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I. INTRODUCTION

The concept of distinguishability applies to quantum
states �1� and quantum processes �2�, and is strictly related to
quantum nonorthogonality, a basic feature of quantum me-
chanics. The problem of discriminating nonorthogonal quan-
tum states has been extensively addressed �3�, also with ex-
perimental demonstrations �4�. Typically, two discrimination
schemes are considered: the minimal-error probability dis-
crimination �5�, where each measurement outcome selects
one of the possible states and the error probability is mini-
mized, and the optimal unambiguous discrimination �6�,
where unambiguity is paid by the possibility of getting in-
conclusive results from the measurement. The problem has
been analyzed also in the presence of multiple copies �7�,
and for bipartite quantum states, and global joint measure-
ments have been compared to LOCC measurements, i.e. lo-
cal measurements with classical communication �8–10�.
More recently, the discrimination of quantum states has been
addressed in the minimax approach �11�, where there are no
a priori probabilities, and one maximizes the smallest of the
probabilities of correct detection. In such a scheme, interest-
ing results have been obtained, as, for example, optimal so-
lutions that involve unique and nonorthogonal measure-
ments.

The problem of discrimination can be addressed also for
quantum operations �12�. This may be of interest in quantum
error correction �13�, since knowing which error model is the
proper one influences the choice of the coding strategy as
well as the error estimation employed. Clearly, when a re-
peated use of the quantum operation is allowed, a full tomog-
raphy can identify it. On the other hand, a discrimination
approach can be useful when a restricted number of uses of
the quantum operation is available. Differently from the case
of discrimination of unitary transformations �14�, for quan-
tum operations there is the possibility of improving the dis-
crimination by means of ancillary-assisted schemes such that

quantum entanglement can be exploited �12�. Notably, en-
tanglement can enhance the distinguishability even for
entanglement-breaking channels �15�. The use of an arbitrary
maximally entangled state turns out to be always an optimal
input when we are asked to discriminate two quantum opera-
tions that generalize the Pauli channel in any dimension.
Moreover, in the case of Pauli channels for qubits, a simple
condition reveals if entanglement is needed to achieve the
ultimate minimal error probability �12,16�. The above state-
ments about channel discrimination refer to a Bayesian ap-
proach.

In this paper we address the problem of optimal discrimi-
nation of two Pauli channels in the minimax game-
theoretical scenario. Similarly to the case of state discrimi-
nation, we will show that the two approaches generally give
different results. In Sec. II we briefly review the problem of
discrimination of two Pauli channels in the Bayesian frame-
work, where the channels are supposed to be given with
assigned a priori probabilities. We report the result for the
optimal discrimination, along with the condition for which
entanglement with an ancillary system at the input of the
channel strictly enhances the distinguishability. In Sec. III we
review the solution to the problem of state discrimination in
the minimax approach, and its relation with the Bayesian
problem. In Sec. IV we study the problem of discrimination
of two Pauli channels in the minimax approach. We show
that when an entangled-input strategy is adopted, the optimal
discrimination can always be achieved by sending a maxi-
mally entangled state into the channel, as it happens in the
Bayesian approach. On the contrary, the optimal input state
for a strategy where no ancillary system is used can be dif-
ferent in the minimax approach with respect to the Bayesian
one. In the latter the optimal input can always be chosen as
an eigenstate of one of the Pauli matrices, whereas in the
former this may not be the case. In the concluding section,
we summarize the main results of the paper.

II. BAYESIAN DISCRIMINATION OF TWO PAULI
CHANNELS

In the problem of optimal Bayesian discrimination of two
quantum states �1 and �2, given with a priori probability
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p1= p and p2=1− p, respectively, one has to look for the

two-values probability operator-valued measure �POVM� B�

��B1 ,B2� with Bi�0 for i=1, 2 and B1+B2= I that mini-
mizes the error probability �or “Bayes risk”�

