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We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in
a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We
found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect
of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of
solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the
soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the
multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton
energy quantization observed in other types of soliton fiber lasers could have a similar mechanism.

DOI: 10.1103/PhysRevA.72.043816 PACS number�s�: 42.55.Wd, 42.81.Dp, 42.60.Fc, 42.65.Re

I. INTRODUCTION

Passively mode-locked fiber lasers as a simple and eco-
nomic ultrashort-pulse source have been extensively investi-
gated in the past decade �1–9�. By implementing the soliton
pulse-shaping technique in the lasers it was demonstrated
that optical pulses in the subpicosecond range could be rou-
tinely generated. Various passive mode-locking techniques,
such as the nonlinear loop mirror method �3,4�, the nonlinear
polarization rotation �NPR� technique �5–7� and the semi-
conductor saturable absorber method �8,9�, have been used
to mode-lock the lasers. Independent of the concrete mode-
locking techniques it was found that the soliton operation of
all the lasers exhibited a common feature, namely, under
strong pumping strength multiple-soliton pulses are always
generated in the laser cavity, and in the steady state all the
solitons have exactly the same pulse properties: the same
pulse energy and pulse width when they are far apart. The
latter property of the solitons was also called the “soliton
energy quantization effect” �10�. The multiple-soliton gen-
eration and the soliton energy quantization effect limit the
generation of optical pulses with larger pulse energy and
narrower pulse width in the lasers. Therefore, in order to
further improve the performance of the lasers it is essential to
have a clear understanding of the physical mechanism re-
sponsible for these effects. It was conjectured that the soliton
energy quantization could be an intrinsic property of laser
solitons, as solitons formed in a laser are intrinsically dissi-
pative solitons, where the requirement of soliton internal en-
ergy balance ultimately determines the energy of a soliton
�11�. However, this argument cannot explain the formation of
multiple solitons in a laser cavity. Actually multiple-pulse
generation has also been observed in other types of soliton
lasers, e.g., Lederer et al. reported the multipulse operation
of a Ti:sapphire laser mode locked by an ion-implanted semi-
conductor saturable absorber mirror �12�, and Spielmann et
al. reported the breakup of single pulses into multiple pulses
in a Kerr lens mode-locked Ti:sapphire laser �13�. Theoreti-
cally, Kärtner et al. have proposed a mechanism of pulse
splitting for multiple-pulse generation in soliton lasers �14�.

It was shown that when a pulse in a laser becomes so narrow
that due to the effective gain bandwidth limit, the gain could
no longer amplify the pulse but impose an extra loss on it,
the pulse would split into two pulses with broader pulse
width. Based on a similar mechanism and in the framework
of a generalized complex Ginzburg-Landau equation that ex-
plicitly takes into account the effect of a bandpass filter in
the cavity, Lederer et al. theoretically explained the multiple-
pulse operation of their laser �12�. However, we point out
that this process of multipulse generation can be easily iden-
tified experimentally. In the case that no bandpass filter is in
the cavity, a pulse splits into two pulses only when its pulse
width has become so narrow that it is limited by the gain
bandwidth, while in the case of fiber lasers no significant
soliton pulse narrowing was ever observed before a new soli-
ton pulse was generated, which obviously demonstrated that
the multiple-pulse generation in the soliton fiber lasers must
have a different mechanism. Agrawal has also numerically
shown multiple-pulse formation when a pulse propagates in
a strongly pumped gain medium �15�. Nevertheless, it can be
shown that multiple-pulse formation has in fact the same
mechanism as that described by Kärtner et al. Recently,
Grelu et al. have numerically simulated multiple-pulse op-
eration of fiber soliton lasers �16,17�. By using a propagation
model and also taking into account the laser cavity effect,
they could quite well reproduce the multipulse states of the
experimental observations. However, no analysis of the
physical mechanism of multipulse formation was given. In
addition, in their simulations the multisoliton formation is
only obtained for limited sets of parameters, which is not in
agreement with the experimental observations. Very recently,
Komarov et al. have theoretically studied multiple-soliton
operation and pump hysteresis of soliton fiber lasers mode
locked by using the NPR technique �18�. In their model they
have explicitly taken into account the nonlinear cavity effect
so they can successfully explain the multisoliton formation
and pump hysteresis based on the nonlinear cavity feedback.
However, as they ignored the linear birefringence of the fiber
and the associated linear cavity effects, their model might
still not accurately describe the real laser systems, e.g., in
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their model in order to obtain multiple-pulse operation, they
have to add phenomenologically a frequency-selective loss
term. Physically, adding the term is like adding a bandpass
filter in the laser cavity.

