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Joint quantum measurements of noncommuting observables are possible, if one accepts an increase in the
measured variances. A necessary condition for a joint measurement to be possible is that a joint probability
distribution exists for the measurement. This fact suggests that there may be a link with Bell inequalities, as
these will be satisfied if and only if a joint probability distribution for all involved observables exists. We
investigate the connections between Bell inequalities and conditions for joint quantum measurements to be
possible. Mermin’s inequality for the three-particle Greenberger-Horne-Zeilinger state turns out to be equiva-
lent to the condition for a joint measurement on two out of the three quantum systems to exist. Gisin’s Bell
inequality for three coplanar measurement directions, meanwhile, is shown to be less strict than the condition
for the corresponding joint measurement.
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I. INTRODUCTION

A joint quantum measurement means that by performing
one measurement on a single quantum system, we are able to
produce a result for each of two observables �1–3�. The two
measured observables do not have to commute with each
other. A trivial example of such a measurement would be to
measure one of the observables, and randomly guess a result
for the other observable. It is, however, also possible to per-
form joint measurements where the element of guessing is
distributed more equally between the two noncommuting
observables.

A necessary condition for the existence of a joint quantum
measurement is that a joint probability distribution exists for
the measurement. This probability distribution has to give
the correct marginal distributions, and has to exist for any
measured quantum state. For a joint quantum measurement,
this will force the marginal probability distributions to have
greater variances than if the observables were measured
alone �1,2�. For example, the Wigner function of two
complementary observables may be negative for some quan-
tum states, and is therefore not a true probability distribution.
In order to obtain a positive joint probability distribution for
the two observables, we have to consider the Q function
�3,4�. The marginal distributions of the Q function have
greater spread than those of the Wigner function �5�.

Bell’s great achievement was to derive an inequality
which had to be satisfied in any local realistic theory �6�. The
inequality gives a bound on the measurement correlations for
a bipartite system. The requirement that the Bell inequalities
are satisfied is equivalent to the existence of a joint probabil-
ity distribution for the observables involved �7�. A necessary
condition for a joint quantum mechanical measurement of
these observables is therefore that the Bell inequalities hold.
This condition may, however, not be sufficient.

In an earlier paper �8�, the connection between the restric-
tions placed on joint quantum measurements and the
Clauser-Horne-Shimony-Holt �CHSH� inequality �10� were
investigated. In the CHSH setup, one considers a pair of spin
1/2 particles; on each one, one makes a choice of measuring

a spin along one of two possible directions. It turns out that
if we instead make a joint measurement on one of the two
spin 1/2 quantum systems involved in the setup, then the
CHSH inequality is equivalent to the condition for this joint
measurement to be possible. Evidently also if the measure-
ments on both particles are joint measurements, then the Bell
inequalities will be satisfied �9�. In this paper, we consider
the connection between joint quantum measurements and
Mermin’s inequality �11� for the three-particle Greenberger-
Horne-Zeilinger �GHZ� state �12�. We show that if joint mea-
surements are made on two of the three quantum systems,
then the resulting condition for the existence of such a mea-
surement is equivalent to Mermin’s inequality.

As already mentioned above, Bell inequalities being sat-
isfied by the measurement statistics is not necessarily a suf-
ficient condition for a joint measurement to exist. As an ex-
ample of this, we consider Gisin’s inequality for three
coplanar measurement directions �13�. We shall find that the
requirement for a joint quantum measurement of a spin along
the considered three directions to be possible is stronger than
the corresponding Bell inequality.

The paper is organized as follows. In Sec. II, we give a
brief account of joint quantum measurements, concentrating
on joint measurements of two components of spin 1/2 �14�,
and in Sec. III we remind the reader of the CHSH inequality.
In Sec. IV, we proceed to discuss Mermin’s inequality for
GHZ states. Here we show that making joint quantum mea-
surements of the different spin components means that Mer-
min’s inequality must be satisfied. In Sec. V, we give ex-
amples of when the restrictions for the existence of joint
quantum measurements are strictly stronger than the condi-
tions placed by local realism. We conclude with a discussion
in Sec. VI.

