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We develop a theory of quantum feedback cooling of a single ion trapped in front of a mirror. By monitoring
the motional sidebands of the light emitted into the mirror mode we infer the position of the ion, and act back
with an appropriate force to cool the ion. We derive a feedback master equation along the lines of the quantum
feedback theory developed by Wiseman and Milburn, which provides us with cooling times and final tempera-
tures as a function of feedback gain and various system parameters.
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I. INTRODUCTION

Laser cooling and trapping of single ions [1-3] is one of
the highlights in the development of quantum optics during
the last two decades. Single trapped ions are a laboratory
paradigm of a quantum system, which can be prepared and
controlled on the single quantum level, and whose time evo-
lution can be monitored continuously by observing the scat-
tered light in photodetection or homodyne measurements [1].
By continuous observation of a single quantum system [4,5]
we learn the state of the system, as described by a condi-
tional system density matrix p.(¢), and based on this knowl-
edge we can act back on the system, giving rise to quantum
feedback control of the system of interest [6-10]. In the
present paper we present a theory of quantum feedback cool-
ing of a single trapped ion: by extracting from the scattered
light the position of the ion in the trap, we implement a
feedback loop on the system in the form of a damping force
with the purpose of cooling the ion motion in the trap. De-
velopment of this theory is not only of fundamental interest
in quantum optics, but the particular setup studied is moti-
vated by ongoing experimental efforts [11,12] to implement
quantum feedback cooling of single trapped ions in labora-
tory. Indeed the present theoretical results provides a quanti-
tative basis for the understanding of these experiments [12].

The particular setup studied in the present paper is a
single laser cooled trapped ion in front of a mirror [13], as
illustrated in Fig. 1, and motivated by present experiments
[11,12]. A single ion is stored a distance L from a mirror in a
harmonic trapping potential. The ion is assumed to be a two-
level system weakly driven near resonance by laser light.
Light is scattered into both the mirror mode, as well as the
other other “background” modes of the radiation field. By
detuning the laser on the red side of the atomic transition, the
ion is laser cooled to a temperature corresponding to Doppler
limit, where the mean occupation of the trap levels is much
larger than one (i.e., far away from the sideband cooling
limit to the ground state of the trap). Motion of the ion adds
sidebands of the light scattered into the mirror mode dis-
placed by the trap frequency. Observing the scattered light of
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these motional sidebands allows us to infer the position of
the ion in the sense of continuous measurement theory, and
feed back a damping force proportional to the momentum to
implement quantum feedback cooling. In this paper we will
first formulate a continuous measurement theory to read the
position of the trapped ion from the scattered light using the
language of stochastic Schrodinger equations [4,5]. Building
on general quantum feedback theory formulated by Wiseman
and Milburn [6,7], we will then derive a quantum feedback
master equation for the motion of the trapped ion. This will
allow us to study the dynamics and limits of quantum feed-
back cooling.

For the setup studied in this paper the continuous readout
of the ion position is based on light scattering into the mirror
mode, with additional photons scattered into all other “back-
ground modes” of the radiation field. Spontaneous emission
is intrinsically associated with a momentum recoil of the ion,
which perturbs the ion motion, i.e., contributes a heating
mechanism for the ion. In a parallel paper [14] we study a
quantum feedback scheme based on a dispersive readout of
the velocity of the trapped ion to avoid this unwanted heat-
ing. It is based on the large variation of the index of refrac-
tion with the Doppler effect near a dark state resonance in an
atomic A system (based on electromagnetically induced
transparency).
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FIG. 1. (Color online) Physical setup: L is the distance between
the ion trap center and the mirror, y is the incident laser angle. The
light is collected in the photodetector PD. The feedback circuit con-
sists of a bandpass filter, a phase shifter, and an amplifier. The
current /g, is fed back to electrodes creating an additional potential
for the ion. The mirror axis is equal to the z axis.
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The paper is structured as follows. Section II presents the
basic dynamic equations for the motion of an ion in front of
a mirror. Quantum feedback equations are formulated in Sec.
III, while results are presented in Sec. I'V.

II. MODEL AND BASIC EQUATIONS

In this section we will develop the basic equations for
continuous measurement of the photons in the mirror mode
of the electromagnetic field. We will start with a detailed
description of our model in terms of a Schrodinger equation
for the coupled atom-bath system and the exciting laser.
Continuous measurement theory provides us with a quantum
stochastic Schrédinger equation and hence a quantum sto-
chastic master equation in the Lamb-Dicke limit, where we
adiabatically eliminate the excited state from the two-level
atom. We will then derive the photocurrent obtained by de-
tecting mirror mode photons and the corresponding stochas-
tic master equation for the conditional density operator in the
white noise (diffusive) limit.

A. Single trapped ion in front of a mirror

We consider a single trapped ion which is placed at a
distance L from a mirror as indicated in Fig. 1[1,15-17]. For
the harmonic motion we assume a 1D model in the z direc-
tion (identical to the mirror axis). The harmonic trap has an
oscillation frequency vy, and we denote the destruction (cre-
ation) trap operator by a(a’). The electronic degrees of the
ion form a two-level atom with atomic transition frequency
w,q, With ground state |g) and excited state |e). We drive the
two-level system with a laser with frequency w; which
couples the ground to the excited state with the Rabi fre-
quency () and a detuning from the atomic resonance A,
=w;~ ,,. The atomic system Hamiltonian can thus be writ-
ten as

Hgy = via'a—Arle)e| - %Q(eikefff|e)(g| +H.c). (2.1)

Note that in this paper we set Zi=1. In the interaction term we
allow for a laser field incident at an angle y with respect to
an axis normal to the z axis. The momentum recoil due to
absorption of a laser photon is represented by k.7
=nsin y(a+a')=7(a+a’) where the Lamb-Dicke param-
eter 7=21may/ \ is the ratio of the size of the ground state and
the laser wavelength. Due to the geometry of the system in
consideration, the (quantized) electric field consists of two
contributions, E(+)=EETT)+EE+), where the E,(;) denotes the
modes restricted by the boundary condition of the mirror and

é;ﬁ the remaining background modes [16,17]. We adopt a
1D model for the mirror mode and write for the electric field
operator

EY() =i f ) do a,¢ sin[k(w)z]b,,(w), (2.2)

0
with «, a normalization factor for the mode function. The
internal states of the atom couple to the vacuum field by an

electric dipole transition. Denoting by d the dipole matrix
element, and introducing Pauli operator notation for the two
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level system, o_=|g)e
tonian is

, the system-bath coupling Hamil-

Hipy=- 6_1)(11:57)(2) +EY(3)o_+He.

m

(2.3)

The total Hamiltonian for the ion coupled to the radiation
field is

H=H +Hbath+Hint' (24)

sys
Here H,,q, is the free Hamiltonian for the radiation field. We
write this Hamiltonian as the sum of a Hamiltonian for the
mirror and the background modes Hy,,=H,,+H,. In our 1D
model the mirror mode Hamiltonian has the form H,,
= [dwwb] (w)b,,(») with b,,(w) photon destruction operators,
satisfying bosonic commutation relations [bm(w),bl'q(w')]
=8(w-w'). Similar expression can be given for the back-
ground modes.