In this paper we present results of numerical simulations
on soliton formation and soliton energy quatization in a fiber
ring laser passively mode locked by using the NPR tech-
nique. First we show that soliton formation is actually a natu-
ral consequence of a mode-locked pulse under strong pump-
ing if a laser is operating in the anomalous total cavity
dispersion regime. In particular we show how the parameters
of a laser soliton, such as the peak power and pulse width,
vary with the laser operation conditions. Based on our nu-
merical simulations we further show that the multiple soliton
formation in the laser is caused by a peak-power-limiting
effect of the laser cavity. It is also the effect of the cavity that
suppresses the soliton collapse and makes the solitons stable
in the laser even when the laser gain is very strong. Further-
more, we demonstrate numerically that the soliton energy
quantization of the laser is a natural consequence of the gain
competition between the solitons in the cavity.

II. EXPERIMENTAL OBSERVATIONS

For the purpose of comparison and a better understanding
of our numerical simulations, we present here again some of
the typical experimental results on multiple-soliton operation
and soliton energy quantization of soliton fiber lasers. We
note that although the results presented here were obtained
from a particular soliton fiber ring laser as described below,
similar features were also observed in other lasers �3–5,8�,
and are in fact independent of the concrete laser systems. A
schematic of the fiber soliton laser we used in our experi-
ments is shown in Fig. 1. It contains a 1-m-long dispersion-
shifted fiber with group velocity dispersion �GVD� of about
−2 ps/nm km, a 4-m-long erbium-doped fiber �EDF� with
GVD of about −10 ps/nm km, and a 1-m-long standard
single-mode fiber with GVD of about −18 ps/nm km. Two
polarization controllers, one consisting of two quarter-wave
plates and the other one of two quarter-wave plates and one
half-wave plate, were used to control the polarization of the
light in the cavity. A polarization-dependent isolator was

used to enforce the unidirectional operation of the laser and
also determine the polarization of the light at the position. A
10% output coupler was used to let out the light. The soliton
pulse width of the laser was measured with a commercial
autocorrelator, and the average soliton output power was
measured with a power meter. The soliton pulse evolution
inside the laser cavity was monitored with a high-speed de-
tector and a sampling oscilloscope.

The soliton operation of the laser was extensively inves-
tigated previously �19–21�; various features such as the
pump power hysteresis, multiple-soliton generation, various
modes of multiple-soliton operation, and bound states of
solitons were observed. Worthy of mention here again is the
pump hysteresis effect of the soliton operation. It was found
experimentally that the laser always started mode locking at
a high pump power level, and immediately after the mode
locking multiple solitons were formed in the cavity. After
soliton operation was obtained, the laser pump power could
then be reduced to a very low level while the laser still main-
tained the soliton operation. This phenomenon of the laser
soliton operation is known as pump power hysteresis �22�. It
later turned out that the pump power hysteresis effect is re-
lated to the multiple-soliton operation of the laser. Once mul-
tiple solitons are generated in the cavity, on decreasing the
pump power the number of solitons is reduced. However, as
long as one soliton remains in the cavity, the soliton opera-
tion state �and therefore the mode locking of the laser� is
maintained. Not only the soliton operation of the laser, but
also the generation and annihilation of each individual soli-
ton in the laser exhibited pump power hysteresis �19�. Ex-
perimentally it was observed that if there were already soli-
tons in the cavity, on carefully increasing the pump power,
new solitons could be generated one by one in the cavity. As
in this case the laser is already mode locked, the generation
of a new soliton only requires a small increase of the pump
power.

An important characteristic of the multiple-soliton opera-
tion of the laser is that, as long as the solitons are far apart in
the cavity, they all have exactly the same soliton parameters:
the same pulse width, pulse energy, and peak power. To dem-
onstrate the property we have shown in Fig. 2 the oscillo-
scope trace of a typical experimentally measured multiple-
soliton operation state of our laser. The cavity round-trip
time of the laser is about 26 ns. There are six solitons coex-
isting in the cavity. It can be clearly seen that each soliton

FIG. 1. A schematic of the soliton fiber laser. PI, Polarization-
dependent isolator. PC, polarization controller. DSF, dispersion-
shifted fiber. EDF, erbium-doped fiber. WDM, wavelength-division
multiplexer.