II. JOINT MEASUREMENTS OF NONCOMMUTING
OBSERVABLES

Quantum measurements are usually described in standard
quantum mechanics textbooks as projective measurements. A
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measurement of an observable Â is a projection in the eigen-

basis of Â, and the measurement outcomes are the corre-
sponding eigenvalues. Restricting ourselves to projective
quantum measurements means that it is not possible to mea-
sure two noncommuting observables jointly at the same time,
as they do not have a common set of eigenstates.

Projective measurements, however, are too restrictive.
The framework of generalized quantum measurements, re-
ferred to as probability operator measurements �POMs� or
positive operator valued measures �POVMs� �15,16�, allows
us to express conveniently exactly what measurements it is
possible to realize within quantum mechanics. Allowing for
detector inefficiencies, for example, usually means that the
measurement is not truly projective, but has to be described
as a generalized measurement. Such a measurement is, just
like a projective measurement, described by a set of mea-
surement operators, one for each measurement outcome.
There is no condition, however, saying that the measurement
operators have to be projectors onto eigenstates. The mea-
surement operators must have only positive or zero eigenval-
ues, thus guaranteeing that the probability for each outcome
will be positive or zero for any measured quantum state. The
operators should also sum to the identity operator, corre-
sponding to the fact that the sum of all probabilities for all
possible experimental outcomes is 1.

It is possible to measure noncommuting observables
jointly, if one allows an increase in the variances of the
jointly measured observables. Pioneering work on joint
quantum measurements was done in Refs. �1,2�, and an elu-
cidating account is found in Ref. �3�. Such measurements
are most conveniently described as generalized quantum
measurements.

A frequently used condition for when a joint measurement

is a “good” measurement of two observables Â and B̂ is that
the expectation values of the jointly measured observables
should be proportional to the expectation values of the ob-
servables when measured alone. It is not, however, necessary
to make this assumption �17�. Nevertheless, we choose to
demand that

AJ = ��Â� and BJ = ��B̂� , �1�

where � and � are positive constants and where AJ and BJ
are expectation values of the jointly measured observables.
�Here we do not use the notation �·� for an expectation value,
as AJ and BJ are not observables in the usual sense.� A sharp
measurement of spin 1/2 along a direction a corresponds to
a projective measurement of the observable

Â=a ·�� , where the Pauli spin operator �� = ��̂x , �̂y , �̂z�. Busch
and co-workers �14� found that the condition for a joint mea-
surement of two spin 1/2 components, parallel to the unit
vectors a and b, to be possible, is

��a + �b� + ��a − �b� � 2. �2�

Unless a and b are parallel, this condition will restrict the
values of � and � to be strictly less than 1. As the possible
values for the measurement outcomes are ±1, this means that
the variances

��AJ�2 = AJ
2 − AJ

2 = 1 − �2�Â�2

��BJ�2 = BJ
2 − BJ

2 = 1 − �2�B̂�2 �3�

must increase. An earlier work �8� investigated the connec-
tion between the joint measurements of a spin along
two directions and the CHSH Bell inequalities, as well
as the increase in uncertainty for the jointly measured
observables. In the following section, we review the deriva-
tion of the CHSH inequality and its connection with joint
measurements.

III. THE CHSH INEQUALITY

In the CHSH setup, we consider two spin 1/2 particles.
Spin is measured along either direction a1 or b1 on system 1,
and along either direction a2 or b2 on system 2 �10�. Let us
denote the measurement outcomes by a1, b1, a2, and b2.
These are all ±1. If the spin components are local objective
properties, then for each experimental run it must hold that

a1�a2 + b2� + b1�a2 − b2� = ± 2. �4�

It follows that the correlation functions, defined as the ex-
pectation value of the product of the measurement outcomes,
E�a ,b�=ab, must satisfy the inequality

�E�a1,a2� + E�a1,b2� + E�b1,a2� − E�b1,b2�� � 2 �5�

for any measurement directions a1, b1, a2, or b2. In fact, one
realizes after some thought that the inequality

�E�a1,a2� + E�a1,b2�� + �E�b1,a2� − E�b1,b2�� � 2 �6�

must be satisfied. If either E�a1 ,a2�+E�a1 ,b2� or
E�b1 ,a2�−E�b1 ,b2� is negative, we can always reverse the
measurement direction a1 or b1 so that the terms become
both positive or both negative. Therefore the latter form of
the inequality must also hold.

