we have checked.

V. REMARKS

We have addressed the problem of long-haul entangle-
ment creation in a register of bosons interacting via a global
potential. The dynamics of entanglement can be clearly
tracked via the effective decomposition of the time propaga-
tor in terms of simple linear optics elements as rotators,
single-oscillator squeezers, and couplers. This approach has
allowed us to spot a series of interesting features, character-
izing the evolution of the quantum correlations settled
among the elements of the register. As a result, we have been
able to relate the conceptual role played by the CR terms in
the entanglement generation process to effective squeezing
operations on the elements of the register. The usefulness of

this analysis is also witnessed by the design of a tagging
protocol for the improvement of the end-to-end entanglement
and the simultaneous reduction of any other 1→ j �j
=2, . . . ,N−1� quantum correlation in an chain of N ele-
ments. No local control over the central section is required: a
proper preparation of the extremal oscillators and a collective
interaction are sufficient to achieve the task. We believe this
formal approach could be used in order to clarify other as-
pects related to the role played by the CR terms in entangle-
ment creation, an issue which is certainly relevant especially
in many problems of solid-state physics.
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