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We derive an approximate expression for a “radiative potential” which can be used to calculate QED strong
Coulomb field radiative corrections to energies and electric dipole �E1� transition amplitudes in many-electron
atoms with an accuracy of a few percent. The expectation value of the radiative potential gives radiative
corrections to the energies. Radiative corrections to E1 amplitudes can be expressed in terms of the radiative
potential and its energy derivative �the low-energy theorem�: the relative magnitude of the radiative potential
contribution is ��3Z2ln�1/�2Z2�, while the sum of other QED contributions is ��3�Zi+1�2, where Zi is the
ion charge; that is, for neutral atoms �Zi=0� the radiative potential contribution exceeds other contributions
�Z2 times. The advantage of the radiative potential method is that it is very simple and can be easily
incorporated into many-body theory approaches: relativistic Hartree-Fock, configuration interaction, many-
body perturbation theory, etc. As an application we have calculated the radiative corrections to the energy
levels and E1 amplitudes as well as their contributions �−0.34% and +0.43%, respectively� to the parity
nonconserving �PNC� 6s-7s amplitude in neutral cesium �Z=55�. Combining these results with the QED
correction to the weak matrix elements �−0.41% � we obtain the total QED correction to the PNC 6s-7s
amplitude, �−0.32±0.03�%. The cesium weak charge QW=−72.66�29�exp�36�theor agrees with the Standard
Model value QW

SM=−73.19�13�, the difference is 0.53�48�.

DOI: 10.1103/PhysRevA.72.052115 PACS number�s�: 32.80.Ys, 31.30.Jv

I. INTRODUCTION

The precision of calculations and measurements of phe-
nomena of heavy neutral atoms has reached the level where
strong-field QED radiative corrections are observable. The
most striking example is parity nonconservation �PNC� in
the neutral cesium atom �Z=55� where the nuclear Coulomb
field radiative corrections “saved” the standard model of par-
ticle physics �this dramatic story may be found, e.g., in the
review of Ref. �1�; see also the original papers for the mea-
surement �2,3� and calculations of strong-field radiative cor-
rections �4–15��.

While there is an abundance of highly accurate calcula-
tions of radiative corrections to phenomena of single-
electron or few-electron atoms, only a handful of calcula-
tions have been performed for atoms with many electrons. A
proper account of the many-body effects in calculations of
radiative corrections to phenomena of many-electron atoms,
including the PNC amplitude, is lacking.

The first estimates of radiative corrections to energies of
an external electron in heavy neutral atoms were performed
more than 20 years ago �16�. A semiempirical formula for the
s-wave radiative correction to energy levels �the Lamb shift�
was derived. The relative magnitude of this correction is
�Z2�3ln�1/Z2�2�. It rapidly increases with the nuclear
charge Z and was important in making a very accurate pre-
diction of the francium �Z=87� spectrum �measurements per-
formed after the theoretical prediction �16� agree with the
calculated energy levels to better than 0.1%�. Calculations of
the Lamb shift in alkali and coinage metal atoms were per-
formed in Ref. �17� using local Dirac-Slater potentials; im-
portantly, it was demonstrated that the ratio of energy shifts

arising from the Uehling potential and self-energy in neutral
atoms is the same as that in hydrogenlike ions, verifying the
authors’ earlier estimates �18� �see also, e.g., Ref. �19� where
a similar approach, following from Welton’s semiclassical
arguments �20�, has been used successfully to estimate the
self-energy in several-electron highly charged ions�. Calcu-
lations of the Lamb shift in neutral alkali atoms were also
performed in Ref. �21� using local atomic potentials. In our
recent works �6� we used a parametric potential fitted to re-
produce Lamb shifts in hydrogenlike ions to perform ap-
proximate numerical calculations of radiative corrections to
the energy levels, electric dipole �E1� transition amplitudes,
and a rough estimate of radiative corrections to the PNC
amplitude in cesium. Recently, calculations of radiative cor-
rections in local effective atomic potentials have been per-
formed for E1 amplitudes in neutral alkalis in Ref. �22� and
for the PNC amplitude in Cs in Ref. �14�.

It is well known that many-body effects �exchange inter-
action, core relaxation and polarization, correlations� may be
very important. For any perturbation located at small dis-
tances, e.g., the field �volume� isotopic shift, the matrix ele-
ments for an electron with orbital angular momentum l�0
are dominated by the many-body effects mentioned above. In
this case one cannot guarantee the magnitude or even the
sign of the shift when one does a model potential calculation.
Moreover, even for the s wave, many-body corrections can
change the results by a factor of 2. QED radiative corrections
also come from small distances, and one may expect a simi-
lar situation. Therefore recent calculations of QED correc-
tions in model atomic potentials cannot guarantee results of
high accuracy. Indeed, in a recent work �23� the importance
of a proper account of core relaxation in calculations of the
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radiative shift due to the Uehling potential was demonstrated
for neutral cesium.

In the present work we suggest a simple radiative poten-
tial approach that allows one to calculate radiative correc-
tions to many-electron atoms including many-body effects.
In particular, our method is valid for calculations of the
Lamb shift and radiative corrections to E1 amplitudes. We
claim an accuracy of a few percent for calculations of radia-
tive corrections to s-wave energy levels, s-p intervals, and s-
p E1 amplitudes for neutral cesium using the radiative po-
tential approach. We believe that our approach is comple-
mentary to the direct Feynman diagram calculations in a
model potential.

This paper is organized as follows. In Sec. II we derive an
approximate ab initio formula for the radiative potential for
Z��1. Then we refine this potential to include higher orders
in Z� using published results for hydrogenlike ions �24�. In
Sec. III we describe the procedure for calculations of QED
radiative corrections to electric dipole amplitudes. In Sec.
III A we derive the low-energy theorem: the vertex and nor-
malization corrections are expressed in terms of �� /�E
where � is the electron self-energy operator. The dominating
contribution to the E1 amplitude is due to the radiative cor-
rections to electron wave functions produced by the radiative
potential �Sec. III B�. The relative value of this contribution
is ��3Z2ln�1/�2Z2� both in ions and neutral atoms. It is
shown in Sec. III C that the sum of all other terms �the vertex
correction, the normalization correction, and part of the self-
energy operator which can be presented as �A= �H−E�A
+A�H−E� and does not contribute to the energy shifts� is
��3�Zi+1�2, where Zi is the ion charge, H is the atomic
electron Hamiltonian, and A is an operator defined in Sec.
III C. Therefore in neutral atoms �Zi=0� this sum is Z2 times
smaller than the radiative potential contribution and may be
neglected. As an application we calculate in Sec. IV the ra-
diative corrections to the energy levels and E1 amplitudes in
neutral cesium including many-body effects: core relaxation,
core polarization by the external photon electric field, and
correlation corrections. In Sec. V we calculate the radiative
corrections to energy levels and E1 amplitudes contributing
to the parity nonconserving 6s-7s amplitude in Cs. Finally,
the conclusion for the radiative potential approach for the
calculations of the QED radiative corrections to energies, E1
amplitudes, and the PNC amplitude is given in Sec. VI.

II. RADIATIVE POTENTIAL

A. Derivation of the radiative potential; radiative shifts
in H-like ions

We define a radiative potential L̂ such that its average
value coincides with the radiative corrections to energies,

�En = �n�L̂�n�; �1�

the radiative potential is nonlocal and energy dependent,

L̂= L̂�r ,r� ,E�, where E is the electron energy. It contains the
nonlocal electron self-energy operator in the strong Coulomb

field, �̂�r ,r� ,E�, and the local vacuum polarization operator

comprised of the lowest-order in Z� Uehling potential �U�r�
and the higher-order Wichmann-Kroll potential. Diagrams
for the radiative energy shifts are presented in Fig. 1.