For the quantum mechanical singlet state,

��−� =
1
�2

�� + �1�− �2 − �− �1� + �2� , �7�

the CHSH inequality is violated for some choices of mea-
surement directions. If, however, we require that a joint
quantum mechanical measurement of spin along both direc-
tions a1 and b1 is made on the first spin 1/2 particle, then the
CHSH inequality will always be satisfied for the resulting
measurement results �8�. In this case, there are simultaneous
results a1 and b1, as well as either a2 or b2, for each experi-
mental run.

For the CHSH setup, Fine has shown that the following
statements are equivalent �7�: �i� Bell inequalities are satis-
fied; �ii� a description using hidden variables is possible; and
�iii� there exist joint probability distributions for all triples of
observables. The equivalence of these statements also im-
plies that if joint probability distributions exist for all triples
of observables, then a �classical� joint probability distribu-
tion necessarily exists for all four observables. This is the
reason why we only need to assume a joint measurement of
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spin on one of the particles, not both, for the CHSH inequal-
ity to be satisfied.

IV. MERMIN’S INEQUALITY FOR GHZ STATES

Suppose that we have three spin 1/2 quantum systems
and that we measure either �̂x or �̂y on each of these. If the
spin components are local objective properties, then expres-
sions involving their values should be well defined, even if
only one spin component for each particle is actually mea-
sured in each run of the experiment. Let us denote the values
of the spin components for particle i with xi and yi. It is
easily verified that for each experimental run we must have
�11�

− 2 � x1x2x3 − x1y2y3 − y1x2y3 − y1y2x3 � 2 �8�

because the spin components xi and yi can take only the
values ±1. In fact one realizes that a similar inequality would
hold for any measurement directions for each of the particles.
The reason for choosing x and y is, that for the quantum
GHZ state,

�GHZ� =
1
�2

�� + �1� + �2� + �3 + �− �1�− �2�− �3� , �9�

we find that

�GHZ��̂x
1�̂x

2�̂x
3 − �̂x

1�̂y
2�̂y

3 − �̂y
1�̂x

2�̂y
3 − �̂y

1�̂y
2�̂x

3�GHZ� = 4

�10�

because the GHZ state is an eigenstate of all the four opera-
tor combinations �̂x

1�̂x
2�̂x

3, �̂x
1�̂y

2�̂y
3, �̂y

1�̂x
2�̂y

3, and �̂y
1�̂y

2�̂x
3 in

Eq. �10�. The GHZ state maximally violates inequality �8�.

A. Mermin’s inequality and joint quantum measurements

In a joint measurement, whether quantum mechanical or
not, there will be results ±1 for the measured spin compo-
nents. Therefore inequality �8� must be satisfied, at least if
we demand that both x and y components are measured on
each of the three systems. This means that Mermin’s inequal-
ity being satisfied is a necessary condition for a joint quan-
tum mechanical measurement to exist. It does not, however,
have to be a sufficient condition.

In fact, in order for a joint quantum measurement to sat-
isfy inequality �8�, it suffices to require that the x and y
components are measured on systems 1 and 2 only. In order
to see this, we start with the condition for the joint measure-
ments on one of two spin components given in Eq. �2�. Con-
dition �2� means that unless the measurement directions a
and b are parallel, both � and � have to be less than one.
Now, with a=x and b=y, we find using condition �2� that
�2+�2�1 must hold. In terms of the three-particle correla-
tion function E�x1 ,x2 ,x3�=x1x2x3 and other similar combina-
tions, inequality �8� reads

�E�x1,x2,x3� − E�x1,y2,y3� − E�y1,x2,y3� − E�y1,y2,x3�� � 2.