FIG. 2. A typical experimentally measured oscilloscope trace of
the multiple-soliton operation of the laser.
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has exactly the same pulse height in the oscilloscope trace.
Although with the electronic detection system the detailed
pulse profile of the solitons cannot be resolved, nevertheless,
the measured pulse height in the oscilloscope trace is directly
related to the energy of each individual soliton. Based on the
measured autocorrelation traces and optical spectra it was
further identified that all the solitons indeed have exactly the
same soliton parameters.

III. THEORETICAL MODELING

To find the physical mechanism of multiple-soliton forma-
tion in our laser, we have experimentally carefully investi-
gated its soliton operation and compared with those calcu-
lated from the conventional models of fiber soliton lasers.
Traditionally, the soliton operation of a laser was modeled by
the Ginzburg-Landau equation �23� or the master equation
�24�, which also takes into account the gain, loss, and satu-
rable absorber effects of a laser. However, a drawback of the
models is that the laser cavity effect on the soliton was either
ignored or not appropriately considered. Based on results of
our experimental studies, we found that the cavity properties
affect significantly the features of the solitons as in the case
of soliton lasers the solitons circulate inside a cavity. There-
fore, we believe that in order to accurately model the soliton
operation of a laser, the detailed cavity properties must also
be included in the model. To this end we have extended the
conventional Ginzburg-Landau equation model through in-
corporating the cavity features. In previous papers we have
reported results of using the model in simulating the experi-
mentally observed soliton sideband asymmetry �25�, subside-
band generation �26�, twin-pulse solitons �27�, and soliton
pulse train nonuniformity �28�. We found that with our
model we could well reproduce all the experimentally ob-
served phenomena of our laser.

The basic idea of our model, which is fundamentally dif-
ferent from conventional models, is that we did not make the
small-pulse-variation approximation. Instead we follow the
circulation of the optical pulses in the laser cavity and con-
sider every action of the cavity components on the pulses.
Concretely, we describe the light propagation in the optical
fibers by the nonlinear Schrödinger equation, or coupled
nonlinear Schrödinger equations if the fiber is weakly bire-
fringent. For the erbium-doped fiber, we also incorporate
gain effects such as the light amplification and gain band-
width limitation in the equation. Whenever the pulse encoun-
ters a discrete cavity component, e.g., the output coupler or
polarizer, we then take account of the effect of the cavity
component by multiplying its transfer matrix with the light
field. As the model itself is very complicated, we have to
numerically solve it and find the eigenstate of the laser under
certain operation conditions. In our numerical simulations
we always start the calculation with an arbitrary light field.
After one round-trip circulation in the cavity, we then use the
calculated result as the input of the next round of calculation
until a steady state is obtained. We found that the simulations
will always approach to a stable solution, which corresponds
to a stable laser state under certain operation conditions.

To illustrate our technique, we present here the detailed
procedure in simulating the soliton operation of the laser

described above. To describe the light propagation in the
weakly birefringent fibers, we used coupled complex nonlin-
ear Schrödinger equations of the form
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where u and v are the normalized envelopes of the optical
pulses along the two orthogonal polarization axes of the fi-
ber. 2�=2��n /� is the wave-number difference between the
two modes. 2�=2�� /2�c is the inverse group velocity dif-
ference. k� is the second-order dispersion coefficient, k� is
the third-order dispersion coefficient, and � represents the
nonlinearity of the fiber. g is the saturable gain of the fiber
and �g is the bandwidth of the laser gain. For undoped fibers
g=0. For the erbium-doped fiber, we further considered the
gain saturation as

g = G exp�−
	 ��u�2 + �v�2�dt

Psat

 , �2�

where G is the small signal gain coefficient and Psat is the
normalized saturation energy.