In analyzing this problem we are interested in the situa-
tion where the time delay 7),,=2L/c of the emitted light
bouncing from the mirror back to the atom is much shorter
than the system time scales, in particular the spontaneous
emission time from the excited state, 7,,<<1/I, and the ti-
mescales associated with the laser interactions 7<K1/(),
1/|A;). This justifies the Markov approximation for the emis-
sion into the mirror modes, where we refer to [16] for a
complete analysis.

In the following we will denote the total spontaneous
emission rate of the atom by I'=T",,+I',. Here I',,=¢I" with &
the fraction of the solid angle covered by the lens is the
emission rate into mirror mode, and I',=(1-¢)I" the emis-
sion rate into the background modes.

B. Quantum stochastic Schrodinger equation

The dynamics of our model is summarized in the
Schrodinger equation

(1)) = § = iHyy + \T,0 sin[k,o(L +£)1b](1) + Hee.

_r+l
/
+ \“T‘b
-1

du\N(u)o_e " esh (1) + Hoc. ¢ [W(2)).

(2.5)

We choose to formulate the problem in the language of a
quantum stochastic Schrodinger equation (QSSE) [5], which
allows for a direct connection with continuous measurement
of the scattered light, and provides a direct link to quantum
feedback theory developed in the following subsections.

In Eq. (2.5) |W(#)) is the Schrodinger state vector of the
combined atom-field system, i.e., the laser-driven trapped ion
including the mirror and background modes of the radiation
field. The first term on the right-hand side (RHS) is the time
evolution due to the system Hamiltonian (2.1).

The second and third line describe the interaction of the
two-level atom with the mirror mode and the background
modes, respectively. We assume that these radiation modes
are initially in the vacuum state. In writing Eq. (2.5) we have
transformed to an interaction picture with respect to the free
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Hamiltonian of the radiation field Hyg [5]. As a result, we
have introduced bath operators for the mirror mode b,,(t)
=1/\2m [dwb,,(w)e™'. In the Markovian limit these opera-
tors satisfy bosonic commutation relations

[b,,(1),b},(s)]= 8t —s). (2.6)

In a quantum Langevin formulation [5] b,,(f) represents a
quantum noise operator. Thus the second line of (2.5) de-
scribes the emission of photons by the atom into the mirror
mode, with the center of the ion trap displaced a distance L
from the mirror. We note that the motion of the ion couples
to the light via the recoil, as seen by the appearance of 7 in
the mirror mode function. This coupling imparts information
of the ion motion on the light emitted in the mirror mode. In
the following subsections we will analyze this scattered light
to continuously monitor the atomic motion, with the goal of
implementing a feedback loop to cool the ion. The coupling
strength to the mirror mode is proportional to the square root
of the spontaneous emission probability into the mirror mode
I',,= el with & the fraction of the solid angle (typically e is
much smaller than one).

The third line in Eq. (2.5) represents spontaneous emis-
sion of the ion into the background modes. This is a coupling
term familiar from the theory of laser cooling of two-level
atoms [ 15]. Spontaneous emission into the background mode
is again associated with a recoil of the ion motion. In our 1D
model for the motion of the trapped ion, it is the projection
of this momentum on the z axis which is the relevant mo-
mentum transfer. Denoting by 6 the angle between the emit-
ted photon and the z axis, and u=cos #, we associate the
transition for the excited state to the ground state including
the momentum transfer with the operator e™es‘o_, where
kog=w,,/c=k;. Spontaneous photons can be emitted in all
directions into the background modes consistent with the di-
pole radiation pattern of the given electronic transition. We
denote this (normalized) angular dependence by N(u). Thus
the integral over u in the last line of Eq. (2.5) realizes photon
emission into all of these possible directions. The operators
b,(t) are again photon destruction (or noise) operators asso-
ciated with these emission directions. They satisfy commu-
tation relations

[b,(1),b},(5)]= 8u—u") 8t~ s), (2.7)

and commute with the mirror bath operators b,,() introduced
above. The coupling strength to the background modes is
proportional to \I',=/(1—¢)I". For red laser detuning A,
<0 the cycle of laser excitation followed by spontaneous
emission into the background mode leads to laser cooling.

C. Ito form of the quantum stochastic Schrodinger
equation

To give a meaning to the white noise limit [compare Egs.
(2.6) and (2.7)], we must interpret the Schrodinger equation
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(2.5) as a quantum stochastic Stratonovich equation [5]. As
usual, it is more convenient to work with an Ito form, where
Wiener noise increments

t+dt
dBm,u(t) = f dSbm,u(s) (28)

“point to the future,” i.e., are statistically independent of
W(r)). These Wiener noise increments satisfy the Ito table

dB,(1dB] (1) = dt, (2.9a)

dB, (B, (1) = 8(u—u')dt1, (2.9b)

which follows from Egs. (2.6) and (2.7), the other entries of
the Ito table being zero. The resulting Ito QSSE is

D dWn)= {— iH,dt +T,C,.(2)dB](1)

+1
T [ dn N, @aso [[vo.
-1

(2.10)

Here, we have introduced the “jump operators”
C,(3) = e heit_ (2.11a)
C,,(2) = sin(k,o(L +2))o_, (2.11b)

which are associated with the emission of a photon in the
background modes and the mirror modes, respectively. Fur-
thermore, we have defined an effective non-Hermitian system
Hamiltonian

i . .
Heff= Hsys - E{Fb + l_‘m SIHZ[keg(L + Z)]}|€><e| : (2 1 2)

The non-Hermitian part of H arises from the Ito correction
in the conversion process. Physically, it corresponds to the
radiation damping of the excited state due to the total radia-
tion field. We also note that the photon absorption terms have
disappeared in Eq. (2.10) due to dB,, ,(1)|¥(#))=0. This fol-
lows from our assumption of an initial vacuum state.