�11�

The quantum-mechanical average of the correlation function
EQM�x1 ,x2 ,x3�= ����̂x

1
� �̂x

2
� �̂x

3���, if the measurements of

the spins along the x directions for particles 1 and 2 are made
jointly with measurements of the spins along y, will be

EQM�x1
J,x2

J,x3� = �1�2����̂x
1

� �̂x
2

� �̂x
3��� , �12�

where J denotes a joint measurement. This relation is valid
for any state ���, and follows from the fact that expectation
values for �̂x

1 and �̂x
2 are scaled by the factors �1 and �2 for

any measured state �see the Appendix for a proof�. Similarly,
we find that

EQM�y1
J,y2

J,x3� = �1�2����̂y
1

� �̂y
2

� �̂x
3���

EQM�y1
J,x2

J,y3� = �1�2����̂y
1

� �̂x
2

� �̂y
3���

EQM�x1
J,y2

J,y3� = �1�2����̂x
1

� �̂y
2

� �̂y
3��� . �13�

For the GHZ state, we therefore find that

�EQM�x1
J,x2

J,x3� − EQM�x1
J,y2

J,y3� − EQM�y1
J,x2

J,y3�

− EQM�y1
J,y2

J,x3��

= �1�2 + �1�2 + �1�2 + �1�2

= ��1 + �1���2 + �2� . �14�

As �1
2+�1

2�1 and �2
2+�2

2�1, it follows that �1+�1��2
and �2+�2��2, so that

�EQM�x1
J,x2

J,x3� − EQM�x1
J,y2

J,y3� − EQM�y1
J,x2

J,y3�

− EQM�y1
J,y2

J,x3�� � 2, �15�

with equality holding if and only if �1=�1=�2=�2=1/�2.
To summarize, requiring that quantum mechanical joint mea-
surements of spin along x and y are made on particles 1 and
2 �as opposed to measurements of spin along either x or spin
along y� means that inequality �8�, or rather the average of
this inequality, is satisfied for the GHZ state. Moreover, we
know that there always is a joint quantum measurement
which achieves equality in condition �2�. Therefore there is
always a pair of joint quantum measurements for particles 1
and 2, so that equality is reached in �8� and �15�.

The fact that we only have to demand that a joint mea-
surement is made on systems 1 and 2, and not on system 3,
is similar to the situation for the CHSH inequality. For three
particles with two measurement settings each, a �classical�
joint probability distribution for all six observables necessar-
ily exists if a probability distribution exists for all quintets of
observables. This follows from Fine’s result relating to the
CHSH situation, where the existence of joint probability dis-
tributions for all triples of observables implies the existence
of a joint probability for all four observables �7�.

B. Mermin-type inequality for joint measurements along any
spin directions

We can also prove that an inequality of a form similar to
Mermin’s inequality must be satisfied for joint quantum me-
chanical measurements, when the measurements are made
along any spin directions. Let us assume that, on the first
particle, we make a joint measurement of spins along direc-
tions a1 and b1, with results a1

J and b1
J, and on the second
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particle a joint measurement along directions a2 and b2, with
results a2

J and b2
J. On the third particle we measure spin either

along direction a3 or b3, with measurement outcomes a3 and
b3. The measurement outcome for any spin component is
either +1 or −1. Clearly the product of any measurement
results on the first and second particles will also take either
the value +1 or −1. Assuming that the measurement direction
for particle 3 is a3, we can write

p�a1
Jb2

J = b1
Ja2

J�

= p�a1
Jb2

J = b1
Ja2

J = a3� + p�a1
Jb2

J = b1
Ja2

J = − a3�

� �p�a1
Jb2

J = b1
Ja2

J = a3� − p�a1
Jb2

J = b1
Ja2

J = − a3��

=
1

2
�E�a1

J,b2
J,a3� + E�b1

J,a2
J,a3�� . �16�

Here we have assumed that well-defined joint probabilities
exist for all the jointly measured observables. This is a nec-
essary condition for joint measurements. In a similar way,
assuming that the measurement direction for particle 3 is b3,
we can write

p�a1
Ja2

J = − b1
Jb2

J�

= p�a1
Ja2

J = − b1
Jb2

J = b3� + p�a1
Ja2

J = − b1
Jb2

J = − b3�

� �p�a1
Ja2

J = − b1
Jb2

J = b3� − p�a1
Ja2

J = − b1
Jb2

J = − b3��

=
1

2
�E�a1

J,a2
J,b3� − E�b1

J,b2
J,b3�� . �17�

The probabilities p�a1
Jb2

J =b1
Ja2

J� and p�a1
Ja2

J =−b1
Jb2

J� do not
depend on the direction along which spin is measured on the
third particle. This follows from the no-signaling
condition �17�. Furthermore, we can check that
p�a1

