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We propose an easy implementable prepare-and-measure protocol for robust quantum key distribution with
photon polarization. The protocol is fault tolerant against collective random unitary channel noise. The protocol
does not need any collective quantum measurement or quantum memory. A security proof and a specific linear
optical realization using spontaneous parametric down conversion are given.
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INTRODUCTION

Quantum key distribution �QKD� �1,2� is one of the most
important applications of the subject of quantum informa-
tion. In constrast to classical cryptography, the security of
QKD is guaranteed by elementary principles of quantum me-
chanics, and therefore the unconditional security can be
achieved. For security, we have to distill out a shorter final
key, since the eavesdropper �Eve� may pretend her distur-
bance is the noise from the physical channel. If the noise is
too large, no final key can be obtained. To overcome this,
one needs to design new fault tolerant protocols or new
physical realizations for quantum key distribution. There are
two approaches to this problem: one is to find a new protocol
that raises the threshold of channel noise unconditionally,
such as the protocol with two-way classical communications
�3–5�; the other way is first to study the noise pattern and
then find a way to remove or decrease the noise itself, such
as the various methods to cancel the collective errors �6–8�.
So far there are various realizations using either the
phase coding �2,9� or the polarization information of single
photons �10,11�. Those protocols using the phase coding re-
quire collective measurement at Bob’s side. There are also
proposals to remove the collective random unitary noise
from the channel �6–8�.

Here we raise a unique proposal to reduce the channel
errors, or, equivalently, to raise the noise threshold. Our
method does not require Bob to take any collective measure-
ment. Our method is based on the widely accepted assump-
tions that the flipping errors of polarization �mainly� come
from the random rotation by the fiber or the molecules in the
air, with the degree of the rotation fluctuating randomly.
Also, if several qubits are transmitted simultaneously and
they are spatially close to each other, the random unitaries to
each of them must be identical, i.e., the error of the physical
channel is collective.

MAIN IDEA

Consider an arbitrary collective random unitary U which
satisfies

U�0� = cos ��0� + ei� sin ��1�;

U�1� = ei��− e−i� sin ��0� + cos ��1�� . �1�

Here �0� , �1� represent horizontal and vertical polarization
states, respectively. Note that the parameters �, �, and �
fluctuate with time, therefore one has no way to make unitary
compensation to a single qubit. However, the channel unitary
error is a type of collective error to all qubits sent simulta-
neously, therefore it is possible to send qubits robustly be-
cause the collective errors on different qubits may cancel
each other. With such type of collective unitary errors, we
shall take the QKD in the subspace of the two-qubit state of

S = ��01�, �10�� . �2�

In particular, we let Alice prepare and send Bob two-qubit
states randomly chosen from �01� , �10� , ��±�
=1/	2��01�± �10��. Although state ��−� remains unchanged
under the collective unitary errors �12�, the other three states
do not remain unchanged. However, in our protocol, we shall
let Bob first take a parity check to the two-qubit state to see
whether it belongs to subspace S. If it does, he accepts it; if
it does not, he discards it. The key point here is that, al-
though the two-qubit states could be distorted by the collec-
tive random unitary, most often the distortion will drive the
codes out of subspace S, therefore the distorted codes will be
discarded by the protocol itself. The error rates to those ac-
cepted codes are normally small, provided that the channel
noise is mainly from the collective unitary and the averaged
value � is not too large. For example, our protocol gives a
good key rate if the averaged value �sin �� is 1 /2. �The dis-
persion, � value can be arbitrarily large.� Explicitly, any col-
lective rotation cannot exchange states ��+� and ��−�; it can
only drive ��+� out of the subspace S. However, any state
outside of S will be rejected, as required by our protocol.
Therefore the rate of flipping between ��+� and �−� �phase-
flip rate� is zero. A collective rotation U will also take the
following effects:

U�2�01� = U�0� � U�1� = cos2 ��01� − sin � cos ��e−i��00�

− ei��11�� − sin2 ��10� . �3�*Electronic address: wang@qci.jst.go.jp
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U�2�10� = U�1� � U�0� = cos2 ��10� − sin � cos ��e−i��00�

− ei��11�� − sin2 ��01� . �4�

Since the states outside of the subspace S will be discarded,
the net flipping between rate �01� and �10� �bit-flip rate� rb
=sin4 � / �cos4 �+sin4 ��. Therefore, if the average rotating
angle is small, the flipping rate rb will be also small. �If we
directly use the Bennett–Brassard 1984 �BB84� protocol, the
bit-flip rate is sin2 �, one magnitude of order larger than
ours.� Moreover, in the ideal case that all flips come from the
random rotation, since the phase-flip rate is zero, one can
always distill some bits of final key provided that rb�1/2.
The key rate is 1+rb log2 rb+ �1−rb�log2�1−rb�. Note that if
rb�1/2 one can simply reverse all bit values given by �01�
and �10� and also distill some bits of final key. In practice, if
� does not change too fast, we can divide the data into many
blocks. We inverse the bit values of those blocks with larger
than 1/2 error rate after the decoding. Note that we assume
the phase-flip error to be always very small by our protocol.