The actual problem is the calculation of the self-energy
��r ,r� ,E�. This calculation can be divided into two parts:
one in which the electron interaction with virtual photons of
high frequency is considered, and one in which virtual pho-
tons of low frequency is considered. In the high frequency
case the external field �the nuclear Coulomb field� need only
be included to first order �vertex diagram�. In the case of a
free electron the vertex diagram gives the electric f�q2� and
magnetic g�q2� form factors presented, for example, in Ref.
�25�. The calculations of the contributions of f�q2� and g�q2�
to the radiative potential L̂ are similar to the calculation of
the Uehling contribution presented in Ref. �25�. Therefore
we present the calculations very briefly. We also present the
well-known results for the Uehling potential for comparison
with the f�q2� and g�q2� contributions calculated in this
work.

In the momentum representation the high-frequency con-
tribution to the radiative potential is equal to

�rad�q� = Qrad�q���q� , �2�

where � is the atomic potential which at small distances is
equal to the unscreened nuclear electrostatic potential, and

Qrad�q� = −
1

q2 P�− q2� +
g�− q2�

2m
� · q + f�− q2� − 1. �3�

Here the first term contains the polarization operator
P�−q2� and leads to the Uehling potential, � are the Dirac
matrices, and m=1/rc where rc is the Compton wavelength.
We use units q=c=1 throughout, except where presented
explicitly. In the coordinate representation �25�

�rad�r� =
1

4�2r
Im	

−�

�

�rad�− y2�exp�iry�ydy , �4�

where y=
q2. A method to calculate this integral is sug-
gested in Ref. �25�. After substitution of P�−q2�, f�−q2�, and
g�−q2� from Ref. �25� we obtain

�rad�r� = �U�r� + �g�r� + � f
	�r� . �5�

The first term is the well-known Uehling potential

FIG. 1. Diagrams for radiative energy shifts �L̂� corresponding
to �a� the self-energy and �b� vacuum polarization. The double line
denotes a bound electron; the wavy line denotes a photon.
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�U�r� =
2�

3�
��r�	

1

�

dt

t2 − 1

t2 �1 +
1

2t2�e−2trm. �6�

For the magnetic form-factor contribution we obtain

�g�r� =
�

4�m
i� · �
��r��	

1

�

dt
1

t2
t2 − 1
e−2trm − 1�� .

�7�

A straightforward calculation for the electric form factor
gives

� f
	�r� = −

�

�
��r�	

1

�

dt
1


t2 − 1

�1 −

1

2t2�

�ln�t2 − 1� + ln�4m2/	2�� −

3

2
+

1

t2�e−2trm. �8�

The expression for the electric form factor �8� contains a
low-frequency cutoff parameter 	 in the argument of the
logarithm. In the standard calculation of the energy shift �25�
this parameter is assumed to be in the interval �Z��2m�	
�m. After addition of the low-frequency contribution the
parameter 	 cancels out. To minimize the low-frequency
contribution we select 	 of the order of the electron binding
energy in atoms, 	��Z��2m, which is the smallest possible
value that can be taken as the border for the high-frequency
region �one can use free-electron Green’s functions to calcu-
late the electron form factors, used above, for frequencies
�� �Z��2m�. This gives ln�4m2 /	2�=4 ln�1/Z��+const,
where the constant const does not depend on Z for Z��1,
const�1. Therefore the high-frequency contribution allows
us to determine the electric form-factor contribution with
logarithmic accuracy. The uncertainty is due to the omitted
low-frequency contribution for this term.

The constant in the electric form factor can be found from
a comparison with calculations of the Lamb shift for the
high-energy levels �principal quantum number n�1� in hy-
drogenlike ions. Indeed, the energy of an external electron in
a many-electron atom is extremely small, E�10−5mc2.
Therefore we need the self-energy operator ��r ,r� ,E�0�.
The short-range character of � means that we can use un-
screened Coulomb Green’s functions to calculate it.

For very light atoms �Z�1� the comparison can be made
with the nonrelativistic calculations presented in Ref. �25�,
yielding const�−0.63. However, this result is not applicable
for Z
10. In this case we have to use the results of all orders
in Z� calculations for hydrogenlike ions presented in Ref.
�24�. To reproduce the results of Ref. �24� �and leave some
room for a low-frequency contribution discussed below� we
select this logarithm in the form 4 ln�1/Z�+0.5�, where a
small constant 0.5 is added into the argument of the loga-
rithm. This selection gives an accuracy �10% for all impor-
tant applications: the s-wave self-energy, s-p intervals �which
are needed to calculate the parity violation effects�, and fine
structure intervals for any Z. However, the radiative shifts for
p waves �and higher waves� are small and sensitive to the

low-frequency contribution. To make our calculation com-
plete and improve the accuracy to 1% we should consider
this contribution too.

A consistent calculation of the low-frequency contribution
to the nonlocal self-energy operator ��r ,r� ,E� using Cou-
lomb or parametric potential Green’s functions is a compli-
cated task. However, at the present level of experimental
accuracy this low-frequency problem is not of immediate
importance. It is much easier to fit this small low-frequency
contribution using a parametric potential �l�r�. A typical fre-
quency in the low-frequency contribution is �E1s; therefore
the range of this potential is about the size of the 1s orbital,
aB /Z. To reproduce the p-level radiative energy shifts we use
the following expression for the low-frequency contribution:

�l�r� = −
B�Z�

e
Z4�5mc2e−Zr/aB, �9�

where e is the proton charge and B�Z�=0.074+0.35Z� is a
coefficient fitted to reproduce the radiative shifts for the high
Coulomb p levels calculated in Ref. �24�.

Finally, we should introduce one more correction which
becomes important for very heavy atoms, Z�80. The poten-
tial �8� is not applicable for very small distances, r�Z�rc.
Indeed, we used an expression for the electric form factor of
a free electron. However, at very small distances the electron
potential energy Z� /r�m and we should use an expression
for an off-mass-shell form factor f�p , p�� instead of f�−q2�.
The form factor f�p , p�� leads to a nonlocal expression
��r ,r� ,E� for r�Z�rc instead of the local potential �8�. In-
tegration of an electron wave function � with a nonlocal
operator ����r ,r� ,E���r��d3r�� makes the effective poten-
tial less singular. We take into account this fact by introduc-
ing a small distance cut-off coefficient mr / �mr+0.07Z2�2�.
Our final expression for the electric formfactor contribution
has the following form

� f�r� = − A�Z,r�
�

�
��r�	

1

�

dt
1


t2 − 1

�1 −

1

2t2�

�ln�t2 − 1� + 4 ln�1/Z� + 0.5�� −

3

2
+

1

t2�e−2trm.

�10�

Here the coefficient A�Z ,r�= �1.071−1.976x2−2.128x3

+0.169x4�mr / �mr+0.07Z2�2�, where x= �Z−80��; A�Z ,r�
was found by fitting the radiative shifts for the high Coulomb
s levels calculated in Ref. �24�.

