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A scheme for multiparty quantum state sharing of an arbitrary two-particle state is presented with Einstein-
Podolsky-Rosen pairs. Any one of the N agents has the access to regenerate the original state with two local
unitary operations if he collaborates with the other agents, say the controllers. Moreover, each of the controllers
is required to take only a product measurement �x � �x on his two particles, which makes this scheme more
convenient for the agents in the applications on a network than others. As all the quantum source can be used
to carry the useful information, the intrinsic efficiency of qubits approaches the maximal value. With a new
notation for the multipartite entanglement, the sender need only publish two bits of classical information for
each measurement, which reduces the information exchanged largely.

DOI: 10.1103/PhysRevA.72.044301 PACS number�s�: 03.67.Hk, 03.67.Dd, 03.65.Ud, 89.70.�c

Quantum secret sharing �QSS�, an important branch of
quantum communication, is the generalization of classical
secret sharing �1� into quantum scenario and has attracted a
lot of attention �2–14�. There are three main goals in QSS:
�1� it is used to distribute a private key among many users
�2–8�, similar to quantum key distribution �QKD� �15�; �2� it
is a tool for sharing a classical secret directly �2–4,9,10�,
similar to quantum secure direct communication �QSDC�
�16,17�; �3� it provides a secure way for sharing a quantum
information �an unknown quantum state� �9–12�, similar to
the controlled teleportation �18–20�. Most existing QSS
schemes are focused on creating a private key among several
parties or splitting a classical secret. For example, an original
QSS scheme �2� was proposed by Hillery, Bužek, and Ber-
thiaume �HBB� in 1999 by using a three-particle or a four-
particle Greenberger-Horne-Zeilinger �GHZ� state for dis-
tributing a private key among some agents and sharing a
classical information.

In recent, an interest work was done by Li et al. �11� for
sharing an unknown single qubit with a multipartite joint
measurement. In their QSS protocol, the sender splits a qubit
into m pieces for the m agents with m Einstein-Podolsky-
Rosen �EPR� pairs, and any one of the agents can obtain the
qubit with the help of the other agents. In 2004, Lance et al.
�12� named the branch of quantum secret sharing for quan-
tum information “quantum-state sharing” �QSTS�. By far,
there are no models for sharing an arbitrary multipartite state.
In this paper, we will present a way for sharing an arbitrary
two-particle state with 2N EPR pairs. Any one in the N
agents can regenerate the original state when he collaborates
with the others, say the controllers. Moreover, the controllers
need only perform the single-particle measurements on their
particles, and the receiver can reconstruct the original state
with two local unitary operations.

The basic idea of this QSTS for an arbitrary two-particle
state with two agents is shown in Fig. 1. Alice is the sender,
Bob and Charlie are the two agents. Suppose that the un-
known arbitrary two-particle state is described as

���xy = ��00�xy + ��01�xy + ��10�xy + ��11�xy , �1�

where x and y are the two particles in the state ���xy, and

���2 + ���2 + ���2 + ���2 = 1. �2�

At first, Alice shares the four EPR pairs a1b1, c1d1, a2b2 and
c2d2 with Bob and Charlie, respectively. Here a1 and b1 are
the two particles in an EPR pair, and similar notations for the
other EPR pairs. An EPR pair is in one of the four Bell states
shown as follows �23�:

��±� = �1/�2���0��1� ± �1��0�� ,

�	±� = �1/�2���0��0� ± �1��1�� , �3�

where �0� and �1� are the eigenvectors of the operator �z.
Without loss of generalization, we assume that all the EPR
pairs are originally in the entangled state �	+�=1/�2��0��0�
+ �1��1��.

Before the measurement, the state of the composite quan-
tum system composed of the ten particles is

�
�s � ���xy�	+�a1b1
�	+�c1d1

�	+�a2b2
�	+�c2d2

. �4�

Alice performs the three-particle GHZ state joint measure-
ment M1 on the particles x, a1, and a2 first, and then the M2
on the particles y, c1 and c2. Bob takes the product measure-
ment MB=�x � �x on the particles b1d1, and then Charlie can
recover the original state ���xy with two local unitary opera-
tions UC=Ub � Ud according to the results obtained by Alice
and Bob, see Fig. 1.