Boileau et al. �8� has recently proposed a protocol with
the collective random unitary error model. Our work differs
from Ref. �8� in the following aspects: �1� The main
idea is different. Reference �8� uses the fact that state
��−�=1/	2��01�− �10�� is invariant under whatever rotations,
therefore the linear combinations of a few ��−� at different
positions will work robustly. We use a subspace of a two-
qubit state. Our states are not always invariant under random
rotations, however, the randomly rotation can drive the origi-
nal state out of the specific subspace and never or rarely
switch any two states inside the subspace. After Bob discards
all those transmitted codes outside subspace S, the phase-flip
error will be totally removed and the bit-flip error will be
significantly decreased. �2� The method is different. The pro-
tocol given by Boileau et al. requires three- or four-qubit
entangled states, which could be technically difficult by cur-
rently existing technology. Our protocol only requires two-
qubit states which can be produced effectively. �3� The result
is different. Since our protocol is BB84-like �1�, we do not
have to worry about the channel loss in practice. Boileau’s
protocol is likely to be undermined by the channel loss, since
it is B92-like �13,14�. In practice, the lossy rate for their
protocol could be very high. Since they use at least three
qubits to encode one, the joint survival rate is very low.

Protocol 1 and security proof. For clarity, we now give a
protocol with collective measurements first and then reduce
it to a practically feasible protocol without any collective
measurements.

Protocol 1. �1� Preparation of the encoded BB84 states.
Alice creates a number of single-qubit states, each of them
randomly chosen from ��0� , �1� , �± ��. She puts down each
one’s preparation basis and bit value: state �0� , �+ � for bit
value 0, the other two states are for 1. She also prepares
ancillas which are all in state �0�. She then encodes each
individual qubit with an ancilla into a two-qubit code
through the following controlled NOT �CNOT� operation:
�00�→ �01�; �10�→ �10�; �11�→ �11�; �01�→ �00�. The second
digit in each state is for the ancilla. Such encoding operation
changes ��0� , �1�� into ��01� , �10�� and �± � into ��±�. �2� State

transmission. Alice sends those two-qubit codes to Bob. �3�
Error rejection and decoding. Bob takes the same CNOT op-
eration as used by Alice in encoding. He then measures the
second qubit in the Z basis: if it is �1�, he discards both qubits
and notifies Alice; if he obtains �0�, he measures the first
qubit in either the X or Z basis and records the basis as his
“measurement basis” in the QKD protocol. The bit value of a
code is determined by the measurement outcome of the first
qubit after decoding, �0� , �+ � for bit value 0, �1� , �−� corre-
spond to 1. �4� Basis announcement. Through public discus-
sion, they discard all those decoded qubits with different
measurement bases in two sides. �5� Error test. They an-
nounce the values of all X bits and some of the Z bits. If too
many values disagree, they abort the protocol, otherwise,
they distill the remaining bits for the final key. �6� Final key
distillation. Alice and Bob distill the final key by the classi-
cal CSS code �15�.

The unconditional security here is equivalent to that of the
BB84 protocol �1,12� with a lossy noisy channel: Protocol 1
can be regarded as an encoded BB84 protocol with addi-
tional steps of encoding, error rejection, and decoding. If Eve

can attack Protocol 1 successfully with operation Â during
the stage of codes transmission, she can also attack the BB84
protocol successfully with

Â� = Ê → Â → R̂ → D̂ �5�

during the qubit transmission and then pass the decoded qu-

bit to Bob, where Ê , R̂ , D̂ are encoding, error rejection, and
quantum decoding, respectively. �The operation of encoding,
error rejection, or decoding does not requires any informa-
tion about the unknown BB84 state itself.� Obviously, the

BB84 protocol with attack Â� is identical to Protocol 1 with

attack Â. To Alice and Bob, the BB84 protocol with Eve’s

attack Â� is just a BB84 protocol with a lossy channel. �Eve
must discard some codes in the error rejection step.� There-
fore Protocol 1 must be secure, since the BB84 protocol is
unconditionally secure even with a lossy channel.

