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Quantum dynamics and statistical properties of atom-molecule Bose-Einstein condensates
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Based on a two-mode boson model, we study nonclassical properties of the atom-molecule Bose-Einstein
condensate. The effects of nonlinear collisions on the dynamics of the molecular formation is studied both in
classical and quantum treatments. We find that the conversion from atoms to molecules can be suppressed
strongly due to nonlinearity induced localization of the atomic population. In addition, we study statistical
properties of the atom-molecule condensed system by calculating the intensity correlation functions numeri-
cally. We find that the effect of nonlinearity leads to the appearance of superchaotic molecular pulses, while
maintaining the atomic field sub-Poissonian. The joint quantum statistical properties of the atoms and the

molecules always show antibunching.

DOI: 10.1103/PhysRevA.72.045602

Recently, possibility of preparing atom-molecule Bose-
Einstein condensate (AMBEC) has attracted wide attention
[1-4]. Condensed bosonic atoms can be converted to a mo-
lecular condensate by using either the photoassociation pro-
cess [1,5,6] or the so-called Feshbach resonance method
[2,3,7,8]. Wieman’s group in JILA [7,8] measured the first-
order temporal mutual coherence of atoms and molecules by
using two-photon Ramsey experiment. Similarly with previ-
ous works [9,10], almost coherent Rabi oscillations (Ramsey
interference pattern) were demonstrated. Theoretically, their
experimental results were reproduced partially by using
coupled Gross-Pitaevski (GP) equations [11-14]. According
to the mean-field theory (MFT), large-amplitude coherent os-
cillation between the two-field modes is expected. Vardi et
al. [15] found that quantum-field solutions modify the Bose-
enhanced factor of the oscillation frequency. Moreover,
many-body quantum effects lead to the appearance of col-
lapse and revival of the coherent oscillations [5,15].

In this paper, we study nonclassical properties of the AM-
BEC based on a two-mode bosonic model [5,15]. The role of
nonlinearity on quantum dynamics of the AMBEC is studied.
We find that nonzero interspecies and intraspecies interac-
tions result in modulational instability, and modify the dy-
namics of the AMBEC. The conversion of atoms into mol-
ecules is shown to be dramatically suppressed due to
nonlinearity induced localization of the atomic population.
We also study the statistical properties of the AMBEC by
calculating the intensity correlation functions numerically.
Our results show that due to the nonlinearity, the initial sub-
Poissonian molecular field is transformed into superchaotic
molecular pulses, whereas the atomic field remains in the
sub-Poissonian region. In addition, the joint quantum statis-
tical properties of the atoms and the molecules always ex-
hibit antibunching.

We consider the atom-molecule condensate system
coupled via one-color photoassociation or Feshbach reso-
nance. The total system can be described phenomenologi-
cally by a two-mode bosonic Hamiltonian [5,15] (fi=1):
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where 6 denotes the detuning between the molecular and
atomic field. The atomic-field and molecular-field operators,
dandb obey the standard bosonic commutation relationship.
The atom-atom, molecule-molecule, and atom-molecule
elastic interactions are described by the s-wave scattering
strengths N, N, and A(N\,,) [2,6], respectively. It should
be mentioned that \, and \,;, are still unknown [4,6]. Fol-
lowing Refs. [16,17], we take \,~2\,(~107 g) and \,,
~—1.5\,. Due to the conserved particle number N =7,+27y,
where 7i,=d'a and fzb:l;TZ;, the Hilbert space is spanned by
the basis [18]: |¢p,)=|N-2n),|n), for n=0,1,...,[N/2],
where [z] denotes taking the greatest integer of any real
number z. The dynamics of the AMBEC for arbitrary initial
states can be solved by using the Runge-Kutta numerical
scheme.