D. Quantum stochastic master equation

We are interested in the time evolution of our system
where the photons emitted in the mirror mode are detected
by a photon counter, while the background modes remain
unobserved. Therefore, we are only interested in the dynam-

ics of the reduced density operator W(z)=Tr,{|¥ ()W ()|}
where we trace over the background modes of the radiation

field. We emphasize that W(t) still contains all the degrees of
freedom of the mirror modes, in addition to the internal and
external atomic dynamics.

Using Ito calculus we obtain the quantum stochastic mas-
ter equation (QSME)
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(I):  dW(1) = — i[HgW(z) — W) Hoyeldt
+T,,J1C,,(2)1dB}, (1) W(1)dB,,(1)

+\T,[C,(5)dB! W(t) + W(t)C].(2)dB,,]

+1
+T, f duNw) J[C,(H)IW(t).dt  (2.13)

-1

with H g defined in Eq. (2.12). For the “recycling terms” we
use the notation

Jeclp=cpc'.

Before proceeding we note that for £=0, i.e., no coupling
to the mirror modes, Eq. (2.13) reduces to the standard mas-
ter equation for 1D laser cooling of a two-level atom [5]. In

(2.14)

this case W is only an atomic density operator containing the
internal and motional dynamics. For £ #0, we still have a
stochastic equation with the mirror bath degrees of freedom
included.

E. Adiabatic elimination of the excited state and Lamb-Dicke
limit

We will simplify the above QSSE (2.10) and QSME
(2.13) with two assumptions. First, we assume weak laser
excitation to the excited state, () <max(I",|A[). Second, we
assume a small Lamb-Dicke parameter n=2may/\<<1
(tight trap): this allows us to expand the exponents ek
=i+ a) =1 yin(a+a’)+0(77). Both of these assumptions
are well satisfied in present experiments [1]

To eliminate the weakly populated excited level, we go
back to Eq. (2.10) and expand the state vector |W(¢)) into
ground state and excited state components,

(W (0) = |1 (1) @ |g) +[1.(1)) @ |e).

As shown in Appendix A we can eliminate |¢,(¢)) in pertur-
bation theory in the Ito QSSE (2.10) to obtain an effective
equation for |¢g(t)). In a similar way as for Eq. (2.13) we
obtain a QSME for the partially reduced density operator

(2.15)

} (2.16)

W(t) = Trb{|¢g(t)><wg(t)
given by

(D: do(t) == ilhegpi (1) = W() g )dr
+ yJLc,(2)1dB! (1)0(t)dB,,(t)
+ M en(2)dB (1) +(0)ch(2)dB,,(1)]
+ Lw(t)dr. (2.17)

The first three lines give the dynamics of the ion motion
coupled to the mirror mode. The fourth line describes the
traced-out action of the background mode on the ion motion,
i.e., laser cooling of the ion.

In Eq. (2.17) we have defined an effective Hamiltonian
acting only on the motional states of the ion,
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Lt e (2
et = Hr = 50,6 (2), (2.18)

where we expand the eliminated jump operators to second
order in the Lamb-Dicke limit with the center of the trap at
ke L=1r/4:

cn(2) = Lr(l +nla+a’) - l772(a+cﬁ)2). (2.19)
V2 2

The parameter

y=el'— (2.20)

4
Ai + E
is the optical pumping rate into the mirror mode. The first
three lines of Eq. (2.17) thus describe the motional state
coupled via laser excitation followed by spontaneous emis-
sion to the mirror mode.

The Liouvillian £,, in the fourth line of Eq. (2.17) is the
standard laser cooling Liouvillian for weak field excitation
and in the Lamb-Dicke limit [1,2,15],

Lw(1) =A_D[al(r) + A, D[a’ ()
= To(N + 1)Dlah(t) + T oeNDla (),

(2.21)

where we have used the notation
_ s 1oy T
Dlclp=cpc' - E(c cp+pc'c). (2.22)
The rates

0? sin?

A= T X S+ aF2 (2.23)

(AL + VT)2+ Z A%+ Z

have the meaning of cooling (heating) terms for red laser
detuning A; <0. With I';y=A_—-A,>0 and for A; <0 we
have

A

N=—+ (2.24)
A_-A,

which is the final mean trap occupation established by laser
cooling (alone). We have also used the abbreviation «
= [duu®N(u) for the dipole transition parameter and y is the
incident angle of the laser beam. With these definitions the
mirror mode optical pumping rate (2.20) can be written as
y=&NT o/ (1+ @) 7%, and from I'zocsin? y and N 1/sin® y
we see that this pumping rate is independent from the angle
of the incoming laser beam.

In the following we will study a scenario [12] where the
laser cooling establishes a steady state with a mean trap oc-
cupation N>1 (i.e., far from the ground state), as repre-
sented by the second line in Eq. (2.17). This is the limit of
Doppler cooling, which is obtained if I'> v;. The minimally
obtainable steady state energy in this limit is #I'(a+1)/2. By
observing the spontaneous emission into the mirror mode
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[see first two lines of Eq. (2.17)], we will infer the position
of the atom to apply a feedback loop to cool the system (far)
below the laser cooling limit.

For completeness we note that in the case where the mir-
ror mode is not observed, the reduced system density opera-
tor p(t) =Tr,{w(r)} obeys the master equation

p(t) == i[Hy,p(t)] + ¥Dlc,,(2)]p(t) + Lp(t)

= —i[Hpp()]+ LLcp(t) = Lop(t), (2.25)

which contains the dynamics from the free ion motion, and
the dissipative dynamics from the emission into the mirror
mode and laser cooling. In a second order expansion in terms
of 7, we have

Dlc,(2)]= 77 cos’(k,, L)Dla+a"]+ O(7), (2.26)

which, multiplied by %, is typically much smaller than I zNV
and thus the corrections in the heating and cooling rates will
be neglected here.