Jb2
J =b1

Ja2
J�+ p�a1

Ja2
J =−b1

Jb2
J�=1, for example, by noting

that p�a1
Jb2

J =b1
Ja2

J�= p�a1
Jb2

Jb1
Ja2

J =1� and p�a1
Ja2

J =−b1
Jb2

J�
= p�a1

Ja2
Jb1

Jb2
J =−1�. By adding the inequalities �16� and �17�

we get

�E�a1
J,b2

J,a3� + E�b1
J,a2

J,a3�� + �E�a1
J,a2

J,b3� − E�b1
J,b2

J,b3��

� 2, �18�

which can also be written as

�E�a1
J,b2

J,a3� + E�b1
J,a2

J,a3� + E�a1
J,a2

J,b3� − E�b1
J,b2

J,b3�� � 2.

�19�

As for the CHSH inequality, these two forms of the inequal-
ity are equivalent, as they have to hold for all measurement
directions. This is a Mermin-type inequality for three-particle
correlations. Choosing all the directions ai to be x and all the
directions bi to be y, we get the inequality �8�. We have
shown therefore, that if we require joint probability distribu-
tions to exist for the result combinations �a1b2 ,b1a2 ,a3� and
�a1a2 ,b1b2 ,b3�, which is clearly a necessary condition for a
joint quantum measurement to exist, then the GHZ inequality
will be satisfied. Joint quantum measurements will therefore
satisfy the GHZ inequality.

C. The CHSH inequality, Mermin’s inequality, and joint
quantum measurements

We will now discuss a connection between the CHSH and
Mermin inequalities in the context of joint quantum mea-
surements. We can rewrite inequality �8� as

− 2 �
1

2
��x1 + y1��x2x3 − y2y3 − x2y3 − y2x3�

+ �x1 − y1��x2x3 − y2y3 + x2y3 + y2x3�� � 2. �20�

We have just shown that if we make a joint quantum mea-
surement of spin along x and y on any two of the three
quantum systems, then this inequality, or more precisely its
average, is satisfied.

If we make a joint quantum measurement of spin
along x and y only on quantum system 1, then either
x1+x2 or x1−x2 is equal to zero. The absolute
value of the other nonzero quantity is equal to 2.
Furthermore, we know that the maximum value
of both �E�x2 ,x3�−E�y2 ,y3�−E�x2 ,y3�−E�y2 ,x3�� and
�E�x2 ,x3�−E�y2 ,y3�+E�x2 ,y3�+E�y2 ,x3�� is 2�2. This is
Cirel’son’s bound �19�, i.e., the maximum violation of the
CHSH inequality which is possible within quantum mechan-
ics. It can be demonstrated that this bound is a consequence
of quantum complementarity �20�. The average of the ex-
pression in the middle of Eq. �20� will therefore lie between
−2�2 and +2�2. Also if we make a joint measurement only
on particle 2 or 3 instead of particle 1, the average will lie
between −2�2 and +2�2.

Finally, if we do not require any joint quantum measure-
ments at all, we know that for the GHZ state, the quantum
mechanical average of the middle expression in inequality
�20� takes the value 4. We thus see that requiring joint mea-
surements on two, one, or none of the three quantum systems
means that the maximum absolute value of the average of the
expression in inequality �20� goes from 2, which sets the
local realistic bound, to 2�2, and to 4, respectively �21�.