To be close to the experimental conditions of our laser, we
have used the following fiber parameters for our simulations:
�=3 W−1 km−1, k�=0.1 ps2 /nm km, �g=20 nm, gain satu-
ration energy Psat=1000, cavity length L=6 m, and the beat
length of the fiber birefringence Lb=L /4. To simulate the
cavity effect, we let the light circulate in the cavity. Starting
from the intracavity polarizer, which has an orientation of
�=0.125� to the fiber’s fast axis, the light then propagates in
the various fibers, first through the 1 m dispersion-shifted
fiber �DSF�, which has a GVD coefficient of
k�=−2 ps/nm km, then the 4 m EDF, whose GVD coeffi-
cient k�=−10 ps/nm km, and finally the 1 m standard single-
mode fiber whose GVD coefficient k�=−18 ps/nm km. Sub-
sequently the light passes through the wave plates, which
cause a fixed polarization rotation of the light. Note that
changing the relative orientations of the wave plates is physi-
cally equivalent to adding a variable linear cavity phase de-
lay bias to the cavity. Certainly the principal polarization
axes of the wave plates are not aligned with those of the
fibers, and in general the different fibers used in the laser
cavity could also have different principal polarization axes.
However, for simplicity of the numerical calculations, we
have treated them as all having the same principal polariza-
tion axes, and considered the effect caused by the principal
polarization axis change by assuming that the polarizer has
virtually a different orientation to the fast axis of the fiber
when it acts as an analyzer. In our simulations the orientation
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angle of the analyzer to the fiber fast axis is set as 	=� /2
+�. We point out that in the real laser system the analyzer is
also the same polarizer �PI�. Therefore, the light after the
analyzer is also the light after the polarizer. We then used the
light as the input for the next round of calculation, and the
procedure repeats until a steady state is achieved.

IV. SIMULATION RESULTS

The coupled complex nonlinear Schrödinger equations �1�
were numerically solved by using the split-step Fourier
method �29�. We found that by appropriately setting the lin-
ear cavity phase delay bias of the cavity, so that an artificial
saturable absorber effect can be generated in the laser, self-
started mode locking can always be generated in our simu-
lations through simply increasing the small signal gain coef-
ficient, which corresponds to increasing the pump power in
the experiments. Exactly as in the experimental observations,
multiple-soliton pulses are formed in the simulation window
immediately after the mode locking. In the steady state and
when the solitons are far separated, all the solitons obtained
have exactly the same pulse parameters such as the peak
power and pulse width. Figure 3 shows, for example, the
numerically calculated multiple-soliton operation of the la-
ser. As in the experimental observations, the soliton opera-
tion of the laser and the generation and annihilation of each
individual soliton in the cavity exhibit pump hystersis. De-
creasing the pump power numerically, the soliton number in
the simulation window is reduced one by one, while care-
fully increasing the pump strength; with at least one soliton
already existing in the cavity, solitons can also be generated
one by one as shown in Fig. 4. All these numerically calcu-
lated results are in excellent agreement with the experimental
observations.

In a practical laser due to the existence of laser output,
fiber splices, etc., the linear cavity losses are unavoidable.
However, in the numerical simulations we could artificially
reduce the linear cavity loss and even make it zero. We found
numerically that the weaker the linear cavity loss, the smaller
is the pump hysteresis of the soliton operation. With a very

weak linear cavity loss we found numerically that a single-
soliton pulse could even be directly formed from a mode-
locked pulse through increasing the pump strength. This nu-
merical result clearly shows that the large pump hysteresis of
the soliton operation of the laser is caused by the existence of
the large linear cavity loss of a practical laser. A large linear
cavity loss makes the mode-locking threshold of a laser very
high, which under the existence of the cavity saturable ab-
sorber effect causes the effective gain of the laser after mode
locking to be very large. As will be shown below, when the
peak power of a pulse is clamped, this large effective laser
gain will then result in the formation of multiple solitons
immediately after the mode locking of the laser. We have
mentioned in the Introduction the theoretical work of Koma-
rov et al. on the multistability and hysteresis phenomena in
passively mode-locked fiber lasers. In the framework of their
model they have explained these phenomena as caused by
the competition between the positive nonlinear feedback and
the negative phase modulation effect �18�. It is noteworthy
that in their model, in order to obtain the multiple-soliton
operation, a cavity loss term caused by the frequency-
selective filter has to be added, which from another aspect
confirms our numerical result shown above.