F. Continuous observation of the mirror mode

We measure the photons emitted into the mirror modes by
a photon counter as shown in Fig. 1. We denote by N,(¢) the
number of photon counts at time 7. A particular count trajec-
tory is characterized the photon detection times #,,7,,.... Our
knowledge of the state of the system, given by the internal
and external degrees of the ion, for a given count trajectory is
represented by a conditional density matrix p.(¢) [5].

Given the state of the system at time ¢, p.(¢), the detection
of a mirror mode photon in a time interval (z,z+dt] is asso-
ciated with a quantum jump of the atom described by

\7[CI11:|pC(t)
Tr{c,lp (0}

where according to (2.11b) the atom returns to from the ex-
cited state to the ground state, and momentum is transferred
to the ion motion in accordance with the mirror mode func-
tion. In the case of no observed photon, the system evolves
with the effective non trace-preserving Liouvillian L,

pc,jump(t + dt) = (227)

Pe,no jump(t +dt) = (1+ LOd[)pc(I)9 (2.28)

where

Lop = — i[hegsp — phis] + Lop,

and Ay is defined in Eq. (2.18). The expected number of
counts in the interval (z,7+dt] is with dN.(f)=N,(r+dt)
_Nc(t)
(AND) = pettod = ¥ Trod Tenlpe(D}dr (2.29)

In view of dN,(t)=0 or 1, for this point process we have the
Ito table dN*(1)=dN,(¢) and dN,(t)dt=0.

We can summarize the above a posteriori time evolution
in an Tto stochastic Schrodinger equation (see, e.g. [5])
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FIG. 2. (Color online) Contributing processes in the master
equation at low intensity. (a) shows the cooling and heating terms
due to the coupling of the laser to the motion and (b) shows the
diffusion terms due to spontaneous emission [18].

Jenlp) (t))
TryfTenlo 0}

X (dN(1) = y Trgy{ T cnlpc(D)}dr)

where L, is defined in (2.25). This equation gives the time
evolution of the conditional density matrix of the ion p,(z)
for a particular count trajectory. Not observing, i.e., tracing
over the mirror mode, is equivalent to taking the ensemble
average over all count trajectories in (2.30). In this case, we
recover the master equation p(1)=Lyp(z) for the a priori dy-
namics [5].

(@M:  dp (1) = Lop(t)dt + (

(2.30)

G. Diffusion approximation

In the previous subsection we considered photon counting
of the light emitted in the mirror modes, and the associated
time evolution of the system described by the conditional
density operator p (). We are interested in learning the mo-
tion (position) of the atom from the scattered light in the
sense of continuous measurement. The goal is to use this
information to control the motion of the atom, and eventually
act back on the atom to cool it.

The scattered light of a weakly driven trapped atom [18]
consists of (i) a strong elastic component at the frequency of
the driving laser (see vertical transitions in Fig. 2), and (ii)
weak motional sidebands at the trap frequency vy suppressed
by the Lamb-Dicke parameter #z. The information on the
motion of the atom is encoded in the “motional sidebands.”
We find it convenient to formulate the problem in a way,
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where we focus directly on the contributions of these side-
bands to the photon count signal. The physical picture is that
the elastic component acts like a “(strong) local oscillator”
which beats with the “(weak) light emitted from the side-
bands.” This situation is reminiscent of homodyne measure-
ments in quantum optics [5,4], and will lead in the following
to a description in terms of a diffusive stochastic process
rather than a point process associated with the photon count-
ing described above. The formal expansion parameter is 7
<1 (Lamb-Dicke limit).

From the previous subsection we know that the mean
number of photon counts in (¢,7+df] is

kL=/4
(N0) = Sydi+yna+ a" (Ddt+0(7).

(2.31)

The first term is elastic scattering. The second term, which is
first order in %, is proportional to Z=a+a’', i.e., includes
information on the ion motion. Here and in the following we
take the center of the trap to be on the slope of the standing
wave, 1.e., kegL=7T/4.

Following the analysis of homodyne detection [4,5], we
split the stochastic variable dN,(¢) into a deterministic and a
remaining stochastic part, thus defining dY (1),

1
dN(1) = = ydi + 7Y (). (2.32)

and we can show (cf. Appendix B) that dY.(¢) is a Gaussian
stochastic variable with non-zero mean, i.e.,

dY (1) = \yI2/ mdW(1) + WD) (1)dt,

with dW(f) a Wiener increment satisfying dW?(¢)=dt.

This leads us to define a photocurrent where we subtract
the large constant contribution from the elastic scattering
process,

dy (1)
dt

Y
1) = 7= = Ym0+ \gaz), (2.33)
with &) Gaussian white noise (&(1)&(t'))=08(t—1t") (shot
noise). We see that 1.(r) follows (Z).(r) and thus represents a
continuous measurement of the position of the ion. The in-
formation on the motion is contained in the sidebands of the
current, i.e., in the frequency components centered around
*vp.

In the diffusive approximation the conditional density ma-
trix p,(r) [4,5] obeys

(D): dp(t) = |:Codt+ \/gdW(t)'Hm:|pc(t), (2.34)
where

Hmpc(t) = 27][Z~Pc(t) + pc(t)’Z'_ 2<Z>c(t)pL(t)]

and Eq. (2.34) is derived from (2.30) in the diffusive limit
7n<1 (cf. Appendix B).

(2.35)
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FIG. 3. Electronic setup of the feedback loop as modeled in this
paper. PD is the photodetector, LO is the local oscillator, the B box
is the band pass (BP) filter, and the ¢ box is the phase shift. The LO
signal is mixed to the current and subtracted after the BP filter.

III. QUANTUM FEEDBACK COOLING

In the previous section we have reformulated the continu-
ous observation of the ion motion through spontaneous light
scattering into mirror modes in a form reminiscent of homo-
dyne detection. This will allow us below to study feedback
cooling of trapped ions building on the Wiseman-Milburn
theory of quantum feedback [6,7].

In Eq. (2.33) we have obtained a current which is propor-
tional to the mean value of the position of the atom. We want
to use this information to feed back an appropriate force
proportional to the momentum to damp the motional state of
the atom [11,12]. The information about the position is en-
coded in the motional sidebands of the current. In a harmonic
trap of known frequency any combination of the average
position and momentum can be obtained by shifting the side-
band current by a phase of ¢, if the trap frequency is much
faster than any other (cooling) timescale in the problem
(weak coupling limit). This phase ¢ can be controlled elec-
tronically, and for ¢=m/2, the shifted current follows the
momentum. A force, which is proportional to this current,
can damp the motion of the ion.