RB�p,B� � = p1 Tr��1B2� + p2 Tr��2B1� . �1�

We can rewrite

RB�p,B� � = p1 − Tr��p1�1 − p2�2�B1�

= p2 + Tr��p1�1 − p2�2�B2�

=
1

2
�1 − Tr��p1�1 − p2�2��B1 − B2��� , �2�

where the third equality can be obtained by summing and
dividing the two previous ones. The minimal-error probabil-

ity RB�p��minB� RB�p ,B� � can then be achieved by taking the
orthogonal POVM made by the projectors on the support of
the positive and negative parts of the Hermitian operator
p1�1− p2�2, and hence one has �5,9�

RB�p� =
1

2
�1 − �p1�1 − p2�2�1� , �3�

where �A�1=Tr	A†A denotes the trace norm of A. Notice that
the optimal POVM does not appear in the expression of the
minimal-error probability �3�, as the trace norm implicitly
takes it into account.

The problem of optimally discriminating two quantum
operations E1 and E2 can be reformulated into the problem of
finding the state � in the input Hilbert space H, such that the
error probability in the discrimination of the output states
E1��� and E2��� is minimal. The possibility of exploiting en-
tanglement with an ancillary system can increase the distin-
guishability of the output states �12�. In this case the output
states to be discriminated will be of the form �E1 � IK�� and
�E2 � IK��, where the input � is generally a bipartite state of
H � K, and the quantum operations act just on the first party
whereas the identity map IK acts on the second.

Upon denoting with RB��p� the minimal-error probability
when a strategy without ancilla is adopted, one has

RB��p� =
1

2�1 − max
��H

�p1E1��� − p2E2����1� . �4�

On the other hand, by allowing the use of an ancillary sys-
tem, we have

RB�p� =
1

2�1 − max
��H�K

�p1�E1 � I�� − p2�E2 � I���1� .

�5�

The maximum of the trace norm in Eq. �5� with the supre-
mum over the dimension of K is equivalent to the norm of

complete boundedness �17� of the map p1E1− p2E2, and in
fact for finite-dimensional Hilbert space the supremum is
achieved for dim�K�=dim�H� �17,18�, and in the following
we will drop the subindex K from the identity map. More-
over, due to linearity of quantum operations and convexity of
the trace norm, the maximum in both Eqs. �4� and �5� is
achieved on pure states.

Clearly, RB�p��RB��p�. In the case of discrimination be-
tween two unitary transformations U and V �14�, one has
RB�p�=RB��p�, namely, there is no need of entanglement
with an ancillary system to achieve the ultimate minimum-
error probability, which is given by

RB�p� = min

���H

1

2
�1 − 	1 − 4p1p2��
U†V
���2�

=
1

2
�1 − 	1 − 4p1p2D2� , �6�

where D is the distance between 0 and the polygon in the
complex plane whose vertices are the eigenvalues of U†V.

In the case of discrimination of two Pauli channels for
qubits, namely,

Ei��� = �
�=0

3

q�
�i������, i = 1,2, �7�

where ��=0
3 q�

�i�=1, �0= I, and ��1 ,�2 ,�3�= ��x ,�y ,�z� de-
note the customary spin Pauli matrices, the minimal-error
probability can be achieved by using a maximally entangled
input state, and one obtains �12�

RB�p� =
1

2
�1 − �

�=0

3


r�
� , �8�

with

r� = p1q�
�1� − p2q�

�2� = p�q�
�1� + q�

�2�� − q�
�2�, �9�

where we fixed the prior p= p1 and p2=1− p1. For a strategy
with no ancillary assistance one has �12�

RB��p� =
1

2
�1 − C� , �10�

where

C = max�
r0 + r3
 + 
r1 + r2
, 
r0 + r1
 + 
r2 + r3
, 
r0

+ r2
 + 
r1 + r3
� , �11�

and the three cases inside the brackets correspond to using an
eigenstate of �z, �x, and �y, respectively, as the input state of
the channel. More generally, for a pure input state �= 1

2 �I
+�� ·n��, with n� = �sin 	 cos 
 , sin 	 sin 
 , cos 	�, the Bayes
risk for discriminating the outputs will be �12,16�

RB��p,�� · n�� =
1

2
„1 − max�
a + b
,	cos2	�a − b�2 + sin2	�c2 + d2 + 2cd cos�2
���… , �12�
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with a=r0+r3, b=r1+r2, c=r0−r3, and d=r1−r2. Notice that
the term 
a+b
= 
2p−1
 corresponds to the trivial guessing
�E1 if p1= p�1/2 , E2 if p�1/2�.

