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We study the dynamics of a single excitation in an infinite XXZ spin chain, which is launched from the
origin. We study the time evolution of the spread of entanglement in the spin chain and obtain an expression
for the second-order spatial moment of concurrence, about the origin, for both ordered and disordered chains.
In this way, we show that a finite central disordered region can lead to sustained superballistic growth in the
second-order spatial moment of entanglement within the chain.
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I. INTRODUCTION

Entanglement can be viewed as a physical resource that
has no analog in classical information theory. As such, en-
tanglement plays an important role in many quantum infor-
mation tasks, such as quantum cryptography, teleportation,
and quantum algorithms. The development of protocols for
the distribution of entanglement is an important problem in
quantum information processing. Recently, several methods
have been proposed for accomplishing the related problem of
quantum state transfer using spin chains �1–14�. An impor-
tant characteristic in all of these models is that the transfer
occurs with minimal control or intervention in the dynamics
of the spin chain. Besides achieving perfect quantum state
transfer, another important task that can be examined is that
of distributing entanglement between a central node and
many distributed nodes within a processor. Such a capability
may be useful for the generation of multiqubit entangled
states �with the appropriate postdistillation�. In any case,
gaining a better understanding of how one can use spin-chain
dynamics to spread out �rather than transmit� entanglement is
of fundamental interest, although this does not seem to have
been addressed much in the literature to date.

In this Communication we consider the second-order spa-
tial moment of entanglement in a spin chain, with a single
excitation, and show that a finite disordered region can lead
to superballistic growth in the the second-order spatial mo-
ment. The entanglement properties of various spin chains
have been examined in a number of recent works �15–20�. It
has been shown that, for a particle in a lattice with a finite
disordered region, a finite period of superballistic growth can
occur in the spatial variance of the wave function �21�. This
can be applied to XXZ spin chains, which have nearest-
neighbor interactions similar to the tight-binding approxima-
tion used for a one-dimensional lattice. Unlike the spatial
variance, however, the growth in the second-order spatial
moment of concurrence in a chain with a finite central dis-
ordered region is not bounded from above by the similar
growth experienced in an ordered chain �see for example,
Fig. 1�. The disordered region leads to sustained superballis-

tic spatial growth of the concurrence and provides an effi-
cient mechanism for distributing entanglement along spin
chains.

II. CONCURRENCE

One measure of bipartite entanglement is concurrence
�22�, which is a monotonic function of entanglement of for-
mation. For a mixed state, the concurrence between two qu-
bits, i and j, is defined to be Cij =max��1−�2−�3−�4 ,0�,
where �n is the square root of the nth eigenvalue of ��̃ in
descending order. Here �̃= ��y � �y��*��y � �y�, where �* is
the complex conjugate of �.

For a single pure excitation of a N-spin-1 /2 chain, the
wave function is

��� = �1�1� + ¯ + �N�N� , �1�

where �k� is one of N basis states of the N-spin chain where
the kth site is in the excited state and all other sites are in the
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FIG. 1. The second-order spatial moment of concurrence M�t�,
for an ordered �dark gray� and a disordered �light gray� chain. Each
chain is 40 500 sites long and the disordered region in the second
chain is 100 sites long. The Jz couplings in the central disordered
region vary randomly, uniformly between 0 and 2.5. A period of
superballistic, 	t3, spatial expansion of the moment can be ob-
served, for a period, which tends to a long time superballistic ex-
pansion rate of 	t5/2, exceeding the long-time expansion rate of the
ordered chain, 	t2.
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ground state. Taking any two spins within this chain i, j, and
tracing over the rest, yields the following density matrix:

�ij =

� 0 0 0

0 ��i�2 �i� j
* 0

0 � j�i
* �� j�2 0

0 0 0 0
� ,

where �=1− ��i�2− �� j�2.
The eigenvalues of �ij�̃ij are �4��i�2�� j�2 ,0 ,0 ,0�, so �n

= �2��i��� j� ,0 ,0 ,0�. Inserting these expressions for �n into
the previous equation for concurrence gives Cij =2��i��� j�.