Thus we obtain the following expression for the complete
radiative potential:

�rad�r� = �U�r� + �g�r� + � f�r� + �l�r� +
2

3
�WC

simple�r� ,

�11�

where �U�r� is the Uehling potential �6�, �g�r� is the mag-
netic formfactor contribution �7�, � f�r� is the high-frequency
electric form-factor contribution �10�, and �l�r� is the low-
frequency contribution �9�.
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To make the picture complete we added to the radiative
potential a simplified form of the Wichmann-Kroll potential
�higher-orders vacuum polarization� which has accurate
short-range and long-range asymptotics �6�:

�WC
simple�r� = −

2�

3�
��r�

0.092Z2�2

1 + �1.62r/rc�4 . �12�

Accurate calculations of the Wichmann-Kroll contribution in
hydrogenlike ions for Z=30,40, . . .100 have been performed
in Ref. �26�. To reproduce the Wichmann-Kroll s-wave shifts
from Ref. �26� with a few percent accuracy one should take
�WC�r�= 2 � 3�WC

simple�r�. The Wichmann-Kroll potential �12�
gives a very small contribution which may be noticeable
��1% � only for Z�80. �This confirms our conclusion �6�
that the contribution of higher orders into the vacuum polar-
ization potential is so small that it is unobservable in neutral
atoms: for the cesium atom the Wichmann-Kroll potential
gives a contribution to s waves about 50 times smaller than
the Uehling potential contribution; moreover, the Uehling
potential itself gives only about 10% of the total radiative
correction for s waves and a very small contribution for
higher waves.�

Note that our fitting coefficient in the electric form-factor
contribution A�Z ,r��1 and the coefficient in the low-
frequency contribution B is small, therefore the semiempir-
ical radiative potential �11� is always close to the result of the
direct Feynman diagram calculation �U�r�+�g�r�+� f

	�r�. It
may look surprising that the radiative potential obtained in
the approximation Z��1 gives energy shifts which are close
to the all-orders results. However, the higher-order correc-
tions to the energy shifts are mainly due to the relativistic
electron wave functions which we take into account exactly
when calculating the matrix elements. Indeed, the Dirac
wave function diverges at small distances r�aB /Z:

�p1/2

† �p1/2

Z2�2 � �s
†�s � r−Z2�2

= exp�− Z2�2ln r� . �13�

The radiative energy shifts originate from very small dis-
tances r�rc= q /mc. Thus we take into account the relativ-
istic enhancement factor ��2�rc� /�2�aB /Z����aB /Zrc�Z2�2

= �1/Z��Z2�2
=exp�Z2�2ln�1/Z��� in the Z� dependence of

the matrix elements when we use the Dirac wave functions.
In Table I we compare the self-energy for 5s1/2, 5p1/2, and

5p3/2 levels in hydrogenlike ions calculated using the poten-
tial �g�r�+� f�r�+�l�r� with those of Ref. �24�. It is seen
that the radiative potential �rad reproduces the self-energy
within a few percent for all Z. The comparison is made for

the highest available principal quantum number n=5 in order
to satisfy the condition E�mc2 which is needed to calculate
the radiative corrections in neutral atoms. However, in prac-
tice the results are good for any n�1. Moreover, the poten-
tial �rad�r� even gives the 1s energy with reasonable accu-
racy, �10%. Note that to calculate parity violation we
mainly need to reproduce high s-level shifts in Cs �Z=55�,
Tl �Z=81�, and Fr �Z=87�; the p-level shifts are very small
and not important.

The above calculations �and those of Ref. �24�� were
performed in the Coulomb field of a pointlike nucleus
��r�=Ze /r. The small correction due to finite nuclear
size can be taken into account using integration over
a realistic charge density for the nucleus, �rad�r�
=��rad

point charge��r−r� � ���r��d3r�. The finite nuclear size con-
tribution is suppressed by a small parameter rn /rc�10−2.
The results of our calculations for neutral cesium presented
later in this work include this correction.

B. Radiative potential in atomic calculations

The radiative potential we have derived from radiative
shifts in hydrogenlike ions can be used in calculations of
radiative shifts in ions and neutral atoms for all Z and for any
number of electrons.

Indeed, all electron wave functions with energy E�mc2

are proportional to the zero-energy Coulomb wave functions
in the area r�rc, since the energy E may be neglected in the
Dirac equation and the potential is unscreened in this region.
Therefore the ratio of the matrix elements of the radiative
potential will be equal to the ratio of the electron densities
near the origin �at a given j , l�. This is the reason why one
may use parametric potentials fitted to reproduce Lamb shifts
in hydrogenlike ions �for principal quantum numbers n�1�.
Any potential of the range �rc will give the same results.
The radiative potentials Eqs. �6� and �10� belong to this
class. This also explains the conclusion of Ref. �17� that the
ratio of the self-energy contribution to the Uehling contribu-
tion is the same in hydrogenlike ions and neutral atoms cal-
culated in Dirac-Slater potentials.

The magnetic form-factor potential Eq. �7� is a long-range
one. However, it decays rapidly and its matrix elements are
still determined by small distances r�aB /Z where all the
wave functions with principal quantum numbers n�1 and
given j , l are proportional �since the energy �En � � �E1s� and
may be neglected in the area r�aB /Z�. Thus the radiative
shifts at a given j , l are still proportional to the electron den-
sity in the vicinity of the nucleus �1/n3 in the Coulomb case�.
Numerical data presented in Ref. �25� show that this state-

TABLE I. Difference �in %� between the results of the Mohr-Kim self-energy calculations in Ref. �24�
and the radiative potential results ��Mohr−g− f − l� / �Mohr−g�� for hydrogenlike ions.

Z 10 20 30 40 50 60 70 80 90 100 110

5s1/2 0.0 0.4 0.5 0.3 0.0 −0.2 −0.2 0.0 0.1 0.1 0.0

5p1/2 −0.8 −3.6 −2.8 −1.8 −1.1 −0.7 −0.3 0.1 0.8 1.8 3.3

5p3/2 −2.5 −8.3 −8.9 −7.3 −5.2 −3.1 −1.1 0.4 1.4 1.7 0.8
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ment is accurate to a few percent for n�1 �exact for n�1�.
Our semiempirical radiative potential was derived in the

field of the nucleus. In atoms there is an electron density
contribution to the radiative potential. This can be found by
integration of the point-charge radiative potential over the
electron density �as in the finite nuclear size calculation�. It is
easy to show that this contribution is very small. The elec-
tron density contribution is suppressed Z times relative to the
nuclear charge contribution. Indeed, to find the energy shift
we need to integrate the radiative potential with a squared
external electron wave function �2�r�. For the nuclear con-
tribution �2��2�rc�; for the electron density contribution
�2��2�aB�, since the radius of the electron charge density is
of the order of the Bohr radius aB. For an external s-wave
electron in a neutral atom the ratio �2�rc� /�2�aB��Z. Thus
the nuclear contribution is Z times larger than the electron
density contribution. A more elaborate estimate using the
WKB semiclassical electron wave function and the Thomas-
Fermi electron density confirms this simple estimate.

Note that to estimate the electron density contribution to
the self-energy operator we can use a semiclassical expres-
sion for � derived in Ref. �27�:

��r,r�,E� =
�

3�m2 ln
mc2

�e��r� + E�
�2

„− e��r�…��r − r�� .

�14�

Here �2(−e��r�)=4�e2ne�r�, ne�r� is the electron number
density. This semiclassical expression is valid for r�aB /Z.
Again, an estimate based on Eq. �14� shows that the electron
density contribution is Z times smaller than the nuclear
charge contribution.