Let us use an example to demonstrate the principle of this
QSTS protocol with one controller. First, we introduce a new
notation for the three-particle GHZ states.
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�Gij+� = �1/�2���0ij� + �1ī j̄��, �Gij−� = �1/�2���0ij� − �1ī j̄�� ,

�5�

where i , j� 	0,1
, ī=1− i and j̄=1− j.
Suppose Alice gets the results Rxa1a2

=Ryc1c2
= �G00+�,

which will occurs with the probability 1
8 �

1
8 = 1

64, then the
state of the subsystem with the particles b1, d1, b2, and d2
becomes

�
�sub = ��00�b1d1
�00�b2d2

+ ��01�b1d1
�01�b2d2

+ ��10�b1d1
�10�b2d2

+ ��11�b1d1
�11�b2d2

. �6�

That is, the information of the state ���xy is transferred to the
state of the subsystem shared between Bob and Charlie. If
they want to recover the quantum information ���xy, one of
them performs �x � �x on his/her two particles and the other
takes two local unitary operations on the two particles re-
mained according to the information provided by the first
one. For example, let us assume that Bob performs the �x
� �x measurement on his two particles, and Charlie will re-
construct the original state when she collaborates with Bob.
We can rewrite the state �
�sub as

�
�sub = 1
2 �� + x�b1

� + x�d1
���00�b2d2

+ ��01�b2d2
+ ��10�b2d2

+ ��11�b2d2
� + � + x�b1

�− x�d1
���00�b2d2

− ��01�b2d2

+ ��10�b2d2
− ��11�b2d2

� + �− x�b1
� + x�d1

���00�b2d2

+ ��01�b2d2
− ��10�b2d2

− ��11�b2d2
� + �− x�b1

�

− x�d1
���00�b2d2

− ��01�b2d2
− ��10�b2d2

+ ��11�b2d2
�� ,

�7�

where �+x�= �1/�2���0�+ �1�� and �−x�= �1/�2���0�− �1�� are
the two eigenstates of the measuring basis �x. Provided that
Bob agrees to cooperate with Charlie, Charlie can recover
the unknown state by performing the unitary operations U0
� U0, U0 � U1, U1 � U0, and U1 � U1 on the particles b2 and
d2 if the outcomes obtained by Bob are �+x�b1

�+x�b2
,

�+x�b1
�−x�b2

, �−x�b1
�+x�b2

, and �−x�b1
�−x�b2

, respectively.
Here U0� I, U1��z, U2��x and U3� i�y, and I is the iden-
tity matrix and �i�i=x ,y ,z� are the Pauli matrices.

For the other cases, the relation between the results of the
measurements done by Alice and Bob and the local unitary
operations with which Charlie reconstructs the unknown

TABLE I. The relation between the local unitary operations and the results Rxa1a2
, Ryc1c2

, Rb1
, and Rd1

.
�b2d2

is the state of the two particles hold in the hand of Charlie after all the measurements are done by Alice
and Bob; UC are the local unitary operations with which Charlie can reconstruct the unknown state ���xy.

Vxa1a2
Vyc1c2

Pxa1a2
� Pb1

Pyc1c2
� Pd1

�b2d2
UC

0 0 � � ��00�+��01�+��10�+��11� U0 � U0

0 0 � � ��00�−��01�+��10�−��11� U0 � U1

0 0 � � ��00�+��01�−��10�−��11� U1 � U0

0 0 � � ��00�−��01�−��10�+��11� U1 � U1

0 1 � � ��01�+��00�+��11�+��10� U0 � U2

0 1 � � ��01�−��00�+��11�−��10� U0 � U3

0 1 � � ��01�+��00�−��11�−��10� U1 � U2

0 1 � � ��01�−��00�−��11�+��10� U1 � U3

1 0 � � ��10�+��11�+��00�+��01� U2 � U0

1 0 � � ��10�−��11�+��00�−��01� U2 � U1

1 0 � � ��10�+��11�−��00�−��01� U3 � U0

1 0 � � ��10�−��11�−��00�+��01� U3 � U1

1 1 � � ��11�+��10�+��01�+��00� U2 � U2

1 1 � � ��11�−��10�+��01�−��00� U2 � U3

1 1 � � ��11�+��10�−��01�−��00� U3 � U2

1 1 � � ��11�−��10�−��01�+��00� U3 � U3

FIG. 1. �Color online� Multiparty quantum se-
cret sharing for an arbitrary two-particle state
with two agents. The single lines denote qubits,
double lines denote classical data, similar to Ref.
�21�. M1, M2 are the GHZ-state joint measure-
ments on the particles xa1a2 and yc1c2, respec-
tively; MB is the product measurement �x � �x on
the particles b1d1.
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quantum information ���xy is shown in Table I. Here Vxa1a2
and Vyc1c2

represents the bit value of the results of the GHZ
state joint measurements on xa1a2 and yc1c2, respectively.
Define