Before investigating the quantum dynamics of the AM-
BEC, we first derive the classical equations of motion and
discuss their steady states. The GP-type equations for the
atomic and molecular fields can be obtained from the
Heisenberg equations by replacing é%(d):w/ﬁ(ba and b
—(by= WCI)I,, where the wave functions for the two-field
modes ®;=|® |e'% (j=a, b) obey the normalized condition:
|®,[>+2|D,[>=1. To get the steady states and the modula-
tional instability conditions [19], we introduce two conjugate
variables [20,21]: x=|®,|> and ¢=2¢,— ¢,. They obey the
canonical relations: dx/dr=—dH/de, del/dT=JdH/dx, and
the canonical Hamiltonian is given by

A —
H=Ax- Exz—xvl —xcos(e), (2)

where the scaled time 7= \EGI. In derivation of the above
equations, we have introduced
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where G=mg and A;=(N)\;;. The stationary solutions
obey  (dx/ dT)sz(dcp/ dT)(pOEO. From the relation
xo\s’rxo sin(¢@)=0, we find that there are three kinds of
fixed points: (i) pure molecular phase with x,=0, (ii) in-
phase type of steady state with ¢,=0, (iii) out-of-phase type
of steady state with ¢y=m [16]. The value of x, determined
by a cubic equation

1 —3xy/2
A= Axg— ——2"cos(g) =0 5)
V1 —x

can be solved numerically. It was shown that the atomic
phase at |[A| — o can be converted to the molecular phase or
vice versa by varying the detuning A adiabatically [5,21]. In
the intermediate region, there are two types of atom-
molecule coexisting phases: the in-phase steady state for
¢@p=0 in the parameter region A<1, and the out-of-phase
one for ¢y=m in A>-1 region.

Stability analysis of the steady states can be performed by
introducing small perturbations: x=xy+ ox and ¢=¢@y+ op. A
coupled linearized equation for the perturbations gives the
eigenfrequencies

W= w(z) = AxoV1 = xo cos(ey), (6)

where wy=1/x(1-3xy/4)cos*(¢y)/(1-x,). For a negligible
nonlinear interaction A=0, aroused from either A;=A;;=0 or
A=A +A, /4, both of the two steady states (=0, 7) are
stable [21]. However, for nonzero A, the above two steady
states can be modulationally unstable when the eigenfre-
quencies become imaginary [22], i.e., w*<0. In this case,
the perturbations in the AMBEC undergo exponential growth
with the growth rate being the imaginary part of w. We find
that, for ¢,=0, the MI occurs in the positive A region with
A>1 and A<I. For ¢y,=, the AMBEC is unstable in the
negative A region with A<-1 and A>-1. The MI region
(and also the dynamics) of the AMBEC is invariant under the
transformation A ——A, ¢— 7m—¢, and A——A. Thus, in the
following we only consider the case of positive A.
Dynamical evolution of the AMBEC can be described by
the fraction of atoms converted to molecules [5,19], f),

=2(b'b)/(N), which measures the ratio of the atom number
in the bound state to the total atom number. In the MFT,
fu=2|®,|*. For the negligible nonlinear interaction A=0,
there are analytical solutions for f, [23]. Consi_dering the
initial condition x(0)=1, then [fy,=2f,sn*(\Nfo1/\2,m),
where sn(z,m) is a Jacobi elliptic function with the elliptic
modulus m=£,/f5, and f,=1/4[A?+2F {A*(A’>+4)]. In
particular, for the exact “resonant” case with A=0, f),
=tanh?(7/2) since m=1. Starting from the zero initial value,
[y grows quickly to the maximum value 1 without any os-
cillation [the dotted line in Fig. 1(a)], which corresponds to a
complete and irreversible molecule formation process. Non-
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FIG. 1. (Color online) f), vs the scaled time 7 for (a) mean-field

solutions, (b) quantum solutions, and (c) comparison of the two

predictions for A=0.4243. The parameters are A=0, N=10* and

the nonlinearity in (a) and (b) are: A=0.0 (the dotted lines), A

=0.4243 (the red lines), A=0.9419 (the blue lines), and A
=1.6971 (the black solid lines).

zero A, however, results in periodi_c oscillations of f;, with
smaller amplitude. If A>A_=1/2, the amplitude of f, is
always less than 1/2.