Another conclusion from Eq. �14� is that the self-energy
operator is not sensitive to the energy of a valence electron in
the area r�aB /Z �the small-distance boundary of the appli-
cability of Eq. �14�� where e��aB /Z���Z2�2�mc2�E
��2mc2. The logarithm in this area is equal to ln�1/Z2�2�, it
is the same value that appears in the pure Coulomb case �cf.
Eq. �10��. An estimate of the energy dependence in this area
may be characterized by the ratio

��

�E

��/E�
�

1

Z2 �15�

which is very small in neutral atoms. In ions this ratio is
��Zi+1�2 /Z2, where Zi is the ion charge �for a valence elec-
tron in an ion E��Zi+1�2�2mc2�. We shall recall these con-
clusions during the discussion of the low-energy theorem for
an electric dipole amplitude.

C. Asymptotics of the radiative potential

It may be useful to present long-range and short-range
asymptotics of the radiative potentials. For mr�1

�U�r� =
�

4
��mr�3/2
e−2mr��r� , �16�

� f�r� �
�

4
��mr�1/2
�ln mr + 4 ln Z��e−2mr��r� . �17�

Note that the asymptotics of the high-frequency contribution
to � f�r� are presented as an illustration only. A correct �long-
range� expression for large r is determined by the contribu-
tion of low frequencies. However, numerically this long-
range contribution is not significant. Indeed, the radiative
corrections to s-wave energies are proportional to 1/n3 ��2

near the origin� to an accuracy �1% �see Refs. �24,25��.
This can be considered as an estimate of the contribution of
the long-range tail and the energy dependence of ��r ,r� ,E�.

The form factor g at large distances gives a contribution
which describes the interaction of the electron anomalous
magnetic moment with the atomic electrostatic potential �
�25�:

�g = − i
�q

4�mc
� · �� . �18�

This long-range potential decreases faster than 1/r2 since the
nuclear electrostatic potential is screened by atomic elec-
trons. It gives an especially important contribution for orbit-
als with l�0. The long-range character of this interaction
guarantees that it is not very sensitive to higher order in Z�
corrections which are produced by the strong Coulomb field
at r�rc.

The short-range asymptotics of the radiative potentials,
mr�1, are the following:

�U�r� =
2�

3�
ln�1/mr���r� , �19�

� f�r� = −
�

�
ln�1/mr��ln�1/mr� + ln�m2/	2����r� , �20�

�g�r� = i
�

2�
mr ln�1/mr�� · n��r� . �21�

We see that the area mr�1 is not important for the magnetic
form-factor contribution.

As we pointed out in Sec. II A, the expression �20� for the
electric form-factor contribution is not applicable for mr
�Z�. Indeed, the short-range asymptotics �20� can be ob-
tained very easily using high-energy asymptotics of the ver-
tex operator ���p , p� ,q� where p and p� are initial and final
electron four-momenta, and q is the photon four-momentum.
These asymptotics can be found, e.g., in Ref. �25�. In the
case �q2 � � p2= p�2=m2,

���p,p�,q� = ��exp
−
�

4�
ln

�q2�
m2 �ln

�q2�
m2 + 2 ln

m2

	2 �� .

�22�

To obtain the result in the coordinate representation we
should substitute q�1/r. This gives the correction �20� to
the Coulomb potential. However, in the area �q2 � � p2,
p�2�m2,
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���p,p�,q� = ��exp�−
�

2�
ln

�q2�
p2 ln

�q2�
p�2� . �23�

Here we have an explicit dependence on both electron mo-
menta, therefore in the coordinate representation we obtain
the nonlocal correction to the potential. This corresponds to
the area where the Coulomb potential Z� /r�m.

The radiative shift for the p1/2 orbital is a special case.
This orbital has a lower Dirac component penetrating to the
region r�rc; see Eq. �13�. The relative contribution of the
short-distance area r�rc increases as �Z2�2. This leads to a
cancellation of � f�r� and �g�r� contributions at Z�40. For
very large Z the short-range contribution dominates and the
radiative corrections for p1/2 become comparable to that for
s1/2. At Z=110 the p1/2 shift is only three times smaller than
the s1/2 shift.

For electron angular momentum j�1/2, the short-range
contributions of �U�r� and � f�r� are suppressed. The domi-
nating contribution is given by the long-range �g�r�. The
result is also sensitive to the low-frequency contribution de-
scribed by �l�r�.

III. ELECTROMAGNETIC E1 AMPLITUDES

Diagrams for radiative corrections to the electric dipole
�E1� transition amplitude are presented in Fig. 2. The mag-
nitude of different QED contributions to E1 amplitudes de-
pends on the virtual photon gauge. Corrections to E1 ampli-
tudes in hydrogenlike ions have been calculated with
logarithmic accuracy ���3Z2ln�1/�2Z2�� in Ref. �28�. It is
pointed out there that in the Yennie gauge it is enough to take
into account only those corrections to the nonrelativistic
electron wave functions produced by the nonrelativistic ra-
diative potential �containing ��r��.

In neutral atoms there is an additional small parameter
suppressing the external photon vertex contribution �Fig.
2�c��. The binding energies of the valence electron and the
external photon frequency are extremely small in comparison
with typical virtual photon frequencies. This makes correc-
tions to the electric dipole operator �from the electron
anomalous magnetic moment� and all contributions propor-
tional to �� /�E negligible �see Eq. �15��.

Therefore the radiative potential approach should work in
neutral atoms even better than in hydrogenlike ions. One has
only to add the radiative potential to the atomic potential,
calculate the electron wave functions, and use them to calcu-
late electric dipole matrix elements. It is convenient to per-
form the calculations in the length form for the electric di-
pole operator �D=er�.

In the following section �Sec. III A� we derive the low-
energy theorem for the E1 amplitude �expressing the vertex
contribution in terms of the self-energy�. In Sec. III B we
explain the suppression of the vertex corrections and the va-
lidity of the radiative potential approach. In Sec. III C we
perform a standard subtraction to remove ultraviolet diver-
gences from the radiative corrections to the amplitude and
estimate different contributions.

A. Derivation of the low-energy theorem

For the contribution of the high-frequency virtual photons
the low-energy theorem follows from the Ward identity �25�

���p,p,0� =
�G−1�p�

�p�

, �24�

where �� is the vertex operator, G−1=��p�−m−M�p� is the
inverse electron Green’s function, and M�p� is the mass
�self-energy� operator in the momentum representation. In
the length form for the electric dipole operator we only need
the zero component of the Ward identity ��0=�0

−�M�p� /�E� since the electron-photon interaction in this
case is described by Hint�e�0�0�, where �=r ·E and E is
the photon field. Therefore the sum of the usual E1 ampli-
tude and the vertex correction is

�1�r −
1

2
�r

��

�E
+

��

�E
r��2� , �25�

where ���0M. Here it is assumed that the transformation of
the mass operator from the momentum representation to the
coordinate representation is accompanied by the antisymme-
trization of the operators r and M since, generally speaking,
they do not commute �actually, this noncommutativity exists
for the low-frequency contribution only�. There is also some

FIG. 2. Diagrams for radiative
corrections to the E1 amplitude:
�a�,�b� self-energy; �c� vertex;
�d�,�e� vacuum polarization; and
�f� external photon polarization
operator. Notations are the same
as in Fig. 1; the dashed line with
the cross denotes the laser driven
external photon field.
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difference in definitions of the mass operator M in Ref. �25�
and the self-energy operator � used in this work �extra Dirac
matrix �0; the matrix elements in Ref. �25� are defined using

�̄=�†�0, we use �†���. Note that this low-energy theorem
for the high-frequency contribution is valid in any order of
perturbation theory �including all orders in Z�� and holds for
the renormalized operators �similar to the Ward identity�.
One should add to Eq. �25� the QED corrections to the wave
functions �1� and �2� which are not shown there explicitly.

