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We introduce an extended version of a previous all-versus-nothing proof of impossibility of Einstein-
Podolsky-Rosen’s local elements of reality for two photons entangled both in polarization and path degrees of
freedom �A. Cabello, quant-ph/0507259�, which leads to a Bell’s inequality where the classical bound is 8 and
the quantum prediction is 16. A simple estimation of the detection efficiency required to close the detection
loophole using this extended version gives ��0.69. This efficiency is lower than that required for previous
proposals.

DOI: 10.1103/PhysRevA.72.050101 PACS number�s�: 03.65.Ud, 03.67.Pp, 03.67.�a, 42.50.�p

If, from the result of one experiment, we can predict with
certainty the result of a spacelike separated experiment, then,
following Einstein, Podolsky, and Rosen �EPR� �1�, there
must be a local element of reality �LER� corresponding to
the latter result. However, some predictions of local realistic
theories are in conflict with those of quantum mechanics
�2,3�. Experiments �4–6� have shown an excellent agreement
with quantum mechanics and have provided solid evidence
against LERs. So far, however, the results of these experi-
ments still admit an interpretation in terms of LERs. A con-
clusive loophole-free experiment would require spacelike
separation between the local experiments and a sufficiently
large number of the prepared pairs’ detections; otherwise, the
possibility of communication at the speed of light between
the particles cannot be excluded �locality loophole �7��, and
neither can it be excluded that the nondetections correspond
to local instructions like “if experiment X is performed, then
do not activate the detector” �detection loophole �8��.

Photons are the best candidates for closing the locality
loophole. For instance, the Innsbruck experiment �5� with
polarization-entangled photons separated 400 m is not sub-
ject to the locality loophole; however, its detection efficiency
��=0.05� was not high enough to close the detection loop-
hole ���0.83 is required �9��. The detection efficiency for
ions is much higher. For instance, in the Boulder experiment
�6� with trapped beryllium ions, ��0.98; however, the dis-
tance between ions �3 �m� was not enough to close the lo-
cality loophole.

There are several proposals for experiments for closing
both loopholes �10�; however, most of them are very difficult
to implement with current technology. The most promising
approach for a loophole-free experiment is by using en-
tangled photons and more efficient photodetectors �11�. Re-
cent experiments with pairs of entangled photons have
achieved �=0.33 �12�. Closing the detection loophole with
maximally entangled states and the Clauser-Horne-Shimony-
Holt �CHSH� Bell’s inequality �3� requires a detection effi-
ciency ��2��2−1��0.83 �9�. By using nonmaximally en-
tangled states and supplementary assumptions, � can be

lowered to ��0.67 �13�. However, these experiments are
based on a different interpretation of EPR’s condition for
LERs �14�.

The detection efficiency required for a loophole-free ex-
periment on Bell’s theorem of impossibility of EPR’s LERs
is related with the statistical strength of the proof tested in
the experiment �i.e., with the amount of evidence against
LERs provided by the corresponding experiment�. In this
respect, all-versus-nothing �AVN� proofs �15,16� provide
stronger evidence against LERs than other proofs �17�. Spe-
cifically, a loophole-free experiment based on the three-
observer version �18� of Greenberger, Horne, and Zeilinger’s
proof �15�, would require ��0.75 �19�. The negative side is
that it requires three spacelike separated regions. The two-
photon version �21–23� of the two-observer AVN proof �16�
only requires a spacelike separation between two regions, but
the detection efficiency needed for a loophole-free test is
��5/6�0.83 �20�.

In this paper we introduce a new AVN proof for two pho-
tons, and its corresponding Bell’s inequality, which requires
an efficiency ��0.69 to close the detection loophole. This
efficiency, although still higher than that achieved in recent
experiments, is lower than that required for any previous
proposal for a loophole-free experiment based on bipartite
Bell’s inequalities and the usual interpretation of EPR’s con-
dition. The new AVN proof is an extended version of a pre-
vious one �20�.