To investigate the effect of nonzero A, we need to know
the values of the two-body interaction strengths. However \,;,
and A, have not been determined even in low-energy region
[4,6]. Following Ref. [17], we adopt A\,=2\, and M\,
=—1.5\,. Nonzero A can be achieved by tuning \,, such
as A\,=1.0x1073 g (A=0.4243), \,=2.22X102%¢g (A
=0.9419), and \,=4.0X 1073 g (A=1.6971). All the above
parameters are in the stable region. The MFT results show
that the effect of nonlinearity leads to periodic oscillations
between atoms and molecules. As shown in Fig. 1(a), the
amplitude of f), decreases monotonically with the increase of
A. If A>0.94, the whole curve of f}, is below 1/2, i.e., no
more than 50% of atoms are converted to molecules. This
nonlinearity induced localization of the atomic population is
similar to the macroscopic self-trapping in the two-
component BEC [20]. However, unlike the two-mode BEC
system with Josephson-like coupling, the oscillation ampli-
tude in AMBEC reduces continuously from unity to zero.

In Fig. 1(b), we evaluate numerically the quantum solu-
tions of f,, for an initial number state |¢1(0))=|N),|0),. In the
absence of nonlinearity A=0 and A=0, the quantum solution
of f); [the dotted line in Fig. 1(b)] breaks away from the
MEFT result around the point 7~ 7.03, where all the particles
are in molecular state. This departure cannot be explained in
the framework of the MFT. A semiclassical analysis of the
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AMBEC in the vicinity of the all-molecules phase shows that
there are two contributions to the atomic occupation [15]: (i)
spontaneous dgsociation into atomic vacuum, which is pro-
portional to VN sinh?(7/2), (i) stimulated part proportional
to (7i,), which is negligible near the all-molecule phase. The
Bose-enhanced spontaneous dissociation into the atomic
vacuum results in collapse and revival of the atom-molecular
oscillations [5,15], which is just similar with the phenom-
enon observed in the two-photon down-conversion process
[18].

We further consider quantum solution of f,, for the case
of A#0. As shown in Fig. 1(b), we find that the quantum
results almost coincide with the corresponding classical so-
lutions shown in Fig. 1(a). Both of them exhibit “periodic”
oscillations with decreased amplitude. The agreement of two
solutions originates from the fact that the trajectories do not
reach the all-molecule phase, and the contribution of quan-
tum fluctuation of atomic mode is not significant compared
to the coherent stimulated process. In Fig. 1(c), we compare
the quantum solution (red solid line) with the MFT solution
(dotted line) for A=0.4243. We find that the quantum solu-
tion is in fact the collapsed oscillations. From Fig. 1(b), we
also find that the collapse time is enhanced significantly by
the nonlinearity, i.e., the coherent oscillations are damped
more slowly with the increase of A.

The observation of the first-order temporal coherence be-
tween atoms and molecules opens up the possibility to form
molecular condensate. However, there remains many open
questions to be answered [7], such as the detailed quantum
state of the molecules, and their higher-order coherence
functions in the temporal domain. Recently, Meiser et al.
[24] studied the short-time dynamics of molecule formation
and the second-order correlation function by using perturba-
tion theory. They found that the second-order degree of co-
herence of the molecular field for an initial number state
approaches unity in the limit of large N. Motivated by their
work, we calculate the equal-time intensity correlation func-
tions beyond the short-time limit

o (0= 1)

jT <ﬁj>2

()

It is known from quantum optics that if 0= gj(;) <1 then the

field is in the so-called sub-Poissonian. The fields in a sub-
Poisson distribution always exhibit nonclassical antibunch-
ing phenomena. g(.2)=l represents a coherent state with Pois-
son distribution, while g;2)>1 is characteristic for a super-
Poisson distribution. In particular, for thermal or chaotic
field, g\*'=2.