Protocol 2. Though we have demonstrated the uncondi-
tional security of Protocol 1, we do not directly use Protocol
1 in practice since it requires the local CNOT operation in
encoding and decoding. We now reduce it to another proto-
col without any collective operations. First, since there are
only four candidates in the set of BB84 states, instead of
encoding from BB84 states, Alice may directly produce four
random states of �01� , �10� , ��+� , ��−�. Note that except for
Alice herself, no one else can see whether the two-qubit
codes in transmission are directly produced or if the encod-
ing results from BB84 states. One may simply produce the
states of those two-qubit codes by the spontaneous paramet-
ric down conversion �16,17�. Second, in the decoding and
error rejection step, Bob can carry out the task by postselec-
tion. For all those codes originally in state �01� or �10�, Bob
can simply take local measurements in the Z basis to each
qubit and then discard those outcomes of �0� � �0� or �1�
� �1� and only accept the outcome �0� � �1�, which is re-
garded as a bit value 0, and �1� � �0�, which is regarded as bit
value 1. The net flipping rate between �01� and �10� is re-
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garded as bit-flip rate. The nontrivial point is the phase-flip
rate, i.e., the net flipping rate between states ��±�. Note that
all these codes only take the role of indicating the phase-flip
rate, we do not have to know explicitly which one is flipped
and which one is not flipped. Instead, we only need to know
the average flipping rate between ��±�. To obtain such infor-
mation, we actually do not have to really carry out the error
rejection and decoding steps to each of these codes. What we
need to do is simply answer what the flipping rate would be
if Bob really took the error rejection step and decoding step
to each code of ��±�. One straightforward way is to let Bob
take a Bell measurement to each code which was in state ��±�
originally. �We shall call them �+ or �− codes hereafter.� For
example, consider �+ codes, after transmission, if the distri-
bution over four Bell states ��+� , ��−� , ��+� , ��−� are
p�− , p�+ , p�+ , p�−, respectively; after the Bell measurements,
we conclude that the channel flipping rate of ��+�→ ��−� is
p�− / �p�+ + p�−�. This rate is equivalent to the flipping rate of
�+ �→ �−� in the BB84 protocol. Note that the rate of p�± has
been excluded here since their corresponding states are out-
side of the subspace S and should be discarded by our pro-
tocol.

Bell measurement is not the unique way to see the distri-
bution over four Bell states for a set of states. We can also
simply divide the set into three subsets and take collective
measurements ZZ to subset 1, XX to subset 2, and YY to
subset 3. We can then deduce the distribution over the four
Bell states. Here ZZ ,XX ,YY are parity measurements to a
two-qubit code in Z ,X ,Y basis, respectively. �Y: measure-
ment basis of ��y± �=1/	2��0�± i�1���.� Note that classical
statistics works perfectly here because all these collective
measurements commute �18,19�. These collective measure-
ments can be simply replaced by local measurements to each
qubit since once we have obtained the results of local mea-
surements of Z � Z ,X � X ,Y � Y we also know the parity in-
formation. �In this paper, Z � Z represents a local measure-
ment to each qubit in the Z basis; ZZ represents a collective
measurement for the parity in the Z basis.�

Before going into the reduced protocol, we show the ex-
plicit relationship between the phase-flip rate and the local
measurement results. Note that Bob has randomly divided all
the received two-qubit codes into three subsets and he will
take local measurement Z � Z ,X � X ,Y � Y to each of the
qubits of each codes in subset 1,2,3, respectively. Consider
all �− codes first. Denote �z ,�x ,�y for the rate of wrong out-
come for �− codes in subset 1,2,3, respectively, i.e., the rate
of codes whose two qubits have the same bit values in basis
Z ,X ,Y, respectively. Given values �z,x,y we immediately have

p�+ + p�− = �z, �6�

p�+ + p�+ = �x, �7�

p�+ + p�− = �y . �8�

Our aim is only to see the flipping rate from ��−� to ��+�;
other types of errors are discarded since they have gone out
of the given subspace S. The net flipping rate from ��−� to
��+� is

t�−→�+ =
p�+

p�− + p�+
=

�x + �y − �z

2�1 − �z�
. �9�

In a similar way we can also have the formula for the value
of t�+→�−, the flipping rate from ��+� to ��−�,

t�+→�− =
�x� + �y� − �z�

2�1 − �z��
. �10�

Here �x,y,z� are the rate of wrong outcome in local measure-
ment basis X � X ,Y � Y ,Z � Z, respectively, to all codes
originally in ��+�. The total phase-flip error is

tp =
t�−→�+ + t�+→�−

2
. �11�

Protocol 1 is now replaced by the following practically fea-
sible protocol without any collective measurement:

Protocol 2. �1� Preparation of the encoded BB84 states.
Alice creates a number of two-qubit states and each of them
are randomly chosen from ��01� , �10� , ��±��. For each two-
qubit code, she puts down “Z basis” if it is in state �01� or
�10� or “X basis” ���± ��� if it is in one of the states
�1/	2��01�± �10��. For those code states of �01� or
�1/	2��01�+ �10��, she denotes a bit value 0; for those code
states of �10� or �1/	2��01�− �10��, she denotes a bit value 1.
�2� Transmission. Alice sends all the two-qubit codes to Bob.
�3� Measurement. To each code, Bob measures the two qu-
bits in a basis randomly chosen from �Z � Z ,X � X ,Y � Y�.
For example, if he happens to choose basis Z � Z for a cer-
tain code, he measures each qubit of that code in Z basis. �4�
Rejection of wrong results. Alice announces her “preparation
basis” for each code. Bob announces his measurement basis
to each code. For those codes originally prepared in �01� or
�10�, they discard the results if Bob has used a basis other
than Z � Z. They also discard all codes outside the subspace
S. �5� Error test. To all the survived results, they announce
bit values of codes originally in ��+� or ��−�. From the an-
nounced results they can calculate the phase-flip rate by for-
mula �11�. They can also estimate the bit-flip rate by annouc-
ing some results of those survived codes which are originally
in �01� or �10�. �6� Final key distillation. Alice and Bob distill
the final key by using the classical CSS code �15�.

Physical realization of protocol 2. There are two parts in
the realization. One is the source for the required four differ-
ent two-qubit states at Alice’s side. The other is the measure-
ment device at Bob’s side. Both of them can be realized with
simple linear optical devices. The requested source states can
be generated by SPDC process �16,17� as shown in Fig. 1.
The measurement with random basis at Bob’s side can be
done by a polarizing beam splitter �PBS� and a rotator driven
electrically, as shown in Fig. 2.

Another protocol for robust QKD with swinging objects.
In some cases, especially in free space, the dispersion can be
small while the random rotation angle � can be large. We
consider the extreme case that � in unitary U is 0, or other-
wise can be compensated to almost 0, but � is random and
can be arbitrarily large. The swinging angle of an airplane
can be very large in certain cases. We can exactly use the
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collective unitary model, with all elements in U being real if
there is no dispersion. Then we have a better method. It is
well known that both states ��+� and ��−� are invariant under
whatever real rotation. Any linear superposed state of
these two are also invariant. Therefore we use the following

for states ��0̄�= ��+� , �1̄�= ��−�; �+��=1/	2��0̄�+ �1̄��
=1/	2��0��+ �+ �1��−��; �−��=1/	2��0��−�+ �1��+ ���. Bob
need not take any collective measurement to determine the
bit value. If he chooses the “Z” basis, he measures each of
the two qubits in the Z basis, 00 or 11 for bit value 0 while
01 or 10 for bit value 1. If he chooses the “X” basis, he
measures the first qubit in the Z basis and the second in the X
basis, �0��+ � or �1��−� for bit value 0 and �0��−� or �1��+ � for
bit value 1. There is no error rejection step here because
there is expected to be no error after decoding, given the real
rotation channel. Even for the QKDs with fixed object there
is still a little bit of an advantage: they do not need take any
bases alignment with each other. Each of them only needs to

make sure their local measurement bases are BB84-like, i.e.,
the inner product of two bases are 1/	2.

CONCLUSION

We have given a robust QKD protocol in polarization
space given the fact that the collective random unitaries are
dominant channel errors. Our protocol can obviously be ex-
tended to the six-state-like protocol �20� if we add one more
candidate state of 1 /	2��0�± i�1�� in the source.

Note added. Recently, an interesting different protocol
�21� for robust QKD also appeared.
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FIG. 1. �Color online� The source of a two-qubit state. P: � /2
rotator, BS: beam splitter, M: mirror, NC: nonlinear crystal, p:
pump light in horizontal polarization, u1: unitary rotator, u2: phase
shifter. u1 takes the value of 0, � /2 , � /4 to produce state
�01� , �10� , ��+�, respectively. u2 can be either I or �z.

FIG. 2. �Color online� Measurement device at Bob’s side. The
rotator R offers a random rotation to both qubits in the same code.
Each time, rotation is randomly chosen from unity ��0� , �1��
→ ��+ � , �−�� , ��0� , �1��→ ��y+ � , �y− ��. The event of two clicks �at
different times� on one detector �D1 or D2� shows that the two
qubits of the code have the same bit value; two clicks on different
detectors show that the two qubits have different bit values.
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