A. Feedback current

We model the feedback circuit as shown in Fig. 3. First,
the signal 7.(r) given by Eq. (2.33) is mixed with a local
oscillator of frequency w,= vy to shift the signal of the mo-
tional sideband to zero frequency. Then the current is sent
through a band pass filter of width B to cut off rapidly oscil-
lating terms. The filter is described by a filter function Z(w),
centered around zero frequency. At the end the signal is
mixed again with the local oscillator and amplified by a fac-
tor G. The feedback current can then be written as

I () =G cos(wot)f drZ(t - 7)cos(wyT+ P)I.(7),

(3.1

where Z( 7) is the Fourier transform of the band pass function
Z(w). The feedback Hamiltonian is specified in the next sub-
section.

To evaluate the expression for the current, it is convenient
to change to a basis which is rotating with the frequency of
the local oscillator w, by applying the unitary transformation
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U=exp(-iwga’at). The evolution timescale of the density
operator in this new frame, ()= Up (1)U is determined by
the detuning 6= wy— vy and the cooling rates Gy, I .. Under
the assumption, that these frequencies are smaller than the
filter bandwidth B, the feedback current is given by

I (1) = G{ yn(X¢)£(t) + \/%E(t)}cos(wgt). (3.2)

The first term in this expression, (X ¢>£E Try{X 40, (1)} is the
slowly varying expectation value of the quadrature compo-
nent

Xg=ae'’+a'e’® (3.3)

(in the rotating frame). The second contribution in Eq. (3.2)
is defined as

E() = J drcos(wym+ $)Z(t — NED). (3.4)

It describes the noise which passes through the feedback cir-
cuit. The stochastic mean of Z(¢) is zero due to the vanishing
mean of the white noise variable &(f), and the correlation
function is given by

(ENOEW)) = 85t 1) + 0(5>. (3.5)

o
Here &y(t—1') denotes a delta-function for functions which
vary on a slow time scale much larger than B,
Thus for a clear separation of time scales,

G')’, 5’Feff <B< wg, Vr, (36)

the current given in Eq. (3.2) is proportional to the slowly
varying expectation value of X, and has a noise term which
is delta-correlated on a time scale of the system evolution in
the rotating frame.

B. Quantum feedback dynamics

The feedback current (3.2) for ¢p=—7/2 is proportional to
the slowly varying momentum of the particle. For the cool-
ing of the ion motion, we apply a linear force which is pro-
portional to the the feedback current (3.2). For a trapped ion,
this can be realized by applying a voltage on the trap elec-
trodes, which leads to a displacement of the trap center. The
effect of the feedback force is given by the interaction pic-
ture Hamiltonian

Hp, = Iy, (t = 1)Z(1). (3.7)

In this equation, Z,(f)= U'ZU is proportional to the position
operator in the interaction picture, while 7 denotes the finite
time delay in the feedback loop, which we require to be
much smaller than the trap frequency 7<<1/v;. The master
equation (2.34) has to be complemented with the feedback
term,

(8): [dp (D] = I (1 = 7)(= D[Z(0). p.() }dt,

which has to be interpreted as a Stratonovich stochastic dif-

(3.8)
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ferential equation [7]. For the slow dynamics of the density
matrix in the rotating frame, we can make a rotating wave
approximation and neglect rapidly rotating terms
~exp(£2iwyt). The filtered noise (3.4) is delta-correlated on
time scales slower than B~!, thus we have the coarse grained
evolution of the density matrix

(S): [0 =5 v - 1 K70

+ g \/gdWE(t— Kp(1), (3.9)

with the feedback operator
Kpe(t) = =i[Z,p.(1)]

and the “slow” Wiener increment dWz(t) = E(1)dt.

The total evolution of the system is determined by the
conditioned master equation (2.34) plus the contribution
from the feedback loop (3.9). To combine the two equations,
we have to convert Eq. (3.9) from Stratonovich to Ito form.
The total conditioned evolution is

(3.10)

n):  dp.(t)=Lp, + \/%HdW(t)ﬁc(t)

G G?
+ (Eyn(XQS)é(t —7)dt + 1—6yICdt

G
+5\/§dW5(Z— T))Kﬁc(l), (311)

where

Lp.= Licp.—ilda'a.p] (3.12)

[cf. Eq. (2.25)] is the laser cooling Liouvillian in the rotating
frame.

Because the exact photocurrent can not be kept track of in
experiments, Eq. (3.11) is of limited use. The goal is to de-
rive an equation for the ensemble averaged density operator.
We follow the derivation given by Wiseman and Milburn in
[7], where the measured current is fed back directly, and
adopt it for our model. Assuming that the state at time t—7
and all previous times is known, we take the ensemble aver-
age E[-] of Eq. (3.11) over the trajectories in (r—7,1]. We
then formally divide by dt and for convenience redefine
p()=E[p(1)]:

0: 0= Eplt) + 5 X! e = Kple)

G G?
+5 \/%ICE[EU - Dp0]+ BvlCzp(t)-

(3.13)

The density matrix p(7) is still conditioned on the evolution
up to time ¢t—7, but not conditioned on trajectories in (¢
—7,t]. The ensemble average E[(X;)c(t—f)ﬁc(t)] factorizes
because p.(t—7) is assumed known. Under the Markov ap-
proximation, we let 7 go to zero, while due to the coarse
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graining of the time evolution in Eq. (3.8), dr will still be
larger than this small delay. An expansion in 7 yields

ﬁc(t) = [1 + O(T)]ﬁc(t - T+ dt)

=[1+ O(T)][l + \/gdW(t— T)H:|ﬁc(l‘— 7).
(3.14)

We now can evaluate the remaining ensemble average in Eq.
(3.13) because dW(t—17) is stochastically independent from
p.(t— 7). We obtain

E[E(t - Dp.(0] =\ yHE[E(t - D& - D]p(0)

~ \/g X gplt) + (DX,

- 2X (1= Dp(0)],

and thus the term in the last line, a conditional expectation
value, cancels with the second term on the right hand side of
Eq. (3.13). In going from the first to the second line in Eq.
(3.15) we have dropped terms ~exp(iwyt).