III. DISTRIBUTION OF ENTANGLEMENT

One way to study the time evolution of the spatial distri-
bution of entanglement between the origin site and other
sites in the spin chain is to look at the second-order spatial
moment of concurrence about the point of origin,

M�t� = �
x�0

�x2C0x�t�� ,

where C0x�t� is the concurrence at time t, between the origi-
nal site of the excitation, and the site at position x. C0x�t� can
be replaced with the earlier expression for the concurrence
when only one excitation is acted upon by a spin-preserving
Hamiltonian.

M�t� = �
x�0


x2�2��0�t����x�t���
 �2�

=2��0�t��W�t� , �3�

where

W�t� � �
x�0

x2��x�t�� . �4�

IV. SPIN DYNAMICS: ORDERED CHAIN

A general Hamiltonian for a spin chain with nearest-
neighbor interactions and uniform couplings can be written
as

H = �
i

�Jx
i,i+1�x

i �x
i+1 + Jy

i,i+1�y
i �y

i+1 + Jz
i,i+1�z

i�z
i+1� .

In such a spin chain, with the additional constraint that cou-
plings obey Jx

i,i+1=Jy
i,i+1=�, for all sites i in the chain, then

the overall z component of spin is conserved. Here we will
take �=1, which will give general results up to a rescaling of
t. For a spin chain of N sites, a basis can be formed from N
vectors, �1� , . . . , �N�, with �k� corresponding to a chain with a
single excitation at site k. Any Hamiltonian, if of the above
form in this basis, corresponds to a symmetric tridiagonal
matrix. Further, if the coupling parameters Jz

i =0, then the
main diagonal will also vanish, giving

Hij = ��i, j − 1� + ��i, j + 1� ,

H = L + R ,

where Lij =��i , j−1�, Rij =��i , j+1�. Using this expression
for H, the evolution operator, U�t� can be found.

U�t� = e−iHt = e−i�L+R�t

= �
n=0

	
1

n!
�− it�n�L + R�n

= �
n=0

	
1

n!
�− it�n�

m=0

n
n!

�n − m�!m!
LmRn−m

= �
n=0

	

�− it�n�
m=0

n
1

�n − m�!m!
Dn−2m,

where Dk=Rk, and R−1=L, where by this we mean that for an
infinite chain, the effect of applying L counteracts R on any
wave function which vanishes at the ends of the chain. The
only nonzero entries in Dk are along the kth subdiagonal,
which are all 1. The family of matrices, �Dk�−	

+	, form a basis
for U�t� and one can set

U�t� = �
x=−	

	

cx�t�Dx,

cx�t� = �
l=0

	

�− it�2l+x 1

�l + x�!l!
, where 2l = n − x

= �− i�xtx�
l=0

	

�− 1�l�t�2l 1

�l + x�!l!
= �− i�xJx�2t� ,

where Jk is the kth-order Bessel function of the first kind.

A. Upper bound on W„t…

In the case of the ordered chain we have not been able to
obtain exact analytic expressions for �4�, but instead we can
find bounds for W�t�. Using �4�, and the approximation

Jx�z� � � 0 for z 
 �x� ,

� 2

�z
cos�z −

x�

2
−

�

4
� , for z � �x� , � �5�

an upper bound for W�t� can be found,

W�t� = �
x=−	

+	

x2��x�t�� = �
x=−	

+	

x2�Jx�2t�� = �
x=−	

+	

�x2Jx�2t�� .