We can also rewrite Eq. �10� as

RB��p� = min
i=1,2,3

RB��p,�i� . �13�

From Eqs. �8�–�11� one can see that entanglement is not
needed to achieve the minimal-error probability as long as
C=�i=0

3 
ri
, which is equivalent to the condition �i=0
3 ri�0.

On the other hand, we can find instances where the channels
can be perfectly discriminated only by means of entangle-
ment, for example in the case of two channels of the form

E1��� = �
��

q������, E2��� = ���, �14�

with q��0, and arbitrary a priori probability.

III. MINIMAX DISCRIMINATION OF QUANTUM STATES

In the following we briefly review some results of Ref.
�11� about minimax discrimination of quantum states that are
needed to solve the problem of discrimination of Pauli chan-
nels in the next section, namely, we review just the case of
two states. We are given two states �1 and �2, and we want to
find the optimal measurement to discriminate between them
in a minimax approach. In this scenario there are no a priori
probabilities, and the optimal solution consists in finding the

POVM �M� =M1 ,M2� with Mi�0 for i=1, 2 and M1+M2

= I, that achieves the minimax

RM��1,�2� = min
M�

max�Tr��1M2�,Tr��2M1�� , �15�

namely, one minimizes the largest of the probabilities of in-
correct detection. The minimax and Bayesian schemes of
discrimination of two states are connected by the following
theorems �11�.

Theorem 1. There is a measurement B� that is optimal in
the Bayes scheme for some a priori probability �p* ,1− p*�
such that

Tr��1B1� = Tr��2B2� . �16�

This measurement is optimal in the minimax scheme as well,
and one has RM��1 ,�2�=RB�p*�=Tr��1B2�.

Theorem 2. The solution in the minimax problem is
equivalent to the solution of the problem

RM��1,�2� = max
p

RB�p� , �17�

and the a priori probability achieving the maximum corre-
sponds to the value p= p* in Theorem 1.

IV. MINIMAX DISCRIMINATION OF PAULI CHANNELS

As in the Bayesian approach, the minimax discrimination
of two channels consists in finding the optimal input state
such that the two possible output states are discriminated

with minimum risk. Again, we will consider the two cases
with and without ancilla, upon defining

RM = min
��H�K

RM„�E1 � I����,�E2 � I����… ,

RM� = min
��H

RM„E1���,E2���… , �18�

where RM��1 ,�2� is given in Eq. �15�. Since for all M� , �, and
p, one has

max�Tr��E1 � I����M2�,Tr��E2 � I����M1��

� pTr��E1 � I����M2� + �1 − p�Tr��E2 � I����M1� ,

�19�

then RM �RB�p� for all p. Analogously, RM� �RB��p� for all
p.

Theorems 1 and 2 can be immediately applied to state that
the minimax discrimination of two unitaries is equivalent to
the Bayesian one. In fact, the optimal input state in the Baye-
sian problem which achieves the minimum error probability
of Eq. �6� does not depend on the a priori probabilities.
Therefore it is also optimal for the minimax problem and
there is no need of entanglement �and the minimax risk RM
will be equivalent to the Bayes risk RB�1/2��.

Let us now consider the problem of discriminating the
Pauli channels of Eq. �7� in the minimax framework. In the
following theorem, we show that an �arbitrary� maximally
entangled state always allows one to achieve the optimal
minimax discrimination as in the Bayesian problem.