V�Gij±� � j, P�Gij±� � ± , P�±x� � ± , �8�

where i , j� 	0,1
. In detail, Vxa1a2
=1 and Pxa1a2

=− if the
result of the three-particle joint measurement on particles
xa1a2 is Rxa1a2

= �G01−� or Rxa1a2
= �G11−�; Pb1

=− when
Rb1

= �−x�. Ui � Uj means that Charlie performs Ui and Uj on
the two particles b2 and d2, respectively, here i , j=0,1 ,2 ,3.

Table I shows that the unknown state ���xy can be shared
by Bob and Charlie completely, and they can reconstruct the
state with two single-qubit measurements along the x direc-
tion and two local unitary operations. They need not do Bell
state measurement on the particles, which makes this QSTS
protocol more convenient for the agents than that in Ref.
�20�. Moreover, Alice needs only to publish two bits of clas-
sical information for her agents to recover the state ���xy.

It is straightforwardly to generalize this QSTS scheme to
the case with N agents, say Bobi�i=1,2 , . . . ,N−1� and Char-
lie. As the symmetry, we still assume that Charlie is the agent
who will recover the unknown state with the help of the N
−1 controllers, Bob. For the end, Alice should share 2N EPR
pairs ���aibi

and ���cidi
, �i=1,2 , . . . ,N� with the N agents. In

this time, the state of the composite quantum system is

���S � ���xy�
i=1

N

� �	+�aibi
� �	+�cidi

. �9�

Define a set of orthogonal vectors as

�10�

where i , j ,k� 	0,1
, ī , j̄ and k̄ are the counterparts of the
binary numbers i, j, and k, respectively.

In the quantum communication, Alice performs first the
joint measurement on the N+1 particles x, a1 , . . ., and aN,
then on the N+1 particles y, c1 , . . ., and cN. When the agents
want to reconstruct the unknown state ���xy, each of the
controllers, Bobi performs �x � �x on his two particles bi and
di, i.e.,

���S = 
xa1. . .aN
� 
yc1. . .cN

� ��
i=1

N


bi � ��
i=1

N


di , �11�

where

are the results of the joint measurements done by Alice. In
more detail, the state of the quantum system �without being
normalized� can be rewritten as

�
�S = �
i,j,. . .,k
m,n,. . .,l

	�Gij¯k+��Gmn¯l+����ij ¯ k��mn ¯ l�

+ ��ij ¯ k��m̄n̄ ¯ l̄� + ��ī j̄ ¯ k̄��mn ¯ l� + ��ī j̄ ¯ k̄�

��m̄n̄ ¯ l̄�� + �Gij¯k+��Gmn¯l−����ij ¯ k��mn ¯ l�

− ��ij ¯ k��m̄n̄ ¯ l̄� + ��ī j̄ ¯ k̄��mn ¯ l� − ��ī j̄ ¯ k̄�

��m̄n̄ ¯ l̄�� + �Gij¯k−��Gmn¯l+����ij ¯ k��mn ¯ l�

+ ��ij ¯ k��m̄n̄ ¯ l̄� − ��ī j̄ ¯ k̄��mn ¯ l� − ��ī j̄ ¯ k̄�

��m̄n̄ ¯ l̄�� + �Gij¯k−��Gmn¯l−����ij ¯ k��mn ¯ l�

− ��ij ¯ k��m̄n̄ ¯ l̄� − ��ī j̄ ¯ k̄��mn ¯ l� + ��ī j̄ ¯ k̄�

��m̄n̄ ¯ l̄��
 , �12�

where �i�= �1/�2���+x�+ �−1�i�−x��	i , j , . . . ,k ,m ,n , . . . , l
 are
2N binary numbers, and m̄ is the counterpart of m, i.e., m̄
=1−m. As the symmetry, the measurements done by the con-
trollers can be expressed by the operation M,