To prove the low-energy theorem for the low-frequency
contribution we can use a nonrelativistic expression for the
QED correction to the electric dipole amplitude presented,
e.g., in Ref. �29�:

��1�z�2� =
2�

3�m2	
0

�

�d� Re f��� , �26�

f��� = �
n,k

�1�z�n��n�pi�k��k�pi�2�
�E2 − En���E2 − Ek − ��

+ �
n,k

�1�pi�n��n�pi�k��k�z�2�
�E1 − En − ���E1 − Ek��

�27�

+ �
n,k

�1�pi�n��n�z�k��k�pi�2�
�E1 − En − ���E2 − Ek − ��

�28�

−
�1�z�2�

2 �
n
� �1�pi�n��n�pi�1�

�E1 − En − ��2 +
�2�pi�n��n�pi�2�
�E2 − En − ��2 � . �29�

The typical frequency � of a virtual photon is large in com-
parison with the difference of excitation energies of the va-
lence electron. Therefore we can simplify the vertex contri-
bution �Eq. �28�� by replacing En by Ek, since �Ek−En���,
and summing over n �closure�. We repeat this procedure by
replacing Ek by En and summing over k. The result for the
vertex contribution can be presented in a symmetric form �to
cancel the first-order correction in �Ek−En� /� and the com-
mutator �z , pi��,

1

2�
n
� �1�zpi�n��n�pi�2�

�E2 − En − ��2 +
�1�pi�n��n�piz�2�
�E1 − En − ��2 � . �30�

Here we neglected the small difference E2−E1. Now
we see that the vertex contribution is indeed propor-
tional to z��� /�E� ��� pi �n��n � pi / �E1−En−��, �� /�E1�

−pi �n��n � pi / �E1−En−��2�. Combining all terms and using
the definition of �,

��E1� =
2�

3�m2	
0

�

�d� Re�
n

pi�n��n�pi

�E1 − En − ��
, �31�

we obtain the low-energy theorem for the radiative correc-
tion to the electromagnetic amplitude:

�1�D�2�rad = �
n

�1�D�n��n���E2��2�
E2 − En

+ �
n

�1���E1��n��n�D�2�
E1 − En

�32�

−
1

2
�1�D

��

�E
+

��

�E
D�2� �33�

+
1

2
�1�D�2���1�

��

�E
�1� + �2�

��

�E
�2�� . �34�

Note that we can extend this derivation to include the high-
frequency contribution. We just have to use the relativistic
radiation operator ��exp�ik ·r� instead of the momentum op-
erator pi. �One should start from the relativistic expression
for the amplitude �30–32� instead of Eqs. �26�–�29�.�

In this derivation we used the long-range character of the
electric dipole operator r. Indeed, we assumed that the ma-
trix element �n �z �k� in the sum over n and k is dominated by
states with �En−Ek � ��. This is certainly correct for the
states located at distances comparable to the radius of the
valence electron where �En � ��Ek � ��E1 � ��E2�. For short-
range operators �e.g., weak or hyperfine interactions� the
contribution of states �En � ��Ek � � �E1 � ��E2� may be impor-
tant.

B. Enhancement of the self-energy contribution

The contribution of the electron self-energy � to the E1
amplitude �Eq. �32�� is enhanced by the small energy de-
nominator E1,2−En corresponding to the excitation of an ex-
ternal electron. The vertex �33� and normalization �34� con-
tributions are not enhanced since �� /�E�� /�, where �
�E1,2−En is a typical virtual photon frequency. One may
conclude that the vertex and normalization contributions are
suppressed relative to the self-energy contribution by a small
factor �E1,2−En� /�. Moreover, the vertex and normalization
contributions usually have opposite signs and partially cancel
each other. This is seen if we introduce complete sums
�n �n��n� between the operators D and �� /�E in the first and
second terms in Eq. �33�; the large diagonal contributions in
these sums ��n�= �1� in the first term and �n�= �2� in the sec-
ond� cancel exactly the normalization contribution Eq. �34�.

There is another way to explain the suppression of the
vertex contribution. The product r����r ,r� ,E� /�E� is small
everywhere inside a neutral atom. The matrix element of r
typically comes from the distance r�aB. At this distance the
nuclear Coulomb field is screened, Zef f �1; therefore in this
region ���r ,r� ,E� /�E cannot have Z2 enhancement. On the
other hand, at small distances where the nuclear charge is
unscreened, r is small. This can also be seen from the vertex
diagram itself where the operator r is locked inside the vir-
tual photon loop located at a small distance from the nucleus.
There is no such suppression for the radiative correction to
the electron wave function. The radiative potential changes
the energy of the electron. This in turn changes the large
distance asymptotics of the electron wave function and the
matrix element of r.

In the approximate expression for the radiative potential
we use in this work ���r ,r� ,E� /�E=0 and so there are no
vertex or normalization contributions. The first two terms in
the radiative correction Eq. �32� can be presented in terms of
corrections to the wave functions produced by �:
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�1�� = �
n

�1���E1��n��n�
E1 − En

, �2�� = �
n

�2���E2��n��n�
E2 − En

,

�35�

�1�D�2�� = �1��D�2� + �1�D�2�� . �36�

We have checked that our approximate expression for the
radiative potential gives correct diagonal matrix elements of
� �radiative shifts�. Here we need the nondiagonal matrix
elements �1,2 �� �n�. However, the main contribution to the
matrix element of D=er�eaB is given by the states with
En�q2 / �maB

2��E1,2��, where � is the virtual photon en-
ergy. Therefore our approximate radiative potential should
give such matrix elements �1,2 �� �n� correctly. Note, once
again, that this statement is incorrect for the radiative correc-
tions to the matrix elements of short-range operators like the
weak and hyperfine interactions. In this case the states with
En� qc /rtypical�� give a significant contribution and use of
the radiative potential designed to give matrix elements be-
tween low-energy electron states is not justified.

The derivation �and result� of the low-energy theorem we
have presented above is similar to that of the low-energy
theorem for correlation corrections to the electric dipole am-
plitude in our work �33�. The vertex �structural radiation� and
normalization correlation corrections are also proportional to
�� /�E and suppressed by a factor Evalence /Ecore�1/10
where Evalence and Ecore are ionization energies for the va-
lence and core electrons. It is interesting to note that for the
correlation corrections the vertex and normalization contri-
butions were found to be numerically small for both long-
range �electric dipole� and short-range �weak, hyperfine� op-
erators.

There is also a certain similarity between this theorem and
the low-energy theorem �the Low theorem� for Bremsstrah-
lung �see, e.g., Ref. �25��. The main radiation comes from the
external particle ends of the scattering diagram and is ex-
pressed in terms of the elastic scattering amplitude. The
structural radiation �from inside the scattering vertex� is
small and is expressed in terms of the derivative of the elas-
tic amplitude. In our case we consider the radiation of a
weakly bound electron �E�0� which is not so different from
the radiation of an unbound particle �E�0� if the energy E is
small.