Theorem 3. The minimax risk RM for the discrimination
of two Pauli channels can be achieved by using an arbitrary
maximally entangled input state. Moreover, the minimax risk
is then the Bayes risk for the worst a priori probability:

RM = max
p

RB�p� . �20�

Proof. Let us discriminate between the states �i
= �Ei � I���e�, where �e is a maximally entangled state. By
Theorem 1 there are a priori probabilities �p* ,1− p*� whose
optimal Bayes measurement satisfies

Tr��1B1� = Tr��2B2� . �21�

Since the input state �e is always optimal in the Bayes prob-
lem we infer RB�p*�=Tr��1B2�, and moreover RM��1 ,�2�
=RB�p*�. Now, one has also RM =RM��1 ,�2�, since if it were
not be true, then there would be an input state � and a mea-

surement M� for which

max�Tr��E1 � I����M2�,Tr��E2 � I����M1�� � RB�p*� ,

and hence

p*Tr��E1 � I����M2� + �1 − p*�Tr��E2 � I����M1� � RB�p*� ,

which is a contradiction. Equation �20� simply comes from
the relation RM �RB�p� for all p, along with RM =RB�p*�.

Notice the nice correspondence between Eqs. �17� and
�20�. Theorem 3 holds true also in the case of generalized
Pauli channels in higher dimension, since entangled states
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again achieve the optimal Bayesian discrimination, whatever
the a priori probability �12�. More generally, Eq. �20� will
hold in the discrimination of any couple of quantum opera-
tions for which the minimal Bayes risk RB�p� can be
achieved by the same input state for any p.

Now we establish some visual images on which to read
the minimax risks. We must look at the function RB�p� given
in Eq. �8� drawn on �0, 1�. By Eq. �20�, we know that its
maximum is RM. As the r� defined in Eq. �9� are increasing
affine functions of p, their absolute value is a convex piece-
wise affine function, and hence RB�p� is a concave piecewise
affine function �see Fig. 1�. The four break points correspond
to the four values of p for which each r� vanishes. We define
t�=q�

�1�+q�
�2� as the slopes of the functions r� and p���

=q�
�2� / t� as the value of p for which r�=0. We denote by p*

the point at which RB�p� reaches its maximum �the maxi-
mum will be attained at one of the break points p����. We also
reorder the index � such that p�0�� p�1�� p�2�� p�3�. In this
way, RB�p� is rewritten

RB�p� =
1

2
�1 − �

�=0

3

t�
p − p���
� . �22�

Let us now look at the discrimination strategy without any
ancillary system. Another picture, that should be superim-
posed on Fig. 1, is the Bayes risk RB��p� of Eq. �10� versus p
for the strategy with no ancillary system. One can see that
RB��p� is the minimum of the three piecewise affine functions
RB��p ,�x� ,RB��p ,�y� ,RB��p ,�z�, corresponding to the Bayes
risks when sending an eigenstate of the Pauli matrices. Here
again RB��p� is the minimum of concave functions, so it is
concave as well, and the maximum will be attained at a
break point p= p�� �see Fig. 2�. To “read” more in these pic-
tures, once again we prove that the optimal minimax risk RM�
for discrimination without ancilla corresponds to the optimal
Bayes risk without ancilla for the worst a priori probability
p��.

Theorem 4. The optimal minimax discrimination with no

ancilla is equivalent to the solution of the problem

RM� = max
p

RB��p� � RB��p��� . �23�

Proof. Notice again the similarity between Eqs. �17�, �20�,
and �23�. For any � one has

RM„E1���,E2���… � RM� � max
p

RB��p� . �24�

If we find an input state �n� = 1
2 �I+�� ·n�� such that

max
p

RB��p� = max
p

RB��p,�� · n�� �25�

from Eq. �17� of Theorem 2 it follows that

RM„E1��n��,E2��n��… = max
p

RB��p,�� · n�� , �26�

which, along with Eqs. �24� and �25�, provides the proof.
Moreover, �n� will be the optimal input state for the minimax
discrimination without ancilla.

Now we have just to find a state such that condition �25�
holds. We already noticed that p�� is a breaking point of
RB��p�. Either this break point is also a break point �and the
maximum� of RB��p ,�i� for some i�x ,y ,z, or else at least
two of the RB��p ,�i� are crossing in p��, one increasing and
the other decreasing �Fig. 2�. In the first case Eq. �25� is
immediately satisfied, and an eigenstate of �i will be the
optimal input state. In the second case, we show that when
two RB��p ,�i� are crossing at p�� we can find a state �n� such
that

RB��p��,�� · n�� = RB��p��,�i� ,

�pRB��p,�� · n��
p=p
��

= 0, �27�

and therefore has the maximum at p�� by concavity. In fact,
the crossing and therefore nonequality of the RB��p ,�i� in a

FIG. 1. The optimal Bayes risk RB�p� in the discrimination of
two Pauli channels versus the a priori probability p will usually
look like this. Notice that the rightmost and leftmost segments have
slope 1 and −1, respectively. The minimal risk for the minimax
discrimination corresponds to RM =maxpRB�p�, and is achieved at
one of the break points p���.