With this last step, we can finally evaluate Eq. (3.13) and
write down the quantum feedback master equation for the
motional degrees of freedom:

(3.15)

- G G*
p=Lp+ ZynlC(X¢p+pX¢)+1—67/C p. (3.16)
The first term on the right hand side L is the laser cooling
Liouvillian (3.12) in the rotating frame. The second term
with K given in Eq. (3.10) in the master equation is the
feedback term. It acts back on the system and is responsible
for cooling if we choose the parameters 6 and ¢ appropri-
ately. The last term in the master equation is a diffusive term
of the form of a double commutator.

IV. RESULTS

In the last section we have shown that for a separation of
timescales &, I'yy<<B<<w,, vy we obtain an unconditioned
(nonselective) master equation for the motional density ma-

trix in the rotating frame. By inserting the definitions of L
and /C the master equation reads

) o o G
p=-ida'a,p]+A_Dla]+A,Dla"]- tzyn[z,x¢p+px¢]

G2
~ 1 NEEell 4.1)
We have used the previously introduced variables Z=a+a'
and X4=ae'®+a’e™%. In the first line of Eq. (4.1) we recover
the master equation for laser cooling, with the corresponding
heating and cooling rates A, given in Eq. (2.23). The second
line describes the effect of the feedback loop, where vy
=eNl 4/ (1+a)7’ is the emission rate in the mirror mode
and G is the gain parameter amplifying the feedback current.
The first term in the second line depends on the phase shift ¢
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and as we will show below, leads to the expected damping
for ¢=—7/2. The second term arises from the noise in the
feedback current and leads to a momentum diffusion, i.e.,
heating.

To solve the feedback master equation (3.16), which is
bilinear in the position and momentum Z and p_, it is conve-
nient to use a Wigner function representation [5] of the den-
sity matrix. This gives rise to a Fokker-Planck equation [19]
for the Wigner function W(z,p,1), describing an Ornstein-
Uhlenbeck process, with position and momentum variables Z
and p. The Gaussian Wigner function is uniquely determined
by it’s first and second position and momentum moments,
and we will use the notation

TPy = f dzdp 7'p"W(zZ,p,1), (4.2)
which equals the symmetric expectation value of the corre-
sponding operators. The bilinearity of Eq. (3.16) with respect
to position and momentum gives rise to a closed set of equa-
tions for the first and second moments of the Wigner func-
tion, which can thus be solved analytically.

We are interested in the motional energy of the ion E
=hv{{a'a)+1/2), where the expectation value for the num-
ber operator can be read off from the second moments of the
Wigner function:

_ _ 1
(a'a) = (m) = @y + Py -3 (43)
We will calculate this quantity for different choices of pa-
rameters in the following subsections.

A. Cold damping

In this subsection we show results for ¢=—7/2 and &
=0, i.e., the center of the band pass filter is set exactly to the
trap frequency. The number expectation value for the steady
state in this case is given by

1 1,
N+E7]'y(2N— 1)G+§)/G

nSS= ~ 2
) 1 +297G

(4.4)

where we have set y=y/I'. Taking the gain G=0 yields
(n),,=N, i.e., if we do not use the feedback current to influ-
ence the ion, the steady state occupation will be the one for
standard laser cooling. The occupation number has a nega-
tive slope at G=0, i.e., it decreases, and for G— it di-
verges (note that in our model Gy has to be smaller than B).
Thus our theory predicts a minimum for the occupation num-
ber at a nonvanishing optimal gain,

e = 42N -1)?y-1+V1+ 82N+ 1)’y
min — 167]27

With increasing solid angle & we collect more information
about the motional state of the system and hence the mini-
mum (n),, is expected to decrease, which is shown in Fig. 4.
With increasing & the optimal gain is decreasing, because the
feedback noise term is growing with G> while the damping
term is linear in G.

. (4.5)
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FIG. 4. Number expectation value for variable gain and solid
angle fraction for =0.1, ¢=—m/2, 6=0, and N=15.

We show in Fig. 5 the decrease in the steady state phonon
number with the gain. The relative decrease is larger with a
higher laser cooling steady state phonon number N. For
lower N, the mirror decay rate y> N is smaller and thus we
get less information about the motional state of the atom,
which limits the feedback cooling.

We will now expand (n),, in the limit of large (N>1)
occupation numbers. For a series expansion of (4.5) the for-
mal expansion parameter is NV, thus an expansion in the
(usually also small) & is only possible for very low N. We
make an expansion for large N in the opposite limit (Doppler
limit), while the condition N Je> 1 has to be satisfied. N can
be tuned with, e.g., the laser detuning A;. Then the minimal
occupation number approximately reads

() N 4 l+a 1+«
L= — 4 _ s
/min = € Ne

(4.6)

which implies that for a sufficiently large collection angle the
minimal obtainable phonon number is above N/2 and thus

30

(=]

0 2 4 6 8 10

FIG. 5. Number expectation value for variable gain and steady
state occupation number for 7=0.1, ¢p=-7/2, 6=0, and €=0.01. N
is given by the values at G=0 of the different curves, from bottom
to top, N=5,10,15,20,30.
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FIG. 6. Time evolution of the variances for N=15, 6=0, &
=0.006, 7=0.06, p=—/2, and G=1.51. The solid line is the vari-
ance of the position (z2)y, and the dotted line is the variance of the
momentum {p%)yy.

feedback cooling alone cannot give a steady state. The re-
duction in the energy of the ion with time is due to the
reduction in (p?), while (z%)yy is constant, as is shown in the
time evolution in Fig. 6. Thus the Wigner function for the
steady state will not be rotationally invariant, but “classically
squeezed” in the momentum direction.

A phase space picture can demonstrate the action of the
feedback on the system state [see Fig. 7(a)]. By feeding back
a linear force f to the ion, we effectively apply a unitary
operator of the form

U(t) ~ exp(— ifxt). 4.7)
This operator acts as a momentum kick on a state with a
magnitude proportional to the momentum, which we have
chosen by setting ¢=—m/2. The points in the Wigner func-
tion will tend towards the x axis, while the diffusion term
will counteract the feedback term, leading to a steady state
Wigner function.