This can be simplified using the identity xJx�a�
=a /2�Jx−1�a�+Jx+1�a�� �23�, to obtain

W�t� = �
x=−	

+	

�t2�Jx−2�a� + 2Jx�a� + Jx+2�a��

+ t�Jx−1�a� − Jx+1�a��� = �4t2 + 2t� �
x=−	

+	

�Jx�2t��

� �4t2 + 2t�� 1

�t
�4t�

�
16
��

t5/2 for t 
 1.
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B. Lower bound on W„t…

A lower bound for W�t� can also be found by observing

�J2k�2t�� � J2k�2t� ,

�
k=−	

	

�2k�2�J2k�2t�� � �
k=−	

	

�2k�2J2k�2t� ,

�
x=−	

	

x2�Jx�2t�� � �
k=−	

	

�2k�2�J2k�2t�� � �
k=−	

	

�2k�2J2k�2t� .

Using the identities �k=−	
	 �2k�2J2k�a�=a2 /2 �23�, and �4�,

this can be rewritten as

W�t� � 2t2.

Since 2t2�W�t�� �16/���t5/2 for t
1, then W�t� grows as
t�, with 2���2.5.

C. Approximation for M„t…

Using the previous approximation �5�, which can be
rewritten as Jx�z���2/�z�cos�z−� /4�cos�x� /2�+sin�z
−� /4�sin�x� /2��, an expression for W�t� can be found.

W�t� = �
x=−	

	

x2�Jx�2t�� � �
x=−2t

2t

x2� 1

�t
�cos�2t −

x�

2
−

�

4
�� .

By taking the average of �cos(2t− �x� /2�− �� /4�)� over a
time period from t= t� to t= t�+�, the time-averaged value,
2 /�, is obtained. Using this as an approximation for the
cosine term, the expression for W�t� reduces to

W�t� �
4

�
� 1

�t�x=0

2t

x2 =
4

�
� 1

�t

2t�2t + 1��4t + 1�
6

→
32

3�3/2 t5/2, as t → 	 .

This can be used in the expression for M�t�,

M�t� = 2��0�t��W�t�

�2� 1

�t

2

�

32t5/2 + 24t3/2 + 4t1/2

3�3/2

→
128

3�3 t2, as t → 	 .

V. SPIN DYNAMICS: DISORDERED CHAIN

It is well known that disorder, which in this case we take
to be random Jz coupling strengths, or random magnetic
fields in the z direction at each site, leads to spatial localiza-
tion of the wave function �24�. In a spin chain with a disor-
dered region centered on the initial site of excitation, the
wave function will be partially localized, and so the ampli-
tude at the initial site will fall off at a lower rate than in the
case of an ordered chain. We now model the emission of an
excitation from the center site out through a disordered re-

gion and into �on either side�, a semi-infinite ordered spin
chain.

To consider this we first note that the dynamics of an
ordered semi-infinite spin chain, with an initial single exci-
tation at the first site, can be solved in a similar way to the
infinite spin chain. For an ordered semi-infinite spin chain
we have

U�t� = e−i�L+R�t = �
n=0

	
1

n!
�− it�n�L + R�n. �6�

For a semi-infinite chain, however, �L ,R��0. �LR�i,j

=�i,j, but �RL�i,j =�i,j�1−�i,1�. If the initial excitation is at the
start of the chain, then the resulting wave, after time t, will
be the first column of U�t�. Taking the first column matrix
elements of U�t� to be the wave launched from site x=0, as
U�t�x,0, we can obtain

U�t�x,0 = �
n=x

	
�− it�n

n! �
 n

n − x

2
� − 
 n

n − x − 2

2
��

= �− i�x�Jx�2t� + Jx+2�2t�� ,

resulting in a wave function with elements �x�t� �1�,

�x�t� = �− i�x�Jx�2t� + Jx+2�2t�� = �− i�x �x + 1�
t

Jx+1�2t� .

We now suppose that the random region, extending from x
=−L to x= +L, emits an excitation at +L, into the ordered
semi-infinite region with amplitude f�t�. Shifting coordinates
to this interface by setting x�=x−L, and then �for conve-
nience� dropping the prime, we can examine the wave propa-
gation into the ordered semi-infinite chain �now x�1� to be

�x+L�t� = �
0

t

f�t���− i�x−1� x

t − t�
�Jx„2�t − t��…dt�.