FIG. 2. An example for the Bayes risks RB��p ,�i� with i
=x ,y ,z versus the a priori probability p, for discrimination without
ancilla. Each of the three different dotted lines corresponds to the
Bayes risk RB��p ,�i� when sending an eigenstate of the Pauli matrix
�i through the channel. The solid line is the optimal Bayes risk
RB��p� without ancillary assistance, and corresponds at any p to the
minimum of the three RB��p ,�i�. The minimal risk for the minimax
discrimination with no ancilla corresponds to RM� =maxp RB��p�,
and is achieved at one of the break points of RB��p�.
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neighborhood of p��, implies that for each of the two
RB��p ,�i�, the maximum in Eq. �12� for p�� is attained by the
square-root term �since the term 
a+b
 is just a function of
p�. Let us assume that the �i that give such a crossing are �x
and �y. Then looking at Eq. �12�, we have at point p��


c + d
 = 
c − d
 ,

�p
c + d
�p
c − d
 � 0 �28�

�notice that all functions are linear, i.e., differentiable in p���.
Indeed, the first of Eqs. �28� implies that any linear combi-
nation of eigenstate of �x and �y satisfies the first of Eqs.
�27�. By taking an input state with 	=� /2 and 
 such that

tan2 
 = − � �p
c + d

�p
c − d


�
p=p

��
, �29�

the second equation in �27� is satisfied as well. Similarly, if
the �i are �z ,�x one can take the input state with 
=0 or �
and 	 such that

tan2 	 = − � �p
a − b

�p
c + d


�
p=p

��
. �30�

Finally, for �z ,�y one has 
= ±� /2 and

tan2 	 = − � �p
a − b

�p
c − d


�
p=p

��
. �31�

As a remark, no eigenstate of �i for i=x ,y ,z can be an
optimal input in the minimax sense in this situation. This is a
typical result of the minimax discrimination. As in the case
of discrimination of states �11�, when the correspondent
Bayes problem presents a kind of degeneracy and has mul-
tiple solutions, in the minimax problem the degeneracy is
partially or totally removed. In the present situation, if we
have the maximum of RB��p� at the crossing point of exactly
two RB��p ,�i�, one increasing and the other decreasing, we
find just four optimal input states: two nonorthogonal states
and their respective orthogonal states. We will give an ex-
plicit example at the end of the section.

If we want to find in what case entanglement is not nec-
essary for optimal minimax discrimination, then we have just
to characterize when RB��p���=RB�p*�. We already noticed
that we can choose p* to be one of the p���. The correspond-
ing r� is zero, and hence C=��
r�
, namely, RB��p*�
=RB�p*�. Since one has

RB��p��� = RM� � RM = RB�p*� = RB��p*� , �32�

we only have to check that p* is a maximum of RB��p�,
recalling that the function is concave �see Fig. 3�.

Ultimately, we will have to list the cases. Reading them
might be clearer with the quantities appearing in Eqs.
�8�–�11� explicitly written as a function of p. The most useful
segmentation of �0, 1� is based on the p���, that is the points
where the r� vanish, and RB�p� breaks. Recall that r�

= t��p− p����, and r��0 for p� p���. As we have four �, we
have five segments �they may become degenerate�. Remem-
ber that knowing C in Eq. �11� and ��
r�
 is tantamount to

knowing RB��p� or RB�p�. Here is a list of the signs of the r�

and the value of C on each open segment �so that all r��0�.
�1� �0, p�0�� :��
r�
=−��r�=C. Notice that RB��p�

=RB�p� and that their common slope is 1.
�2� �p�0� , p�1�� :��
r�
=r0−r1−r2−r3, so that C=r0−r1

−r2−r3−2 inf�=1,2,3
r�
. On this segment, RB��p��RB�p�.
�3� �p�1� , p�2�� :��
r�
=r0+r1−r2−r3=C, so that RB��p�

=RB�p�.
�4� �p�2� , p�3�� :��
r�
=r0+r1+r2−r3, so that C=r0+r1

+r2−r3−2 inf�=0,1,2r� and RB��p��RB�p�.
�5� �p�3� ,1� :��
r�
=��r�=C and RB��p�=RB�p�. Their

common slope is �−1�.
A close look at these expressions, as we will show in the

following, proves that RB��p� is derivable at p��� unless there
is �� such that p���= p��. With this in mind, we see that p*
cannot be a maximum of p��� unless several r� are null at the
same point �with supplementary conditions� or p*= p�1� and
the segment �p�1� , p�2�� is flat. Here is the full-fledged study,
using repeatedly the list above. It is complete as any other
case can be handled by symmetry �switching channels, that
is mapping p to 1− p�.

�1� p*= p�0�� p�1�: At p�0�, we have r0=0 and r��0 for
��0. So that inf�
r�
= 
r0
 on a neighborhood of p�0�. On that
neighborhood, we deduce C=−��r�, and hence
�pRB��p�
p=p�0� =1, so that p�0� is not a maximum of RB��p�.
Entanglement is then necessary for optimal discrimination.

�2� p*= p�0�= p�1�� p�2�: On �0, p�0��� �p�1� , p�2��, the
equality RB��p�=RB�p� holds. Thus, the two functions are
equal on a neighborhood of p*, and since p* is a �local�
maximum of RB�p�, it is also a local maximum of RB��p�. In
this case an unentangled strategy is then as efficient as any
entangled one.

�3� p*= p�0�= p�1�= p�2�� p�3�: The risk RB��p� is nonde-
creasing on the left of p* �slope 1�; we then want it to be
nonincreasing on a right neighborhood of p*. Now this is part
of the segment �p�2� , p�3��, where C=r0+r1+r2−r3

−2 inf�=0,1,2r�. Recall that r�= t��p− p����. Since r�=0 for
��3 at p*, and they are all nondecreasing, inf�=0,1,2r� is the

FIG. 3. Optimal Bayes risks versus the a priori probability p for
the discrimination of the Pauli channels with parameters given in
Eq. �39�. The solid line gives RB�p� for an entanglement-assisted
strategy; the dotted line gives RB��p� for a strategy without ancilla.
The minimal risk in the optimal minimax discrimination corre-
sponds in both strategies to RM� =maxp RB��p�=maxp RB�p�=RM,
namely, there is no need of an ancillary system.
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one with the smallest slope t�. It follows that the slope of
RB��p� on the right of p* is t3− t0− t1− t2+2 inf�=0,1,2t�, and
so entanglement is not needed if and only if

t3 + 2 inf
�=0,1,2

t� � �
�=0,1,2

t�. �33�

�4� p*= p�0�= p�1�= p�2�= p�3�: This is the trivial case where
both channels are the same. Of course, entanglement is use-
less.

�5� p�0�� p*= p�1�� p�2�: In this case RB��p� is derivable at
p*. Indeed, on �p�1� , p�2��, we have C=r0+r1−r2−r3 whereas
on �p�0� , p�1�� ,C=r0−r1−r2−r3−2 inf�=1,2,3
r�
. In a neigh-
borhood of p*, one has inf�=1,2,3
r�
=r1, as it is the only one
that is 0 at p*; hence C=r0+r1−r2−r3 also on a left neigh-
borhood of p* and the slope of RB��p� at p* is t3+ t2− t1− t0.
Since p* is a maximum if and only if this slope is null, we
get the condition

t0 + t1 = t2 + t3. �34�

�6� p�0�� p*= p�1�= p�2�� p�3�: On the left of p*, we are on
the segment �p�0� , p�1��, so that C=r0−r1−r2−r3