M = ���+ x��N−1−t��− x��t�1 � ���+ x��N−1−q��− x��q�2, �13�

where ���+x��N−1−t��−x��t�1 is the measurement operation re-
lated to the state of the quantum subsystem bi �i.e, �i=1

N 
bi
�,

and ���+x��N−1−q��−x��q�2 is related to di, t and q are the num-
bers that the controllers obtain the result �−x� when they
measure the particle bi and di, respectively. After the mea-
surements done by Alice and the N−1 controllers, the rela-
tion between the state of the particles bNdN and the results of
the measurements can be expressed as

M�
�S = �
i,j,. . .,k
m,n,. . .,l

	�Gij¯k+��Gmn¯l+� � e−1���kl� + �− 1�q��kl̄�

+ �− 1�t��k̄l� + �− 1�t+q��k̄l̄�� + �Gij¯k+��Gmn¯l−�

� e−2���kl� + �− 1�q+1��kl̄� + �− 1�t��k̄l�

+ �− 1�t+q+1��k̄l̄�� + �Gij¯k−��Gmn¯l+� � e−3���kl�

+ �− 1�q��kl̄� + �− 1�t+1��k̄l� + �− 1�t+q+1��k̄l̄��

+ �Gij¯k−��Gmn¯l−� � e−4���kl� + �− 1�q+1��kl̄�

+ �− 1�t+1��k̄l� + �− 1�t+q��k̄l̄��
 , �14�

where e−i�i=1,2 ,3 ,4� is an integer phase related to the state
of quantum system bNdN, 
bNdN

, and it does not affect the
result of the final state 
bNdN

after all the measurements are
completed.

Similar to the notations discussed above, we define

V�Gij¯k±� � k, P�Gij¯k±� � ± . �15�

The relation between the results of the measurements and the
local unitary operations with which Charlie reconstructs the
unknown quantum information is as same as that in Table I
with just a little modification. That is, Vxa1a2

, Vyc1c2
, Pxa1a2

� Pb1
, and Pyc1c2

� Pd1
are replaced with Vxa1¯aN

, Vyc1¯cN
,

Pxa1¯aN
� �−1�t, and Pyc1¯cN

� �−1�q, respectively.
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Same as the case with two agents, Alice need only publish
two bits of classical information for each �N+1�-particle
GHZ state measurement. The controllers are required only to
perform two single-particle measurements along the x direc-
tion, �x for their particles and the receiver can obtain the
arbitrary two-particle state ���xy with two local unitary op-
erations if she collaborates with the other N−1 agents. As all
the quantum source are used to carry the useful information
and no particles are abandoned in this scheme, the intrinsic
efficiency for qubits approaches the maximal value. The se-
curity of this QSTS scheme depends on the process that Al-
ice shares the EPR pairs with the agents. The ways for shar-
ing a sequence of EPR pairs securely between two remote
men have been discussed in Refs. �17,20,22�. So this QSTS
scheme can be made to be secure.

Quantum state sharing is the extension of quantum secret
sharing, and is used to split an unknown quantum state. For
sharing a classical information, single photons can be used as
the quantum source for setting up the quantum channel
�6–8�. For splitting an unknown state, the quantum source
has to be an entangled quantum system. Although big pro-
cess has been made for producing entanglement, the effi-
ciency is still low, in particular for multipartite entanglement
�24�. With the present techniques, the EPR pairs may be one
of the optimal entangled quantum sources for quantum state
sharing and quantum teleportation �25�. On the other hand,

the disadvantage of this scheme is that the joint measurement
done by the sender, Alice becomes more difficult with the
increase of the agents. With the development of technology,
it is likely easy for measuring a multipartite entanglement.

In summary, we have presented a way for quantum state
sharing of an arbitrary two-particle state with 2N EPR pairs.
Any one in the N agents can recover the original state with
two local unitary operations if he collaborates with the other
agents, the N−1 controllers who are required only to perform
two single-particle measurements along the x direction �x

without Bell state joint measurements, which makes it more
convenient for the agents in its applications than others. Cer-
tainly, Alice has to perform two multipartite joint measure-
ments on her particles. Another advantage is that all the par-
ticles can be used to carry the useful information and the
intrinsic efficiency for qubits approaches the maximal value.
With the new notations for GHZ state, Alice need only pub-
lish four bits of classical information for recovering the
original state, which reduces the information exchanged
largely.
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