We now break the emission processes into two time bins. For
t� t1,

�x+L�t� = �
0

t1

f�t���− i�x−1� x

t − t�
�Jx„2�t − t��…dt� + �

t1

t

f�t��

��− i�x−1� x

t − t�
�Jx„2�t − t��…dt�

= �− i�x−1� x

t − �
�Jx„2�t − ��…�

0

t1

f�t��dt� + �
t1

t

f�t��

��− i�x−1� x

t − t�
�Jx„2�t − t��…dt�

= �− i�x−1� x

t − �
�Jx„2�t − ��…� + �

t1

t

f�t��

��− i�x−1� x

t − t�
�Jx„2�t − t��…dt�. �7�

For large t1, we will neglect the second term in �7�, which
is equivalent to letting f�t�=���t−��. This corresponds to a
simple model for the emission in which an excitation is emit-
ted, with amplitude �, at time t=�� t1. For t��, there is no
emission and �x+L�t�=0, while for t
�,
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�x+L�t� = ��− i�x−1� x

t − �
�Jx„2�t − ��… . �8�

The second-order moment of concurrence can be split into
two parts, Mo�t� and Md�t�. Mo�t� is the contribution to M�t�
from the ordered region, and Md�t� is the contribution from
the disordered region. For t
�,

Mo�t� = 4��0�t���
x=1

	

�x + L�2 x

t − �
��Jx„2�t − ��…� �9�

=2
���

T3/2��
��cos�2T −

�

4
���

x=1

T

�2x + L�22x

+ �sin�2T −
�

4
���

x=1

T

�2x + L − 1�2�2x − 1�� ,

�10�

where T= t−�.
Since the average value of �sin�z��= �cos�z��=2/�, the

above can be approximated by

Wo�t� =
4���

T3/2�3/2�
x=1

2T

�x + L�2x

=
2���

T3/2�3/2�8T4 + �32L

3
− 8�T3 + �4L2 − 8L + 3�T2

+ �4L − 2 − 2L2�T − �18 +
16L

3
+ 2L2��

�
16���
�3/2 �t − ��5/2, for t 
 0.

From �3�, to obtain Mo�t�, we require the amplitude of the
wave at the origin or initial site. Since the probability of the
excitation entering the semi-infinite chain to the right and left

is ���2, the probability of the excitation remaining within the
disordered region is 1−2���2. If the probability at the initial
site is proportional to this, then the amplitude of the wave
function at the initial origin will be ��1−2���2, with ����1.

Mo�t� =
4
���1 − 2���2


T3/2�3/2 �8T4 + �32L

3
− 8�T3 + �4L2 − 8L

+ 3�T2 + �4L − 2 − 2L2�T − �18 +
16L

3
+ 2L2��

�
32
���1 − 2���2


�3/2 �t − ��5/2, for t 
 0. �11�

There is only a finite disordered range, so Wd�t� is
bounded from above by 2L2. This in turn leads to an upper
limit on Md�t� of 4
��1−2���2
L2. Since Mo� t5/2 and Md

�2�L2,

M�t� � Mo�t� �
32
���1 − 2���2


�3/2 �t − ��5/2, for t 
 0. �12�

In summary, we have examined the emission of a single
excitation from a central site on a spin chain in the two cases
where the chain is ordered and where the origin site is sur-
rounded by a finite region of disorder. We have found that
the spatial expansion of the two-site entanglement, between
the origin site and other sites on the chain, is much more
rapid in the latter case, where disorder is present, than in the
ordered case. Indeed the second-order moment of the spatial
extent of the concurrence expands superballistically. This ef-
fect could be used to rapidly distribute entanglement
throughout regions of a spin chain. If, rather than distribute
entanglement throughout a chain, one wished to spatially
separate an entangled state one might instead appeal to a
recent scheme outlined in �14�.
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