V. GISIN’S INEQUALITY WITH THREE MEASUREMENT
SETTINGS

We proceed to discuss some cases where the restrictions
for quantum mechanical joint measurements to exist are not
equivalent to the corresponding local realistic bounds on cor-
relation functions. Gisin has considered generalizations of
Bell inequalities for two spin 1/2 particles and N measure-
ment settings for each particle �13�. For three measurement
directions a1, b1, and c1 for the first particle, and a2, b2, and
c2 for the second, the inequality

a1�a2 + b2 + c2� + b1�a2 + b2 − c2� + c1�a2 − b2 − c2� � 5

�21�

has to hold as all ai, bi, and ci can be assigned values +1 or
−1. One now chooses coplanar directions a2= �1,0 ,0�, b2

= �cos�	 /3� , sin�	 /3� ,0�, and c2= �cos�2	 /3� , sin�2	 /3� ,0�,
with a1 antiparallel to a2+b2+c2, b1 antiparallel to
a2+b2−c2, and c1 antiparallel to a2−b2−c2. For the singlet
state, the correlation functions are given by E�a ,b�=−a ·b,
and one therefore obtains
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E�a1,a2� + E�a1,b2� + E�a1,c2� + E�b1,a2� + E�b1,b2�

− E�b1,c2� + E�c1,a2� − E�c1,b2� − E�c1,c2�

= �a2 + b2 + c2� + �a2 + b2 − c2� + �a2 − b2 − c2� = 6,

�22�

which is clearly greater than 5. The left-hand side �LHS� of
the previous inequality is just the LHS of inequality �21�,
rewritten in terms of correlation functions. The violation ra-
tio is therefore 6/5 for the singlet state.

One might ask why we did not instead consider the in-
equality

a1�a2 + b2 + c2� + b1�a2 + b2 − c2� + c1�a2 − b2 − c2�

+ d1�a2 − b2 + c2� � 6, �23�

which includes a fourth combination a2−b2+c2, absent from
inequality �21�. The answer is, that for the quantum singlet
state and the coplanar directions we have chosen,
a2−b2+c2 would be zero. This term would therefore not con-
tribute to the expression involving the correlation functions.
As a consequence, inequality �23� is not violated by quantum
mechanics. It is more advantageous to only include three
coplanar vectors a2±b2±c2, choosing a2, b2, c2 so that the
length of the fourth vector is zero.

We could also choose a2=x, b2=y, and c2=z, so that the
length of all four vectors a2±b2±c2 is �3. We would then
choose four vectors a1, b1, c1, and d1 antiparallel to these
vectors, so that the correlations are maximal for the singlet
state. But even in this case the violation of the resulting Bell
inequality would be less than for inequality �21� and copla-
nar directions. The expression of the correlation functions
would have the maximal value 4�3, and the violation ratio
would be 4�3/6	1.155, which is less than 6/5=1.2. The
violation is bigger for coplanar vectors as the length of the
sums and differences of three coplanar vectors can be made
larger than for the choice a2=x, b2=y, and c2=z.

Let us now assume that we make joint quantum mechani-
cal measurements of spin in the three directions a2, b2, and
c2. Strictly speaking we only know what the restriction on a
joint measurement of spin along two directions is, not what
the restriction is for three directions. For the coplanar
choice of a2= �1,0 ,0�, b2= �cos�	 /3� , sin�	 /3� ,0�, and
c2= �cos�2	 /3� , sin�2	 /3� ,0�, however, it turns out that a
joint measurement of spin in the directions a2 and c2 allows
us to infer a result for direction b2, as this is a linear combi-
nation of the two other directions. The condition for a joint
measurement along directions a2 and c2 is

��a2 + 
c2� + ��a2 − 
c2� � 2. �24�

If we take �=
, this condition means that �
=
�2/ �1+�3�. The jointly measured expectation values we
would arrive at are

a2 = ��a2 · �̂�, c2 = ��c2 · �̂� ,

and

b2 = ���a2 + c2� · �̂� = ��b2 · �̂� . �25�

The correlation functions for the joint measurement will
again be proportional to those of the corresponding sharp
measurements, EJ�a1 ,a2�=�E�a1 ,a2�, and similarly for other
pairs of directions. We therefore get