C. Estimates of different QED corrections

All terms in Eqs. �26�–�29� and �32�–�34� are divergent as
� tends to infinity. Therefore we have to perform a subtrac-
tion of a standard counterterm in the expression for the self-
energy operator,

pi�n��n�pi

�E − En − ��
−

pi�n��n�pi

�− ��
=

pi�n��n�pi�E − En�
��E − En − ��

, �37�

to cancel the linear divergence in Eqs. �26� and �27� and
regroup other terms to cancel the logarithmic divergences.
After the subtraction and commutation pi�E2−H�=−�pi ,H�
+ �E2−H�pi= i�i�−e��+ �E2−H�pi the first term in Eq. �27�

can be transformed as follows �we use the operator form of
Eq. �27� for brevity�:

z

2�

1

�E2 − H��
�i�i�− e��

1

�E2 − H − ��
pi

− pi
1

�E2 − H − ��
i�i�− e��� �38�

+
1

2�
�zpi − z�2��2�pi�

1

�E2 − H − ��
pi. �39�

The second term in Eq. �27� gives a similar contribution.
All terms containing i�i�−e�� are combined to give a

low-frequency contribution to the radiative potential. In par-
ticular, the large-� contribution in Eq. �38� gives a well-
known local term in �,

��r,r�,E� =
�

3�m2 ln
�

Emin
�2

„− e��r�…��r − r�� �40�

which cancels the low-energy cutoff parameter � in the high-
frequency contribution proportional to ln�m /�� �from the
form factor f; see Ref. �34��. Here �2(−e��r�)=4�e2Z��r�.
It is easy to estimate the contribution of � to the QED radia-
tive corrections to �s �z � p� �see Eq. �32��. The nonrelativistic
density of an s-wave valence electron is �2�0���Zi

+1�2Z /aB
3 , where Zi is the ion charge �Zi=0 for a neutral

atom and Zi=Z−1 for a hydrogenlike ion�, the energy E1
��Zi+1�2�2mc2. Therefore the relative value of the QED
correction produced by � is ��s �� �s� /E1��3Z2ln�1/�2Z2�.

The terms in Eq. �39� are combined with the vertex and
normalization contributions to produce equations that do not
contain ultraviolet divergences. The terms proportional to zpi
�see Eq. �39�� and piz combined with the vertex contribution
�28� give the following QED radiative correction to �1 �z �2�:

�1�z�2�vertex = −
�

3�m2�
n,k

�1�pi�n��n�z�k�


�k�pi�2�
En − E1 + Ek − E2

En − E1 − Ek + E2
ln�En − E1

Ek − E2
� .

�41�

The energy-dependent factor in this equation is always of
the order of unity �it varies from 2 to ln �En /Ek��. The ratio
v /c for a valence electron is p /mc��Zi+1��. There-
fore the relative correction from the vertex term is ��Zi

+1�2�3. A more sophisticated estimate based on closure
gives the same result: ��1 � pzp �2� /m2=��1 � p2z+zp2 �2� /m2

=2��1 � �E1+e��z+z�E2+e�� �2� /m��2�Zi+1� /m��3�Zi

+1�2�1 �z �2�. For hydrogenlike ions this correction is
Z2�3, comparable to the radiative potential contribution
���3Z2ln�1/�2Z2��. However, for neutral atoms this correc-
tion is ��3, i.e., it is extremely small.

The terms proportional to z �2��2 � pi and pi �1��1 �z com-
bined with the normalization contribution �29� give the fol-
lowing QED radiative correction to �1 �z �2�:
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�1�z�2�norm = −
�

3�m2 �1�z�2���1�p2�1� + �2�p2�2�� . �42�

For a valence electron p /m��Zi+1��c, therefore the relative
QED correction can be estimated as ��Zi+1�2�3, of the
same order as the vertex contribution.

Finally, the contribution of the external photon polariza-
tion operator �Fig. 2�f�� also does not have the Z2 enhance-
ment since it comes from distances r�aB. Thus the only
important contribution in neutral atoms is that of the radia-
tive potential.

IV. APPLICATIONS TO NEUTRAL CESIUM

In this section we apply the radiative potential method to
calculate radiative corrections to energy levels and electro-
magnetic amplitudes in the neutral cesium atom. We limit
our consideration to the s and p levels of the external elec-
tron which are important for the parity violation calculation.
All calculations are performed taking into account finite
nuclear size.

A. Energies

To calculate the radiative corrections to the energy levels
we add the radiative potential to the nuclear Coulomb poten-
tial and calculate the self-consistent direct and exchange po-
tentials obtained using Dirac-Hartree-Fock �DHF� equations
for the electron core. This DHF potential includes the poten-
tial �V �“core relaxation”� which arises from the change in
the core electron wave functions due to the radiative poten-
tial. Then we calculate the energy levels of the external elec-
tron in this DHF potential produced by the core electrons.
The next step is to include the correlation corrections. It is
convenient to calculate these corrections using the correla-
tion potential method �33,35� which takes into account all
second-order correlation corrections and three dominating
series of higher-order diagrams �screening of the electron-
electron interaction, the hole-particle interaction, and itera-
tion of the correlation self-energy� to all orders in the re-
sidual Coulomb interaction. The nonlocal and energy-

dependent correlation potential �̂corr�r ,r� ,E� is defined by
the equation for the correlation correction to the electron

energy �En
corr= �n � �̂corr�r ,r� ,E� �n�; it is defined in an analo-

gous way to the radiative potential, Eq. �1�. We add �̂corr to
the Dirac-Hartree-Fock potential to include it to all orders.
The results of calculations for the radiative corrections are
presented in Table II.

It is seen that the many-body corrections change the result
for the s levels by �10% and they change the sign and
magnitude for p levels. Our results for Uehling relaxation
�not explicitly presented� are in perfect agreement with those
of Ref. �23�.

The results are in agreement with our previous calcula-
tions �6� and lie within the range spanned by model potential
calculations of the 6s Lamb shift performed in Ref. �17�
�from 15 to 27 cm−1� and Ref. �21� �from 13 to 23 cm−1�.
However, the accuracy of our present work is higher, �1%
for s levels.

B. E1 amplitudes

We use a similar method as that for the energies to calcu-
late the radiative corrections to the electromagnetic ampli-
tudes between the s and p levels. First, we calculate the
external electron wave functions including the radiative po-
tential and the core relaxation �V. Then we use these wave
functions to calculate the radiative corrections to the electro-
magnetic amplitudes in the Dirac-Hartree-Fock approxima-
tion. At the second step we calculate the effect of the electron
core polarization by the external photon electric field using
the time-dependent Hartree-Fock method. These core polar-
ization corrections are often called the RPAE �random-phase
approximation with exchange� corrections. At the final step
we use the correlation potential method �33,35� to calculate
the correlation corrections to the radiative corrections. In

fact, to the required accuracy it is enough to add �̂corr to the
Dirac-Hartree-Fock equations and calculate the external elec-
tron wave functions. Other correlation corrections are pro-

portional to ��̂corr /�E and contribute about 1% only �the
low-energy theorem; we mentioned this at the end of Sec.
III B�. The results of the calculations for the radiative correc-
tions are presented in Table III. Following Ref. �22�, we
present the results in terms of the dimensionless relative ra-

TABLE II. Radiative corrections to ionization energies in Dirac-
Hartree-Fock field without relaxation ��DHF�0�, with relaxation in-
cluded ��DHF�0+�V�, and with correlation corrections included

��DHF�0+�V+ �̂corr�; units cm−1.

Level 6s1/2 7s1/2 6p1/2 7p1/2 8p1/2 9p1/2

�DHF�0 15.5 4.3 0.2 0.07 0.03 0.02

�DHF�0+�V 15.9 4.3 −0.8 −0.3 −0.1 −0.07

�DHF�0+�V+ �̂corr 17.6 4.1 −0.4 −0.1 −0.05 −0.03

TABLE III. Relative radiative corrections Rsp to the electromagnetic amplitudes �s1/2 �r � p1/2�
= �s1/2 �r � p1/2�0�1+ �� /��Rsp� in Dirac-Hartree-Fock field with relaxation included �DHF�, with RPAE cor-

rections included �DHF+RPAE�, and with correlation corrections included �DHF+RPAE+ �̂corr�.