By making the linear cavity loss small, we have numeri-
cally investigated the process of how a soliton is formed in
the laser cavity. Figure 5 shows the results of numerical
simulations. In obtaining the result the linear cavity phase
delay bias is set to �
l=1.2�. When G is less than 251, there
is no mode locking. In the experiment this corresponds to the
case that the laser is operating below the mode-locking
threshold. When G is equal to 252, a mode-locked pulse
emerges in the cavity. The mode-locked pulse has weak
pulse intensity and broad pulse width. Due to the action of
the mode locker, which in the laser is the artificial saturable
absorber, the mode-locked pulse circulates stably in the cav-
ity, just like any mode-locked pulse in other lasers. Although
such a mode-locked pulse has a stable pulse profile during
circulation in the cavity, we emphasize that it is not a soliton
but a linear pulse. The linear nature of the pulse is also
reflected by the fact that its optical spectrum has no side-
bands. When G is further increased, the peak power of the

FIG. 3. Numerically calculated multiple-soliton operation state
of the laser. �
l=1.20�, G=350. Other parameters used are de-
scribed in the text.

FIG. 4. Relationship between the soliton number in the simula-
tion window and the pump strength. �
l=1.20�.
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pulse quickly increases. Associated with the pulse intensity
increase the nonlinear optical Kerr effect of the fiber also
becomes strong and eventually starts to play a role. An effect
of the pulse self-phase-modulation �SPM� is to generate a
positive frequency chirp, which in the anomalous cavity dis-
persion regime counterbalances the negative frequency chirp
caused by the cavity dispersion effect and compresses the
pulse width. When the pulse peak power has become so
strong that the nonlinear SPM effect alone can balance the
pulse broadening caused by the cavity dispersion effect, even
without the existence of the mode locker, a pulse can propa-
gate stably in the dispersive laser cavity. In this case a mode-
locked pulse then becomes a soliton. In the case of our simu-
lation, this corresponds to the state of G=253. A soliton in
the laser is also characterized by the appearance of the side-
bands in the optical spectrum as shown in Fig. 5.

Once the laser gain is fixed, a soliton with fixed peak
power and pulse width will be formed, which is independent
of the initial conditions. The states shown in Fig. 5 are stable
and unique. This result confirms the autosoliton property of
the laser solitons �30�. However, if the pump power is con-
tinuously increased, solitons with even higher peak power
and narrower pulse width will be generated. Associated with

the soliton pulse width narrowing, the spectrum of the soli-
ton broadens, and consequently more sidebands become vis-
ible. However, the positions of the sidebands are almost
fixed. The physical mechanism of sideband generation of
laser solitons was extensively investigated previously and is
well understood now �31�. It is widely believed that the side-
band generation is a fundamental limitation to the soliton
pulse narrowing in a laser �32�. However, our numerical
simulations clearly show that the sideband generation is just
an adaptive effect, whose existence does not limit the soliton
pulse narrowing. As long as the pump power can balance the
loss caused by the sidebands, the soliton pulse width can still
be narrowed. Based on our numerical simulation and if there
is no other limitation as will be described below in the paper,
the narrowest soliton pulse that can be formed in a laser
should be ultimately only determined by the laser cavity dis-
persion property, including the net dispersion of all the cavity
components and the dispersion of the gain medium.

With already one soliton in the simulation window, we
then further increased the pump strength. Depending on the
selection of the linear cavity phase delay bias, we found that
the mechanism of further soliton generation and the features
of the multiple-soliton operation in the laser are different.
With the laser parameters as described above, we found that
when the linear cavity phase delay bias is set small, say at
about �
l=1.2�, on further increasing the pump power, ini-
tially the soliton pulse peak power will be increased and its
pulse width narrowed as expected. However, at a certain
fixed value these effects will stop; instead the background of
the simulation window becomes unstable and weak back-
ground pulses become visible as shown in Fig. 6�b�. On fur-
ther slightly increasing the pump power, an additional soliton
is quickly formed in the cavity through the soliton shaping of
one of the weak background pulses. As the weak background
pulses are always initiated from the dispersive waves of the
solitons, we have called this type of soliton generation “soli-
ton shaping of dispersive waves” �33�. In the steady state
both solitons have exactly the same pulse width and peak
power as shown in Fig. 6�c�. When the pump power is fur-
ther increased, additional solitons are generated one by one
in the simulation window in exactly the same way and even-
tually a multiple-soliton state as shown in Fig. 3 is obtained.
This numerically simulated result is well in agreement with
the experimental observations �19�. Because of the additional
soliton generation, the solitons formed in the laser cannot
have large pulse energy and high peak power through simply
increasing the pump power. The larger the laser gain, the
more solitons would be formed in the cavity.