Consider two photons entangled both in polarization and
in path degrees of freedom �21–24� prepared in the state

��� = 1
2 ��Hu�1�Hu�2 + �Hd�1�Hd�2 + �Vu�1�Vu�2 − �Vd�1�Vd�2� ,

�1�

where �H� j and �V� j represent horizontal and vertical polar-
ization, and �u� j and �d� j denote two orthonormal path states
for photon-j. Consider also 6 local observables on photon-j:
three for polarization degrees of freedom, defined by the
operators

Xj = �H� j	V� + �V� j	H� , �2�

Y j = i��V� j	H� − �H� j	V�� , �3�*Electronic address: adan@us.es
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Zj = �H� j	H� − �V� j	V� , �4�

and three for path degrees of freedom,

xj = �u� j	d� + �d� j	u� , �5�

yj = i��d� j	u� − �u� j	d�� , �6�

zj = �u� j	u� − �d� j	d� . �7�

Each of these observables can take two values: −1 or 1. Each
observer randomly chooses to measure either a polarization
observable, a path observable, or a polarization observable
and a path observable on his/her photon. The choice of mea-
surement and the measurement itself on photon-1 are as-
sumed to be spacelike separated from those on photon-2.

We will prove that these observables satisfy EPR’s condi-
tion for LER, namely, “if, without in any way disturbing a
system, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this
physical quantity” �1�. Z1 and z1 �Z2 and z2� are EPR’s LERs
because their values can be predicted with certainty
from spacelike separated measurements of Z2 and z2 �Z1 and
z1�, respectively, because state �1� satisfies the following
equations:

Z1Z2��� = ��� , �8�

z1z2��� = ��� . �9�

X1 and x1 �X2 and x2� are EPR’s LERs because their values
can be predicted with certainty from spacelike separated
measurements of X2z2 and Z2x2 �X1z1 and Z1x1�, respectively,
because state �1� satisfies

X1X2z2��� = ��� , �10�

x1Z2x2��� = ��� , �11�

X1z1X2��� = ��� , �12�

Z1x1x2��� = ��� . �13�

Analogously, Y1 and y1 �Y2 and y2� are EPR’s LERs because
state �1� satisfies

Y1Y2z2��� = − ��� , �14�

y1Z2y2��� = − ��� , �15�

Y1z1Y2��� = − ��� , �16�

Z1y1y2��� = − ��� . �17�

We will prove that two compatible observables on the
same photon, like X1 and z1, are independent EPR’s LERs in
the sense that the measurement of one of them does not
change the value of the other �and therefore there is no need
for any additional assumptions beyond EPR’s condition for
LER itself; see �25� for a similar discussion�. A suitable mea-

surement of X1 does not change v�x1� because v�x1� can be
predicted with certainty from a spacelike separated measure-
ment of Z2 and x2, see Eq. �11�, and this prediction is not
affected by whether X1 is measured before x1, or X1 and x1
are jointly measured. Therefore, EPR’s condition is enough
to guarantee that x1 has a LER �i.e., a value v�x1�� which
does not change with a measurement of X1. A similar reason-
ing applies to any other local observable involved in the
proof.

In addition, state �1� satisfies the following equations:

X1x1Y2y2��� = ��� , �18�

X1y1Y2x2��� = ��� , �19�

Y1x1X2y2��� = ��� , �20�

Y1y1X2x2��� = ��� . �21�

To be consistent with Eqs. �10�–�21�, local realistic theories
predict the following relations between the values of the
LERs:

v�X1� = v�X2�v�z2� , �22�

v�x1� = v�Z2�v�x2� , �23�

v�X1�v�z1� = v�X2� , �24�

v�Z1�v�x1� = v�x2� , �25�

v�Y1� = − v�Y2�v�z2� , �26�

v�y1� = − v�Z2�v�y2� , �27�

v�Y1�v�z1� = − v�Y2� , �28�

v�Z1�v�y1� = − v�y2� , �29�

v�X1�v�x1� = v�Y2�v�y2� , �30�

v�X1�v�y1� = v�Y2�v�x2� , �31�

v�Y1�v�x1� = v�X2�v�y2� , �32�

v�Y1�v�y1� = v�X2�v�x2� . �33�

However, it is impossible to assign the values −1 or 1 to the
observables in a way consistent with Eqs. �22�–�33�, and
therefore the predictions of quantum mechanics cannot be
reproduced by EPR’s LERs. Indeed, the assignation is im-
possible even for each of eight possible subsets of four equa-
tions. For instance, the product of Eqs. �22� and �26� �or the
product of Eqs. �24� and �28�� leads to v�X1�v�Y1�
=−v�X2�v�Y2�; while the product of Eqs. �30� and �32� �or
the product of Eqs. �31� and �33�� leads to v�X1�v�Y1�
=v�X2�v�Y2�. Analogously, the product of Eqs. �23� and �27�
�or the product of Eqs. �25� and �29�� leads to v�x1�v�y1�
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=−v�x2�v�y2�; while the product of Eqs. �30� and �31� �or the
product of Eqs. �32� and �33�� leads to v�x1�v�y1�
=v�x2�v�y2�. Note that if we explicitly write down the eight
sets, the four Eqs. �30�–�33� would appear twice as fre-
quently as the eight Eqs. �22�–�29�.

In a real experiment, measurements are imperfect and the
observed correlation functions fail to attain the values as-
sumed in the ideal case. Therefore, it is convenient to trans-
late the contradiction of the AVN proof into a Bell’s inequal-
ity. This inequality naturally follows from the observation
that the relevant features of the AVN proof derive from the
fact that state �1� is an eigenstate of the operator

� = X1X2z2 + x1Z2x2 + X1z1X2 + Z1x1x2 − Y1Y2z2 − y1Z2y2

− Y1z1Y2 − Z1y1y2 + 2X1x1Y2y2 + 2X1y1Y2x2 + 2Y1x1X2y2

+ 2Y1y1X2x2. �34�

As can be easily checked, in any model based on LERs the
expected value of � must satisfy

�	��� � 8. �35�

However, the quantum prediction for the state �1� is

	������ = 16, �36�

which is indeed the maximum possible violation of inequal-
ity �35�. The difference between the maximal violation of the
Bell’s inequality and its upper bound is 16−8=8 for the
inequality presented here, while it is just 2�2−2�0.8 for the
CHSH inequality �3�, 4−2=2 for the three-qubit version of
Mermin’s inequality �26�, and 9−7=2 for the Bell’s inequal-
ity derived from the two-observer AVN proof �16�.

The simplest way to estimate the detection efficiency re-
quired to avoid the detection loophole for a Bell experiment
based on this AVN proof, and a good estimation of the re-
quired efficiency for a test of the inequality �35�, is to see it
as a game in the spirit of Vaidman’s game �27� and Bras-
sard’s “quantum pseudo-telepathy” �28�. Consider a team of
two players, Alice and Bob, each of them isolated in a booth.
Each of them is asked one out of eight possible questions: �i�
“What are v�X� and v�z�?,” �ii� “What are v�Z� and v�x�?,”
�iii� “What are v�Y� and v�z�?,” �iv� “What are v�Z� and
v�y�?,” �v� “What are v�X� and V�x�?,” �vi� “What are v�X�
and v�y�?,” �vii� “What are v�Y� and v�x�?,” and �viii� “What
are v�Y� and v�y�?” If one player is asked a question from �i�
to �iv�, then the other is asked the same question; if one is
asked �v�, the other is asked �viii�; if one is asked �vi�, the
other is asked �vii�. Therefore, the possible scenarios are �i�–
�i�, meaning that both Alice and Bob are asked �i�, �ii�–�ii�,
�iii�–�iii�, �iv�–�iv�, �v�–�viii�, �vi�–�vii�, �vii�–�vi�, and �viii�–
�v�. Each player must give one of the following answers: “−1
and −1,” “−1 and 1,” “1 and −1,” or “1 and 1.” Since v�X�
represents a LER, Alice’s answer to “What is v�X�?” must be
the same regardless of the scenario in which is asked. The
same applies for all 12 LERs used in the game. Alice and
Bob win if the product of the answers satisfies the corre-
sponding equation in Eqs. �22�–�33�. Let us assume that all
questions are asked with the same frequency. This is equiva-
lent to assuming that, from the 12 possible scenarios consid-

ered in Eqs. �22�–�33�, those of Eqs. �30�–�33� occur twice as
frequently than those of Eqs. �22�–�29�. Assuming this, it is
easy to see that an optimal classical strategy allows the play-
ers to win this game in 3/4 of the rounds. For instance, a
simple optimal classical strategy is that the players always
use the following set of local answers:

G ª 
 v�X1� v�x1� v�X2� v�x2�
v�Y1� v�y1� v�Y2� v�y2�
v�Z1� v�z1� v�Z2� v�z2�

� = 
 1 1 1 1

1 1 1 1

1 1 1 1
� .

�37�

This strategy always wins except for scenarios �iii�–�iii� and
�iv�–�iv� �i.e., it satisfies all Eqs. �22�–�33�, except Eqs.
�26�–�29��. However, the players can win all the rounds if
they share pairs of photons in the state �1� and give as an-
swers the results of the corresponding measurements �i.e., if
one is asked question �i�, he/she gives as answers the results
of measuring X and z on his/her photon�.

In a real experiment to test the quantum predictions, the
low efficiency of detectors opens the possibility that nonde-
tections correspond to local instructions like “if X is mea-
sured, then the photon will not activate the detector.” This
allows us to construct a model with local instructions which
simulates the observed data by taking advantage of those
rounds in which one photon goes undetected.

Therefore, to estimate the efficiency required for a
loophole-free test consider a modified version of the previ-
ous game, including the possibility of each player not an-
swering in a fraction 1−� of the rounds. If any of the players
gives no answers, that round is not taken into account. This
new rule opens the possibility of the players also sharing a
fraction of sets of local instructions like

B1 ª 
 1 1 1 1

0 0 1 1

1 1 1 1
� , �38�

or

B2 ª 
 1 1 1 1

1 1 0 0

1 1 1 1
� , �39�

where the 0s in B1 means that, if Alice and Bob are using a
set B1, Alice will not give any answer to questions which
include “What is v�Y1�?” or “What is v�y1�?,” i.e., to ques-
tions �iii�, �iv�, �vi�, �vii�, and �viii�. Analogously, the 0s in
B2 means that, if Alice and Bob are using a set B2, Bob will
not answer questions which include “What is v�Y2�?” or
“What is v�y2�?”

Suppose the players are using sets of predefined answers
�i.e., suppose the observed data are adequately described by a
local realistic theory�. For instance, sets like G with a
frequency 1− p, sets like B1 with a frequency p /2, and sets
like B2 with a frequency p /2. This p is related to the effi-
ciency of the photodetector corresponding to photon-j, � j, by
the relation
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� j = 1 − p +
p

2
f j +

p

2
, �40�

where f1 �f2� is the probability that Alice �Bob� answers �i.e.,
she �he� does not get the instruction 0 in her �his� set� when
they are using a B1 �B2� set. In our case, f j =3/8.

Let us calculate the minimum detection efficiency re-
quired to discard the possibility that nature is using this par-
ticular set of predefined answers. To emulate the quantum
probability of winning the game �PQ=1 in our case�, the
minimum p must satisfy

PQ = �1 − p�PG +
p

2
PB1

+
p

2
PB2

, �41�

where PG is the probability of winning the game when the
players use a G set, and PBj

is the probability of winning
when the players use a Bj set and both answer the questions.
In our example, PG=3/4 and PBj

=1. Introducing the values
in Eqs. �40� and �41�, we arrive at the conclusion that our

model can simulate the quantum predictions if � j �11/16
�0.69. An exhaustive examination of all possible sets like G
and Bj shows that the previously presented model is indeed
optimal and, therefore, we conclude that LERs cannot simu-
late the quantum predictions if

� j � 11/16. �42�

If we do a similar analysis for a similar game based only on
Eqs. �22�, �26�, �30�, and �32�, we arrive at the conclusion
that closing the detection hole in this case would require
� j �3/4 �20�.
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