EJ�a1,a2� + EJ�a1,b2� + EJ�a1,c2� + EJ�b1,a2� + EJ�b1,b2�

− EJ�b1,c2� + EJ�c1,a2� − EJ�c1,b2� − EJ�c1,c2�

= ���a2 + b2 + c2� + �a2 + b2 − c2� + �a2 − b2 − c2��

�
2

1 + �3
6 	 4.392 � 5. �26�

If we require making joint measurements of the three copla-
nar directions a2, b2, and c2, then the Bell inequality given in
�21� is clearly not violated. Furthermore, it is not possible to
reach equality in �21�. This is in contrast to the case for the
CHSH and GHZ inequalities, where it was possible at least
to reach equality when making joint quantum mechanical
measurements on all but one of the quantum systems.

What happens if we consider joint measurements along
three mutually orthogonal directions? The condition restrict-
ing joint measurements of spin along three directions a, b,
and c should be most restrictive when the three directions are
as incompatible as possible. It is easy to show �see Ref. �14��
that a sufficient condition for a joint measurement along
three directions is

�2 + �2 + 
2 � 1, �27�

where �, �, 
 are the factors by which the expectation values
for spin along a, b, and c must scale down. This condition is
clearly not always necessary for arbitrary measurement di-
rections. It is evidently too restrictive, for example, when the
directions are coplanar, or when two of the directions are the
same. We believe, however, that it is indeed necessary when
a=x, b=y, and c=z. In this case, it would follow from con-
dition �27� that

���x + y + z� + �x + y − z� + �x − y − z� + �x − y + z�� � 4 � 6,

�28�

when �=�=
. Making a joint measurement along the x, y,
and z directions would force the correlations to keep well
below the local realistic bound.

VI. CONCLUSIONS

We have investigated the similarities and differences be-
tween Bell inequalities and the conditions for joint quantum
mechanical measurements. In a Bell inequality, one consid-
ers measurements on two or more particles. On each particle,
one can choose between two or more measurement direc-
tions. Local realism, or the assumption that we can assign a
value to each quantity, whether measured or not, leads us to
inequalities for the correlation functions of the measure-
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ments. Some quantum mechanical states are found to violate
these inequalities, if we only measure one of the involved
observables on each quantum system in each run of the ex-
periment.

If, however, we make joint quantum mechanical measure-
ments of all the observables involved, then the corresponding
Bell inequality always has to be satisfied. This follows from
the fact that performing a joint measurement means that val-
ues for each of the observables necessarily exist in each run
of the experiment. The CHSH inequality and Mermin’s in-
equality for GHZ states turn out to be equivalent to the re-
strictions posed by making joint quantum measurements.
Bell inequalities, however, are not always sufficient condi-
tions for joint quantum measurements to exist. We have
shown that Gisin’s inequality for three coplanar directions is
found to be weaker than the condition placed by making
joint measurements of the involved observables.

It remains to be understood exactly why the joint mea-
surement condition and the CHSH and Mermin inequalities
are equivalent. It may also be of interest of compare the
conditions for making joint quantum measurements to a
more general set of Bell inequalities �22�. It has also been
brought to our attention, after submitting this paper, that
there exists a better Bell inequality for three observables
measured on two systems �23�. It is better than the one we
have used in Sec. V in the sense that it corresponds to a facet
of the polytope of local corrections.
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APPENDIX: CORRELATION FUNCTIONS FOR JOINT
MEASUREMENTS

For a joint measurement of the spin observables Â=a ·��

and B̂=b ·�� , we have required that

AJ = ��Â� and BJ = ��B̂� �A1�

hold for any measured state. Here � and � are positive con-
stants and AJ and BJ are expectation values of the jointly
measured observables. In this Appendix, we will show that
correlation functions scale in the same way as the eigenval-
ues.