When the linear cavity phase delay bias is set at a very
large value, say at about �
l=1.8�, which is still in the
positive cavity feedback range but close to the other end, no
stable propagation of solitons in cavity can be obtained. With
the linear cavity phase delay bias selection, there is a big
difference between the linear cavity loss and the nonlinear
cavity loss. Therefore, if the gain of laser is smaller than the
dynamical loss that a soliton experienced, the soliton quickly
dies out as shown in Fig. 7�a�. While if the gain of the laser
is even slightly larger than the dynamical loss that a soliton
experienced, the soliton peak power will increase. Higher
soliton peak power results in smaller dynamical loss and

FIG. 5. Soliton shaping of the mode-locked pulse in the laser.
�
l=1.20�. Top figure: Evolution of pulse profile with the pump
strength. Bottom figure: Evolution of the optical spectra with the
pump strength.
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even larger effective gain; therefore, the soliton peak will
continuously increase. Associated with the soliton peak in-
crease the soliton pulse width decreases; eventually the soli-
ton breaks up into two solitons with weak peak power and
broad pulse width as described by Kärtner et al. �14�. Once a
soliton is broken into two solitons with weak peak power, the
dynamical loss experienced by each of the solitons becomes
very big. Consequently the gain of the laser cannot support
them. The new solitons are then immediately destroyed as
shown in Fig. 7�b�. If very large gain is available in the laser,
the additional solitons may survive in the cavity temporally
and each of them repeats the same process as shown in Fig.
7�b�, and eventually a state as shown in Fig. 7�c� is formed.
Therefore, no stable soliton propagation is possible with a
too large linear cavity phase delay setting in the laser.

Even in the cases of stable multiple-soliton operation, de-
pending on the selection of the linear cavity phase delay, the
solitons obtained have different parameters. Figure 8 shows
for comparison the multiple-soliton operation obtained with
the linear cavity phase delay bias set at �
l=1.55�. It is
seen that solitons with higher peak power and narrower pulse
width can be formed with the linear cavity phase delay set-
ting. Extensive numerical simulations have shown that the
larger the linear cavity phase delay setting, the higher the
soliton peak and the narrower the soliton pulse achievable.

V. MECHANISM OF MULTIPLE-SOLITON GENERATION
AND SOLITON ENERGY QUANTIZATION

Apparently, depending on the laser linear cavity phase
delay bias setting, there exist two different mechanisms of
soliton generation in the laser. One is the soliton shaping of

FIG. 6. Process of additional soliton generation in the laser.
�
l=1.20�. G��a� 255; �b� 270; �c� 275.

FIG. 7. Soliton evolutions calculated with �
l=1.80�. G��a�
470; �b� 478; �c� 600.
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the unstable dispersive waves or the cw components, and the
other one is the well-known mechanism of pulse splitting. It
is seen that in the laser the process of soliton splitting occurs
only in the regime where the additional solitons formed are
practically unstable. We have already reported previously the
phenomenon of soliton generation through unstable back-
ground in the lasers �33�. Here we further explain its physical
origin.

Our soliton fiber laser is mode locked by using the NPR
technique. The operation mechanism of the technique has
already been analyzed by several authors �24,34,35�. It has
been shown that through inserting a polarizer in the cavity
and appropriately setting the linear cavity phase delay, the
NPR could generate an artificial saturable absorption effect
in the laser. It is the artificial saturable absorber effect that
causes the self-started mode locking of the laser. After a
soliton is formed in the laser cavity, it further stabilizes the
soliton. Although previous studies have correctly identified
the effects of NPR and the saturable absorber in the laser,
there is no further analysis on how and to what extent these
effects affect the soliton parameters and soliton dynamics.
Here we follow the description of Chen et al. �34� to com-
plete it. Our approach is to first determine the linear and
nonlinear cavity transmission of the laser, and then based on
the results to further find out how they affect the solitons
formed in the laser. Physically, the laser cavity shown in Fig.
1 can be simplified to a setup as shown in Fig. 9 for the
purpose of determining its transmission property. Starting
from the intracavity polarizer, which sets the initial polariza-
tion of light in relation to the birefringent axes of the fiber,
the polarization of light after passing through the fiber is
determined by both the linear and nonlinear birefringence of
the fiber. The light finally passes through the analyzer, which
in the experimental system is the same intracavity polarizer.
If we assume that the polarizer has an orientation of angle �
with respect to the fast axis of the fiber, the analyzer has an
angle of 	, the phase delay between the two orthogonal po-
larization components caused by the linear fiber birefrin-
gence is �
l, and that caused by the nonlinear birefringence
is �
nl, it can be shown that the transmission coefficient of
the setup or the laser cavity is �34�

T = sin2���sin2�	� + cos2���cos2�	�

+
1

2
sin�2��sin�2	�cos��
l + �
nl� . �3�

Chen et al. �34� and Davey et al. �35� have already shown
how to select the orientations of the polarizer and the ana-
lyzer so that the cavity would generate efficiently saturable
absorption effect. In a previous paper �25� we have also
shown that the linear cavity transmission of the laser is a
sinusoidal function of the linear cavity phase delay �
l with
a period of 2�. It is to point out that within one period of the
linear cavity phase delay change, the laser cavity can provide
positive �the saturable absorber type� cavity feedback only in
half of the period, in the other half of the period it actually
has negative feedback.

As shown in Eq. �3�, the actual cavity transmission for an
optical pulse is also nonlinear phase delay �
nl dependent.
To illustrate the functions of this part we use our simulations
as an example. In our simulations the orientation of the po-
larizer has an angle of �=0.125� to the fast axis of the fiber,
so light propagation in the fiber will generate a negative
nonlinear phase delay. The linear cavity beat length is 1

4 of
the cavity length, therefore, the maximum linear cavity trans-
mission is at the positions of �2n+1�� linear cavity phase
delays, where n=0, 1,2,… . Furthermore, when the linear
cavity phase delay is biased within the range between �2n
+1�� and 2�n+1��, the cavity will generate a positive feed-
back, as under the effect of the nonlinear polarization rota-
tion the actual cavity transmission increases. While if the
linear cavity phase delay is located in the range from 2n� to
�2n+1��, the cavity will generate a negative feedback. The
maximum linear cavity transmission point also marks the
switching position of the two feedbacks. For the soliton op-
eration the laser is always initially biased in the positive
cavity feedback regime. It is clear to see that depending on
the selection of the linear cavity phase delay and the strength
of the nonlinear phase delay, the cavity feedback is possible
to be dynamically switched from the positive feedback to the
negative feedback regime. For the soliton operation of a laser
this cavity feedback switching has the consequence that the
peak of a soliton formed in the cavity is limited. We found
that it is this soliton peak limiting effect that results in the
multiple soliton generation in the soliton fiber laser and the
soliton energy quantization.

FIG. 8. Multiple-soliton operation of the laser calculated with
linear cavity phase delay bias set at �
l=1.55�, G=465.

FIG. 9. An equivalent setup to Fig. 1 for determining the cavity
transmission.
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To explain these, we assume that the peak power of a
soliton is so strong that it switches the cavity from the posi-
tive to the negative feedback regime. In this case although
increasing the pump strength will still cause the peak power
of the soliton to increase, the higher the soliton peak power
increases, the smaller the actual cavity transmission be-
comes. To a certain fixed value of the soliton peak power,
which depends on the linear cavity phase delay setting, fur-
ther increase of the soliton peak power would result in that
the actual cavity transmission that the soliton experiences
becomes smaller than the linear cavity transmission. At this
point the soliton peak will be clamped. Further increasing the
laser gain will not amplify the soliton but the background
noise such as the dispersive waves. If the background noise
of a certain frequency satisfies the lasing condition, it could
also start to lase and form a cw component in the soliton
spectrum. We note that coexistence of solitons with cw is a
generic effect of the soliton fiber lasers, and the phenomenon
was reported by several authors �36,37�. Linear waves are
intrinsically unstable in the cavity due to the modulation in-
stability. When they are strong enough, they become modu-
lated. Under the effect of saturable absorption, the strongest
background pulse will be amplified and shaped into an addi-
tional soliton. This was exactly what we have observed in the
experiments on how an additional soliton was generated. The
two solitons in the cavity share the same laser gain. As the
cavity generates a positive feedback for the weak soliton and
a negative one for the strong soliton, under gain competition
the two solitons have to adjust their strength so that the
stronger one becomes weaker, and the weaker one becomes
stronger; eventually they will stabilize at a state where both
solitons have exactly the same peak power. The soliton in-
ternal energy balance further determines their other param-
eters. Unless there are interactions between the solitons, they
will always have identical parameters in the stable state.