Transition 6s-6p 6s-7p 6s-8p 6s-9p 7s-6p 7s-7p 7s-8p 7s-9p

DHF 0.266 −2.90 −4.62 −5.68 −0.451 0.270 −2.07 −3.21

DHF+RPAE 0.286 −4.39 −11.9 −29.7 −0.432 0.270 −2.20 −3.60

DHF+RPAE+ �̂corr 0.265 −2.91 −6.25 −10.3 −0.340 0.231 −1.60 −2.52
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diative corrections R to the electromagnetic amplitude de-
fined by the relation

�s�r�p� = �s�r�p�0�1 +
�

�
Rsp� . �43�

Note that the radiative corrections for the 6s1/2−7p1/2,
8p1/2, 9p1/2 amplitudes are large since the amplitudes are
small and sensitive to any corrections to the DHF potential.

Unfortunately, we calculated but did not present the radia-
tive corrections to the electromagnetic amplitudes in our pre-
vious paper �6�; we presented only their total contribution to
the parity violating amplitude. Anyway, the accuracy in our
present work is higher ��1% �.

In a recent work �22�, direct calculations of the radiative
corrections to E1 amplitudes in the neutral alkali atoms were
performed. In particular, the radiative correction to the 6s-6p
amplitude in Cs was calculated using the local Kohn-Sham
potential. In this approach, the nonlocal exchange interaction
is replaced by a semiempirical local term that depends on the
electron density. Ref. �22� also does not take into account
many-body corrections: core relaxation, RPAE, and correla-
tion corrections. Nevertheless, 6s-6p is a large “resonance”
amplitude, and the many-body effects should not be very
significant here. Indeed, our Dirac-Hartree-Fock value R
=0.266 is very close to the result of Ref. �22�: R=0.261. We
select our Dirac-Hartree-Fock value for comparison since it
is the lowest-order approximation we use �no RPAE or cor-
relation corrections� and most similar to that of Ref. �22�.
However, the very small difference between the results is
accidental. The result of Ref. �22� does not include the Ue-
hling potential contribution ��−10% �, and one may also ex-
pect some difference due to the core relaxation effect and the
different treatment of the exchange interaction.

V. RADIATIVE CORRECTIONS TO THE PNC AMPLITUDE
IN CESIUM

Now we can calculate the QED radiative corrections to
the PNC 6s-7s amplitude in Cs. It is convenient to use the
results of the sum-over-states approach of Ref. �36�:

EPNC = �
n

�7s�D�np��np�ĤW�6s�
E6s − Enp

+
�7s�ĤW�np��np�D�6s�

E7s − Enp

= �1.908 − 1.352 − 0.070 − 0.020 + ¯ � + �− 1.493

+ 0.120 + 0.010 + 0.003 + ¯ � = − 0.894 + ¯ .

�44�

The units are ieaB�−QW /N�
10−11, where QW is the nuclear
weak charge and N is the number of neutrons. 98% of the
sum is given by the terms n=6, 7, 8, 9 explicitly presented
above. The result includes the many-body corrections to all
matrix elements.

A. Contributions of energies and E1 amplitudes

Now it is very easy to calculate the contributions to the
PNC amplitude from radiative corrections to the energy in-
tervals and electromagnetic amplitudes. Using the last line of

Table II �with all many-body corrections included� we find
that the radiative corrections to the energy intervals change
the PNC amplitude by −0.34%. Using the last line of Table
III �with all many-body corrections included� we find that the
radiative corrections to the E1 amplitudes �6s ,7s �D �np1/2�
change the PNC amplitude by +0.43%.

Note that in Cs these two corrections nearly cancel
each other, the sum of the two contributions is
�= �0.43–0.34�% =0.09%. This cancellation was noted in
our work �6� where these corrections in the DHF approxima-
tion were estimated to be 0.33% �E1� and −0.29% �ener-
gies�. The difference between our old and current results is
mainly because in Ref. �6� we used only three dominating
terms in the sum �44� while in the present work we use eight
terms. The fact that in Ref. �6� we used a different �and less
accurate� radiative potential is not so significant. The contri-
bution of the radiative corrections to the omitted terms n
�9 in the sum �44� is estimated in the present work �using
an asymptotic formula� to be �0.01%.

To estimate the error we also performed another calcula-
tion. We neglected the low-frequency contribution �l�r� and
set the coefficient A�Z ,r�=1 in � f�r�. This variation changes
the s-wave shifts by a few percent only. However, the
p-wave shifts change several times since they are small and
sensitive to the low-frequency contribution �l�r�. In this case
the E1 contribution is 0.44% and the energy contribution is
−0.35%; the sum �=0.09% does not change. Thus the value
of � is very stable and practically does not depend on the
choice of the �short-range� radiative potential if this potential
gives correct energy shifts. We estimate the uncertainty in
�=0.09% as �0.01%.

B. Weak matrix elements

The self-energy and vertex QED radiative corrections to
the weak matrix elements have been calculated in Refs.
�8–13�� using Coulomb wave functions. However, all neutral
atom wave functions near the nucleus are proportional to the
Coulomb wave functions since the screening of the nuclear
Coulomb potential and the electron energy may be neglected
here. Therefore the relative magnitude of the QED radiative
corrections for an external electron in a neutral atom is the

same for all weak matrix elements �np1/2 � ĤW �n�s� and coin-
cides with the Coulomb case for n ,n��1. Moreover, even
the many-body corrections do not influence this statement
since these corrections are proportional to the weak matrix

elements �np1/2 � ĤW �n�s� and are multiplied by the same fac-
tor �equal to the relative QED correction for the weak matrix
element� which does not depend on n and n�. This means
that we can use the Coulomb results of Refs. �8–13� to find
the contribution of the QED corrections to the weak matrix
elements. The results of calculations for the self-energy and
vertex contribution are the following �in %�: −0.73�20� �8�
�all orders in Z�, using approximate relation�; −0.6 �9� �low-
est order�; −0.9�1� �9,11� �lowest order and estimate of
higher orders�; −0.85 �10,12� �lowest order and higher orders
in the logarithmic approximation�; −0.815 �13� �all orders
2s-2p�. Note that even for n=2 the binding energy to mass
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ratio is En /mc2=0.02 and the relative radiative correction
should be very close to the large n limit �i.e., one may expect
a difference with the large n limit result �En /mc2=2%�.
Based on these results we assume the correction equal to
�−0.82±0.03�% which is in agreement with all calculations.

The Uehling potential contribution is easy to find and the
error is negligible. According to Refs. �4–7,11� the Uehling
contribution to the weak matrix element is 0.42% �note that
the Uehling contribution to the weak matrix element is prac-
tically the same as its contribution to EPNC since the sum of
the Uehling contributions from the energies and electromag-
netic amplitudes is about −0.01%�. The Wichmann-Kroll
contribution is very small, −0.005% �6,14�.

Thus the sum of all radiative corrections to the weak
matrix elements contributes �−0.82+0.42−0.005�%
��−0.41±0.03�% to EPNC.