Starting from the number state, the initial stage of the
second-order coherence functions of two field modes obey
gP=1-1/N and g”=1-4/N+O(N?) [24]. Both of them
are less than 1. For zero nonlinearity A=0, as shown in Fig.
2(a), we find that the two field modes are transformed from
sub-Poissonian to super-Poissonian, successively. Similarly
with previous discussions, the AMBEC system with zero
nonlinearity shares the same model of degenerate parametric
amplifier [25]. Quantum fluctuations of the atomic vacuum
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FIG. 2. (Color online) gf) and gf) vs the scaled time 7 for
various A. From top to bottom: (a) A=0, (b) A=0.4243, (c) A
=0.9419, and (d) A=1.6971. The red solid lines are for g and the

blue dotted lines for gf). Other parameters are the same as Fig. 1.

leads to the appearance of super-Poissonian, and the peaks of
giz) near the points 7~7.03 and 21.0, where the particles are
almost in the molecular mode. The magnitude of g22)>2
indicates that the atoms generated from the photodissociation
exhibits superchaotic (strong bunching) behavior [26].

The second-order coherence function giz) for nonzero A
are calculated in Figs. 2(b)-2(d). We find that the effects of
nonlinearity result in sharp peaks in gf) with their positions
at the minima of f,;. Their magnitudes are larger than 2 but
not divergent due to the nonzero minimums of the mean
molecular number. Our results imply that the initial sub-
Poissonian statistics of g;z) is transformed into a super-
Poissonian, and thereby a superchaotic molecular pulse can
be realized at certain values of time. The second-order co-
herence functions of the atomic field are also plotted in Fig.
2 (the red lines). We find that super-Poissonian statistics of
gzz) is fully suppressed for A #0. More specifically, the in-
tensity correlation function of the atomic field oscillates be-
tween sub-Poissonian and super-Poissonian with very small
amplitude. Further increase of A, such as to 1.6971, giz)
<1, which implies that the atomic field is always in sub-
Poissonian. The reduction of the super-Poissonian of atomic
field to sub-Poissonian comes also from the suppression of
spontaneous atomic emission. The increase of A dominates
the contribution of the coherent stimulated process.

Finally, we study the joint quantum statistical properties
of the atoms and the molecules, defined by

045602-3



BRIEF REPORTS

(i)
@ _ @ = Vs’ 8
@R iy ®)

We find that g(azb)(r) is always less than 1. Physically, such a
result means that the atoms and the molecules do not tend to
be created simultaneously, i.e., the antibunching between the
two field modes. Similar results have been addressed for op-
tical field in the two-photon down-conversion process [18].

In summary, we have studied the role of nonlinearity on
quantum dynamics and statistical properties of the AMBEC.
The former problem is related to the atom-molecule conver-
sion rate. We have shown that even in the simplest two-mode
model without “rogue photodissociation” [27], the conver-
sion can be strongly settled down due to the nonlinear analog
of macroscopic self-trapping effect. We also studied statisti-
cal properties of the AMBEC by calculating the intensity
correlation functions numerically. Our results show that the
nonlinearity A in the stable region can modify both giz) and
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g(bz) significantly. The initial sub-Poissonian molecular field
is transformed into superchaotic molecular pulses, whereas
the atomic field remains in sub-Poissonian region. Our re-
sults also show that the joint quantum statistical properties of
the atoms and the molecules always exhibit antibunching.

It should be mentioned that Prataviera et al. [28] have
studied higher-order mutual coherence of two chemically
different species: the light field and the matter field. Their
scheme make use of the combination of the traditional ab-
sorption photodetector and a matter-wave detector relied on
photoionization of the atoms. Similarly, photoionization of
the diatomic molecules can be proposed in the atom-
molecule photoassociation experiments to measure the mol-
ecules and their statistical properties directly.
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