It turns out that the multiple-soliton formation in the laser
is in fact caused by the peak-power-clamping effect of the
cavity. In addition, the soliton energy quantization observed
is also a natural consequence of the gain competition be-
tween the solitons in the laser. Obviously the maximum
achievable soliton peak power in the laser is linear cavity
phase delay dependent. When the linear cavity phase delay is
set close to the cavity feedback switching point, solitons with
relatively lower peak power could already dynamically
switch the cavity feedback. Therefore, solitons obtained at
this linear cavity phase delay setting have lower peak power
and broader pulse width as shown in Fig. 6�a�; while if the
linear cavity phase delay is set far away from the switching
point, the soliton peak power is clamped at a higher value,
and solitons with higher peak and narrower pulse width are
obtained as shown in Fig. 8. In particular, if the linear cavity
phase delay is set too close to the switching point, as the
peak power of the pulse is clamped to too small a value,
except for mode-locked pulses, no soliton can be formed in
the laser. When the linear cavity phase delay is set too far
away from the switching point as demonstrated numerically
in Fig. 7, before the soliton peak reaches the switching point,
it has already become so high and so narrow that it splits,
and no stable soliton propagation can be obtained in the la-
ser. Instead only the state of so-called noiselike pulse emis-
sion will be observed �38�.

Finally we note that the multiple-soliton operation and
soliton energy quantization effect have also been observed in
other passively mode-locked soliton fiber lasers, such as in
figure-of-eight lasers and lasers passively mode locked with
semiconductor saturable absorbers �8,9�. Even in actively
mode-locked fiber lasers �2� these phenomena have also been
observed. Despite the fact that those soliton lasers are not
mode locked with the NPR technique and therefore their
detailed cavity transmission could not have the same feature
as described by Eq. �3�, enlightened by the result obtained in
our laser, we conjecture that there must also be a certain
pulse peak-power-limiting mechanism in those lasers, which
causes their multiple-pulse formation. Indeed, we found that
for the figure-of-eight lasers, if the fiber birefringence of the
nonlinear loop is further considered, it will also generate a
similar pulse-peak-clamping effect in the laser. However, bi-
refringence of fibers in the lasers is normally ignored. It was
also reported that due to the two-photon absorption effect the
SESAM used for the passive mode locking of fiber lasers has
a pulse peak-power-limiting effect �39�. It is therefore not
surprising that a soliton laser mode locked with the material
could also exhibit multiple solitons. For the actively mode-
locked laser, in most cases the multiple-soliton generation is
due to harmonic mode locking. In this case as too many
solitons share the limited cavity gain, the energy of each
pulse is weak. Therefore, even when the net cavity disper-
sion is negative, solitons are normally difficult to form. We
point out that for an actively mode-locked fiber laser if the
cavity is not carefully designed, the cavity birefringence
combined with the modulator, which is a polarizing device,
could form a birefringence filter and further limit the peak
power of the pulses formed in the lasers.

VI. CONCLUSIONS

In conclusion, we have numerically studied the mecha-
nism of multiple-soliton generation and soliton energy quan-
tization in a soliton fiber ring laser passively mode locked by
using the nonlinear polarization rotation technique. We iden-
tified that the multiple-soliton generation in the laser is
caused by the peak-power-clamping effect of the cavity. De-
pending on the linear cavity phase delay setting, the nonlin-
ear phase delay generated by a soliton propagating in the
fiber cavity could be so large that it switches the cavity feed-
back from the initially selected positive regime into the nega-
tive regime. And as a result of the cavity feedback change the
maximum achievable soliton peak power is then limited. In
this case increasing the laser pump power will not increase
the peak power of the solitons, but generate an additional
soliton. Therefore, multiple solitons are formed in the laser.
As the solitons share the same laser gain, gain competition
between them combined with the cavity feedback feature fur-
ther results in the fact that in the steady state they have
exactly the same soliton parameters. The parameters of soli-
tons formed in the laser are not fixed by the laser configura-
tion but vary with the laser operation conditions, which are
determined by the soliton internal energy balance between
the shared laser gain and the dynamical losses of each
soliton.
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