(a) p " (b) p N

| )
NS

FIG. 7. Schematic drawing of the Wigner function error ellipses
for the initial thermal state (circle) and the feedback-cooled state
(ellipse). In (a), ¢p=—m/2 and 5=0, note that the position variance
stays constant while the momentum variance is decreased. The ac-
tion of the force is always a kick in the momentum direction and the
force is proportional to the averaged momentum. In (b), §# 0 and
¢=~—1/2, here the Wigner function is rotating and both variances
are damped, resulting in lower energies.
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The difference in the position and momentum variance
can be quantified; we will give an expression for the amount
of “squeezing,” i.e., the ratio between the two half-axis of the
error ellipse for the Wigner function in phase space is ob-
tained by rotating the axes of the ellipse:

__semiminor axis 1-g

r

o . . . - ’ (4'83)
semimajor axis 1+g

V(o ~ ‘Tpp)z + 40%17

O, + O-pp

g (4.8b)

Here 0. .=(Z)y—(2)y, and 0,,=(p>)y—(P);, are the vari-
ances of position and momentum, respectively, and o),
=(ZP)w—{DwlP)w- As mentioned, due to the affection of
only the o, component, 0,,=0 in the case ¢=-m/2. The
range of the squeezing parameter is 0 <r, =< 1, where a small
value corresponds to strong squeezing and for r,=1 the state
is symmetric.

The time dependent Fokker-Planck equation is solvable
analytically and the time scale of the cooling process is given
by Iy and T'.+279yG corresponding to the usual Doppler
cooling and the feedback cooling, respectively. This shows
that the feedback cooling happens on a timescale faster than
laser cooling alone.

B. Variable feedback phase

For a phase ¢ # —/2, the magnitude of the feedback
force is proportional to the projection of the momentum on
an other rotated axis in phase space. We have pointed out in
Eq. (4.7) that the action of the linear force (shifted trap) is
always a momentum kick. Thus the particle will always be
“kicked too hard” or not hard enough towards the phase
space center. We will calculate the regions of stability where
the feedback can still lead to a steady state. Such a steady
state will only form if I';x—2G 7y sin ¢>0 [19]. This is al-
ways true for negative angles. For positive angles ¢ >0, the
gain has to fulfill the condition G <I'y/27y7sin ¢. If this
condition is satisfied, a steady state number expectation
value exists and reads

(n)ss=[(1 = %G sin #)(1 = 27%G sin )]
X {N + 3(4N = 1) 95G sin ¢ + £7G*

X [1+457722N +1-2sin® ¢)] - 777G’ sin ¢}.
(4.9)

From Eq. (4.9) we can see that an energy decrease via
feedback cooling is only possible for angles —7<<¢$<<0 by
calculating the slope &n),,/ dG|;-. Because Eq. (4.9) is of
higher order in G than the equation we had for ¢=—-m/2,
(4.4), we will not give an analytical solution for the minimal
gain and number occupation here. We also find that for ¢
# —/2 the optimal occupation number is higher than for
¢=—/2 (compare related studies in [20]). The steady state
occupation number for varying ¢ as a function of the gain is
plotted in Fig. 8, where we can see that for nonoptimal
phases the range of G for (n),,<N is shrinking.
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FIG. 8. Number expectation value for different feedback phases.
Here 6=0; thus the expectation values for ¢— 7— ¢ yield the same
results. Other parameters: N=15, £=0.01, and 7=0.1.

For the special case of ¢=m or ¢=0, no cooling can be
observed any more and the number expectation value is qua-
dratic in G. In principle, a steady state with (n),,> N always
exists with

(n)ys=N+ %«7(;2[1 +477¥2N + 1)]. (4.10)
The more interesting feature of the ¢=m case is that in the
master equation (3.16) the feedback term (second term) re-
duces in a rotating wave approximation to a Hamiltonian
term of the form —i[Ava’a,p]. For this case we observe a
small shift Av in the frequency of the trap linearly propor-
tional to the gain. In this paper, we have not discussed the
detailed experimental setup used to apply the force to the
ion, which would be necessary for the knowledge of the
exact forces acting on the ion. For ¢p= one can measure the
frequency shift in the location of the sideband and determine
the conversion factor from the gain parameter G used in this
paper and an experimental gain factor, which might be the
real electronic gain in the feedback loop.

C. Rotation in phase space

We have shown that the phase ¢=—m/2 we chose leads to
the lowest energy of the motional state of the ion. The vari-
ance for the position operator (z2)=(2N+1)/4 remains con-
stant with time as shown, e.g., in Fig. 6, thus posing a lower
limit to the obtainable energy. The detuning & of the local
oscillator in the feedback loop from the trap frequency cre-
ates a tunable slow rotation of the (interaction picture)
Wigner function in phase space. This results in “squeezing”
of all quadrature components [see Fig. 7(b)], and the Wigner
function can regain a symmetric shape. Of course the times-
cale for this rotation has to be much slower than the filter
bandwidth B.

For the time evolution of the variances, the effect of the
detuning is illustrated in Fig. 9. We see the time evolution of
an initially thermal (symmetric) state with an occupation
number of N. In contrast to Fig. 6 the width of the Wigner
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FIG. 9. Time evolution of variances (z2)y, (p>)w» and (Zp)yy for
N=15, 8=5, £=0.006, 7=0.06, ¢p=-85°, and G=2.03. The solid
line is the variance of the position (z%)y, the dotted line is the
variance of the momentum {p?)y, and the dashed line is (Zp)yy.

function in the momentum and the position space are alter-
nately decreased until they reach the new feedback steady
value. For a larger detunings the two variances decrease
equally in time and energetically lower states can be reached.

For a rotation of the Wigner function with the frequency
8, we have to compare this rotation time scale with the cool-
ing time scale y. For y comparable to 6 the optimal phase is
is shifted with respect to —7/2 because the Wigner function
is rotating in phase space during the cooling time. When the
detuning is much larger than the cooling rate, the Wigner
function ellipse direction will not be resolved during the
cooling time and thus the optimal phase returns to —7/2. By
numerical optimization (Fig. 10) we find that the optimal
phase is shifted from —7/2 asymmetrically with respect to
the detuning 6. It reaches its maximal excursion for a value

of =6/ I'ey= 1, for higher detunings the optimal phase ap-
proaches —m/2 again. For these optimal values, we plot in

-1.2

1.4
=
.6
M
1.8 N 1
AN |
\\ ,l
0 0 10
o)

FIG. 10. Optimal phase as function of the detuning with 7
=0.1, £€=0.006, and N=10 (solid line), N=17 (dotted line), and N
=24 (dashed line). The weak dotted line marks ¢p=—11/2.
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FIG. 11. Squeezing parameter ro for the optimal phase at a
given detuning and the minimal energy state with £=0.006, 7
=0.06 and with the variable parameter N=10 (solid line), N=17
(dotted line), and N=24 (dashed line).