−2 inf�=1,2,3
r�
. On the right, we are on the segment
�p�2� , p�3�� and C=r0+r1+r2−r3−2 inf�=0,1,2r�. In a neigh-
borhood of p*, the r� with the smallest absolute value will be
either r1 or r2 �more precisely, the one with the smallest
slope t��, so that we can write in a neighborhood of p* for
both sides C=r0−r3+ 
r2−r1
. The slope of RB��p� is then t3

− t0+ 
t2− t1
 and t3− t0− 
t2− t1
 on the left and on the right of
p*, respectively. Entanglement is not necessary when p* is a
maximum of RB��p�, and hence we get the necessary and
sufficient condition


t0 − t3
 � 
t1 − t2
 . �35�

We can summarize the above discussion as follows.
Theorem 5. The minimax risk without using ancilla is

strictly greater than the minimax risk using entanglement,
except in the following cases.

�a� The trivial situation where both channels are the
same, so that p*= p���= 1

2 for all �.
�b� If p*= p�0�� p�1�� p�2�.
�c� If p*= p�0�= p�1�= p�2�� p�3� and

t3 + 2 inf
�=0,1,2

t� � �
�=0,1,2

t�. �36�

�d� If p�0�� p*= p�1�� p�2� and

t0 + t1 = t2 + t3. �37�

�e� If p�0�� p*= p�1�= p�2�� p�3� and


t0 − t3
 � 
t1 − t2
 . �38�

�f� The symmetric cases �obtained by exchanging chan-
nels 1 and 2, i.e. exchanging indices 0 and 1 with 3 and 2,
respectively, in both p��� and t�.

Differently from the Bayesian result, we notice that when
entanglement is not necessary to achieve the optimal mini-
max discrimination, the optimal input state may not be an
eigenstate of the Pauli matrices. Consider, for example, the
two Pauli channels featured in Fig. 3 which correspond to the
parameters

q0
�1� = 0.3, q1

�1� = 0.4, q2
�1� = 0.2, q3

�1� = 0.1,

q0
�2� = 0.1, q1

�2� = 0.3, q2
�2� = 0.15, q3

�2� = 0.45.
�39�

We can compute p���=q�
�2� / �q�

�1�+q�
�2�� and get p���

= �1/4 ,3 /7 ,3 /7 ,9 /11�. Here p*=3/7, and we are in the situ-
ation of Eq. �38�, since t�= �q�

�1�+q�
�2��= �0.4,0.7,0.35,0.55�.

Hence, entanglement is not necessary to achieve the optimal
minimax risk, but the state to be used is not an eigenstate of
the Pauli matrices. In fact, we are in the case of the proof of
Theorem 3, where RB��p ,�x� and RB��p ,�y� are crossing in
p*. The optimal input state for the minimax discrimination
will be given by 	=� /2 and 
 as in Eq. �29�, which gives
tan2
=2/5. Then, we have four optimal input states that lie
on the equator of the Bloch sphere, with n�
= �±	5/7 , ±	2/7 ,0�.

V. CONCLUSIONS

We addressed the problem of optimally discriminating
two Pauli channels in the minimax approach, where no a
priori probability is assigned. We showed that when an
entangled-input strategy is adopted, the optimal discrimina-
tion can always be achieved by sending a maximally en-
tangled state into the channel, as happens in the Bayesian
approach. On the other hand, the optimal input state for a
strategy without ancilla can be different in the minimax ap-
proach with respect to the Bayesian one. In the latter the
optimal input can always be chosen as an eigenstate of one
of the Pauli matrices, whereas in the former this may not be
the case. We then characterized the channels where the use of
entanglement outperforms the scheme without assistance of
ancilla. Notice that even though the Bayesian and the mini-
max strategies are not comparable, since they address differ-
ent estimation problems, nevertheless the solution of the gen-
eral Bayesian problem actually includes also the minimax
solution, since the optimal minimax strategy is equivalent to
the Bayesian one for the worst risk �Theorems 3 and 4�. This
is a general feature for the channels analyzed in the present
paper. This work extends the study of minimax discrimina-
tion of states to the simplest example of quantum operations,
and show the relation and the differences with respect to the
Bayesian approach.
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