Suppose that we have two spin 1/2 particles in a state
��12�, which may be entangled. For simplicity, we here
present the case of a pure state, but the proof can easily be
generalized to mixed states. We are making a joint measure-
ment of spin along a and b on system 1. On the second
system, we measure spin along direction c. Let us consider
the correlation for the measurements of spin along a and c.
Denoting the measurement results by a and c, the correlation
function is given by

EJ�a,c� = �p�a = + �c = + � − p�a = − �c = + ��p�c = + �

− �p�a = + �c = − � − p�a = − �c = − ��p�c = − �
�A2�

where p�a=x �c=y� means the conditional probability of ob-
taining a=x given that c=y has been obtained, and J denotes
that a joint measurement was made on system 1. Let us de-
note the conditional state of system 1, given that c=+ was
obtained, by ��1�c= + ��, and the conditional state, given that
c=− was obtained, by ��1�c=−��. For both these states, as
for any state of system 1, we know that the expectation value
for the jointly measured spin observable changes according
to equation �A1�. Moreover, the conditional states are inde-
pendent of whether or not a joint measurement is made on
system 1. Therefore we have that

EJ�a,c� = ���1�c = + ��a · �� ��1�c = + ��p�c = + �

− ���1�c = − ��a · �� ��1�c = − ��p�c = − �

= �E�a,c� , �A3�

where E�a ,c� is the correlation function in the case where
the spin observables are measured on their own on both sys-
tems 1 and 2.

�1� E. Arthurs and J. l. Kelly, Bell Syst. Tech. J. 44, 725 �1965�.
�2� E. Arthurs and M. S. Goodman, Phys. Rev. Lett. 60, 2447

�1988�.
�3� S. Stenholm, Ann. Phys. �N.Y.� 218, 233 �1992�.
�4� N. G. Walker and J. E. Carroll, Electron. Lett. 20, 981 �1984�;

N. G. Walker, J. Mod. Opt. 34, 15 �1987�.
�5� S. M. Barnett and P. M. Radmore, Methods in Theoretical

Quantum Optics �Clarendon Press Oxford, 1997�.
�6� J. S. Bell, Speakable and Unspeakable in Quantum Mechanics

�Cambridge University Press, Cambridge, 1987�; new ed.
2004.

�7� A. Fine, Phys. Rev. Lett. 48, 291 �1982�.
�8� E. Andersson, S. M. Barnett, and A. Aspect, Phys. Rev. A 72,

042104 �2005�.

�9� W. De Muynck and O. Abu-Zeid, Phys. Lett. 100A, 485
�1984�.

�10� J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.
Rev. Lett. 23, 880 �1969�.

�11� N. D. Mermin, Phys. Rev. Lett. 65, 1838 �1990�.
�12� D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s

Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos �Kluwer, Dordrecht, 1989�; D. M. Green-
berger, M. A. Horne, A. Shimony, and A. Zeilinger, Am. J.
Phys. 58, 1131 �1990�.

�13� N. Gisin, Phys. Lett. A 260, 1–3 �1999�
�14� P. Busch, Phys. Rev. D 33, 2253 �1986�; P. Busch, M.

Grabowski, and P. J. Lahti, Operational Quantum Physics
�Springer-Verlag, Berlin, 1995�, pp. 109–110.

SON et al. PHYSICAL REVIEW A 72, 052116 �2005�

052116-6



�15� C. W. Helstrom, Quantum Detection and Estimation Theory
�Academic, New York, 1976�

�16� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, 2000�.

�17� M. J.W. Hall, Phys. Rev. A 69, 052113 �2004�.
�18� G. C. Ghirardi, A. Rimini, and T. Weber, Lett. Nuovo Cimento

Soc. Ital. Fis. 27, 293 �1980�.
�19� B. S. Cirel’son, Lett. Math. Phys. 4, 93 �1980�.
�20� A. Chefles and S. M. Barnett, J. Phys. A 29, L237 �1996�.
�21� A. Chefles and S. M. Barnett, Phys. Rev. A 55, 1721 �1997�.
�22� I. Pitowsky and K. Svozil, Phys. Rev. A 64, 014102 �2001�.
�23� D. Collins and N. Gisin, J. Phys. A 37, 1775 �2004�.

JOINT MEASUREMENTS AND BELL INEQUALITIES PHYSICAL REVIEW A 72, 052116 �2005�

052116-7