Fig. 11 the squeezing parameter r, (4.8a), which is one for a
symmetric Gaussian state. We see that the state at no detun-
ing is “classically squeezed” as we already mentioned in Sec.

IV A and the squeezing increases up to 5~1, then upon

approaching 5— 0 the squeezing parameter approaches one,
and the state is thermal.

For increasing &, we also show that the number expecta-
tion value is decreasing. We will not give an analytic expres-
sion for (n),, for an arbitrary & here. We merely calculate the
minimal number of phonons in the limit of large &. For this
we require an additional separation of the timescales between
the effective feedback cooling rate and the detuning, while
the other time scale inequalities still hold:

y<8<B. (4.11)

With these new conditions we take the detuning 6— o,
where the optimal feedback phase is again ¢p=—7/2, and get
for the occupation number:

N ! G 1~G2
_ — + —
S+ Y

1+ 9yG

(n)ss = (4.12)
The minimal occupation number for the same limit we took
in deriving Eq. (4.6) we get for N> 1:

l+a 1 2(1+a)
<n>min =~ -5 .
2¢e 2 8eN

This expression does not include the large term N/2 any
more and thus the obtainable energy for large N has an upper
bound which is independent of N, thus feedback cooling
alone can give a thermal (symmetric) state with a tempera-
ture below the Doppler temperature.

(4.13)

V. CONCLUSION

In this paper we have studied quantum feedback cooling
of a trapped ion in front of a mirror. This work is motivated
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by recent experiments [11], and—as shown in [12]—
provides a quantitative understanding of the experimental re-
sults.

In the setup discussed in this paper the final temperatures
are limited by the collection efficiency, €, and the constant
scattering of photons for the position measurement. This
combination of heating due to the recoil, and laser cooling
due to the red detuning of the laser leads to a steady state
temperature (Doppler limit). The effect of quantum feedback
cooling is studied as an additional cooling mechanism on top
of the ongoing laser cooling. For the experimentally relevant
parameters this leads to sub-Doppler cooling, but it seems
difficult to achieve ground state cooling in the trap along
these lines. As shown in a parallel publication [14], we can
devise a purely dispersive and thus noninvasive readout of
the velocity of the trapped ion based on the variation of the
index of refraction with velocity, i.e., based on electromag-
netically induced transparency. Such a scheme allows, under
idealized conditions, ground state cooling of the ion purely
by quantum feedback.
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APPENDIX A: ADIABATIC ELIMINATION, LAMB-DICKE
LIMIT AND LASER COOLING

This appendix fills in the details of deriving the QSME
(2.17) from the QSSE (2.10) under the assumption of weak
driving and small Lamb-Dicke parameter. Note that we will
need to consider two different Lamb-Dicke parameters due
to the exciting laser which is not collinear with the z axis. As
in Sec. Il A we denote %= 7sin y. Inserting the ansatz
(2.15) into the QSSE (2.10) and transforming to an interac-
tion picture with respect to Hy we get

1 .
1 - —7d’ ‘
p)=" 27 i
el r
—l'AL+5 _i(AL_VT)-'-E
inate
7 (). (A1)
- l(AL + VT) + —

2

We insert this expression back into (2.10). We obtain
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0?2 1 ‘ 7at
dy=|- T s oy« — T
41 . r , r
—lAL+E _l(AL_VT)-i_E
7aat 1) 1
+ 772# dt + 17 —I‘dd
—i(AL+VT)+E —iAL+E
B iﬁae‘i"T’ . . iﬁa’feith dCI
(A —vp) = 5 i(Ap+vp) = E
,r](ae—ivTr_'_aTeith)
+ T dCh| @) @ (A2)
—iA+—
l L 2
with

dci=\T, f du\N(u)dB! + T, sin(k,,L)dB],, (A3)

dcj=-i\T, J du\N(u)u dB + T, cos(k,,L)dB],.
(A4)

Consistent with the above approximations we neglect here
and in the following terms oscillating at twice the trap fre-
quency vy. Physically speaking, the fourth line of Eq. (A2)
will correspond together with third line to a heating and
cooling term, and the last line describes a diffusive term (cf.
Fig. 2).

Taking the trace over the background modes to define a
reduced density operator w(z) according to (2.16) we use the
Ito rules, e.g.,

Tr{dB} (0|, ()X (1)|dB, (1)} = Su— u")pl2)dt

to derive Eq. (2.17).

APPENDIX B: HOMODYNE PHOTODETECTION AND
THE DIFFUSION APPROXIMATION

As we have seen in Sec. II F, the statistics of the detected
photons in the mirror mode are determined by the Poissonian
stochastic variable dN,(r). Like in homodyne detection,
where a strong local oscillator beats with the photodetection
signal from a quantum system, an elastic scattering term
beats with the signal given by the coupling of the light to the
ion’s motion [cf. Eq. (2.31)]. The parameter which gives the
difference in the magnitudes of these terms is the Lamb-
Dicke parameter 7. The stochastic properties of dY.(r) de-
fined in Eq. (2.32) are given by

(dY (1)) = K2)(1)dt, (B1)
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1 2
ch(t)_Eydt <l y
dY(r) = —— —dt.  (B2)
7 27
This implicates that the stochastic variable has Gaussian
properties, and is associated with a white noise probability
distribution. Thus dY.(t)=y/2/ npdW(t) where dW(t) is a
Wiener increment.
The evolution of the system conditioned on measuring the
photocurrent can be seen by expanding the first bracket in
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the stochastic master equation (2.30) to first order in the
Lamb-Dicke parameter 7, and noting that the second bracket
in (2.30) is

AN (1) = (dN (1)) =\ y/2dW(1). (B3)

Thus, using the formal derivative &(r)=dW(r)/dt, we obtain

the conditioned equation for the reduced density matrix, Eq.
(2.34).
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