C. PNC amplitude

The sum of all QED radiative corrections to EPNC
is −0.34% �energies�+0.43% �E1� −0.41% �weak�=−0.32
±0.03%. All three contributions �energies, E1, weak� are
equally important here, and the E1 contribution is the largest.
The error �0.01% in �=−0.34% �energies�+0.43% �E1�
gives a small contribution to the error in EPNC if added in
quadrature.

Note that the low-energy theorem may be extended to
EPNC if we treat the weak potential as part of the nuclear
potential and assume that all electron orbitals contain small
components produced by the weak interaction �i.e., �=�0
+��W; the effects of the QED corrections to the weak matrix
elements and energy levels must also be included into ��W,
which may be presented as ��W=�n �n��n �W �0� / �E0−En��.
Then one can calculate the PNC amplitude including QED
and many-body corrections in the same way as was done for
the calculations of the usual E1 amplitudes. This argument
justifies the calculation of the PNC amplitude using the ra-
diative potential approach.

Recently, calculations of radiative corrections to the PNC
amplitude in Cs were performed in Ref. �14� in an effective
atomic potential. The result is �−0.27±0.03�%. Our result
�−0.32±0.03�% is slightly different possibly due to the
many-body corrections which have not been calculated in the
work �14�. Note that the net effect of the many-body correc-
tions in Cs is not very large because of the accidental can-
cellations of different many-body corrections. One can see
these cancellations between the RPAE and correlation con-
tributions in Table III for the radiative corrections to the E1
amplitudes. A strong accidental cancellation happens also for
the main PNC amplitude where there are four large correla-
tion corrections, up to ±20% each, and the sum of all corre-
lation corrections is 2% only �6,35�; such a cancellation does
not take place, for example, in the PNC amplitude for Tl,
where the total contribution of the many-body corrections is
large.

The many-body calculations of the PNC amplitude pro-
duced by the electron-nucleus weak interaction are described
in detail in our review �1� where one can also find numerous
references �see also the original papers for calculations of

atomic structure �6,35–37� and Breit corrections �6,37–40��.
The contribution of the weak electron-electron interaction is
very small, within the standard model it is equal to 0.04%
�41�. Therefore the PNC amplitude is proportional to the
nuclear weak charge QW. Using the most precise many-body
calculation �6� �which includes the Breit correction and
the neutron skin correction�, we obtain the following result
for the PNC amplitude with the radiative corrections
�−0.32±0.03�% calculated in the present work:

EPNC = − 0.898�1 ± 0.5 % � 
 10−11ieaB�− QW/N� . �45�

From the measurement of the PNC amplitude �2� we obtain

QW = − 72.66�29�exp�36�theor. �46�

The difference with the standard model value
QW

SM=−73.19�13� �42� is

QW − QW
SM = 0.53�48� , �47�

adding the errors in quadrature.
Note that in the experiment �2� it is the ratio EPNC /� that

was measured, where � is the vector transition polariza-
bility. To extract QW we used �=26.99�5�aB

3 obtained in
Ref. �6� as the statistical average of the two most accu-
rate values of �. For comparison with the two values of
QW presented in Ref. �14� we also present QW for each
�. Using �=26.957�51�aB

3 from Refs. �3,43� we obtain QW

=−72.57�29�exp�36�theor. Using �=27.15�11�aB
3 from Refs.

�6,44,45� we obtain QW=−73.09�39�exp�37�theor. These re-
sults coincide exactly with those of Ref. �14�. The exact co-
incidence is accidental since our QED radiative corrections
are slightly different. This difference �0.05% � has been can-
celled by some tiny corrections �−0.08% from the momen-
tum dependence of the weak charge at q�30 MeV �12� and
0.04% from the weak electron-electron interaction �41��
which we prefer not to include into our present results since
they are much smaller than the omitted many-body correc-
tions in the calculation of the main PNC amplitude �6�. An-
other argument to omit these tiny corrections is that they are
not proportional to QW and violate the convenient relation
EPNC=const
QW.

VI. SUMMARY AND CONCLUSION

We suggest to calculate radiative corrections to energy
levels and electromagnetic amplitudes using the simple ra-
diative potential

�rad�r� = �U�r� + �g�r� + � f�r� + �l�r� +
2

3
�WC

simple�r� ,

�48�

where �U�r� is the Uehling potential �6�, �g�r� is the mag-
netic form-factor contribution �7�, � f�r� is the electric form-
factor contribution �10�, �l�r� is the low-frequency contribu-
tion �9�. The simplified Wichmann-Kroll potential �WC

simple�r�
�Eq. �12�� gives a very small contribution which may be
noticeable ��1% � only for Z�80.

The results obtained using this radiative potential are in
good agreement �few percent� with the radiative corrections
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to the s, p1/2, and p3/2 energy levels calculated in Ref. �24�
for the hydrogenlike ions. The advantage of the radiative
potential method is that it is very simple and can be used in
many-electron atoms and molecules.

To calculate radiative corrections to electric dipole ampli-
tudes we suggest use of the low-energy theorem derived in
Sec. III A. It is applicable because the ionization energy of
an external �valence� electron Eex and the external photon
frequency �ex are small in comparison with the typical fre-
quency of a virtual photon �v; Eex ,�ex��v. The vertex and
normalization corrections are expressed in terms of the en-
ergy derivative of the electron self-energy operator. The
dominating contribution is given by the corrections to the
electron wave functions produced by the radiative potential.
The relative contributions of the remaining corrections are
small, �1/Z2 in neutral atoms and ��Zi+1�2 /Z2 in ions.

The radiative potential method allows us to take into ac-
count many-body effects. First, �rad is added to the Dirac-
Hartree-Fock Hamiltonian �i.e., the potential V=VDHF+�rad
is used� and a new self-consistent field is obtained which
includes a correction to the Dirac-Hartree-Fock potential
�VDHF due to the change of the internal electron orbitals
produced by �rad �the relaxation effect�. The relaxation effect
is always significant. For a short-range potential �rad it is
larger than the direct radiative shift for electron angular mo-
menta j�1/2. Then the new electron energy levels and DHF
orbitals can be used to calculate the correlation corrections
applying the many-body theory methods which are de-
scribed, for example, in Ref. �6�.

We applied the radiative potential method to calculate the
radiative corrections to energy levels and electromagnetic
amplitudes in the neutral Cs atom and demonstrated the im-
portance of many-body effects in such calculations. The
many-body effects change the s-level radiative shifts by
�10%, and they change the sign and magnitude of the

p-level shifts. Many-body effects in the radiative corrections
to the electromagnetic amplitudes are also very significant.
The RPAE �core polarization� corrections usually enhance
the radiative correction. The effect is especially significant
for the small amplitudes where we observed the RPAE en-
hancement up to six times. The correlation corrections usu-
ally act in the opposite direction and are equally significant.

Finally, we calculated the contributions of the radiative
energy shifts and radiative corrections for the electromag-
netic amplitudes to the PNC 6s-7s amplitude in cesium. The
radiative corrections to the weak matrix elements have been
calculated in previous works. The sum of all QED radiative
corrections to EPNC is −0.34% �energies�+0.43% �E1�
−0.41% �weak�= �−0.32±0.03�%. Note that all three contri-
butions are equally important here, and the E1 contribution is
the largest. Using this radiative correction and previous
many-body calculations we obtain the PNC amplitude
EPNC=−0.898�1±0.5% �
10−11ieaB�−QW /N�. From the
measurements of the PNC amplitude �2� we extract the Cs
weak charge QW=−72.66�29�exp�36�theor. The difference with
the standard model value QW

SM=−73.19�13� �42� is QW

−QW
SM=0.53�48�.
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