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The nonlinear optical response of an adsorbate, whose structure is altered by the inhomogeneous electro-
static field of the substrate, has been evaluated with a particular emphasis on the sum-frequency generation
process. In the limiting case of an homogeneous electrostatic field, besides the contributions associated with the
induced dipole moments, we have additional contributions which only exist if the adsorbed molecule has
permanent dipole moments. Also, the Franck-Condon factors of the unperturbed molecule weight the internal
couplings induced by the electrostatic field. For the more general inhomogeneous electrostatic field case, while
the main observations remain valid, the Franck-Condon factors are modified by the molecular structure
changes induced by the electrostatic field. In addition, we have a strong redistribution of the vibronic couplings
resulting from the analytical Q dependence of the partial charge distribution which is a signature of the field
inhomogeneities.
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I. INTRODUCTION

The interaction of molecules with their surroundings is a
recurrent problem which occurs in a large number of fields
ranging from single-molecule nanomanipulation like DNA
�1� to forming artificial structures directly from atoms or
molecules �2–4�. Of special interest for interfacial materials
science is the incorporation of biomolecules into well-
defined layered structures, which provides interesting models
for biological membranes. They can be used for studying
specific interactions and may be convenient tools for design-
ing artificial systems with biological functions such as sen-
sors �5–8�. While a lot of experimental data informative
about structure distorsions have been obtained from tradi-
tional Raman spectroscopies, it is now well established that
nonlinear spectroscopies, and more specifically infrared-
visible sum-frequency generation spectroscopy, are currently
used to study vibrational dynamics to understand the proper-
ties, as well as the structure of adsorbed molecules on sur-
face and interfaces �9–14�. Informations as diverse as vibra-
tional frequencies, bond lengths, local chemical surrounding
of adsorbed molecules, or their orientations can be deter-
mined. Also, two-dimensional vibrational spectroscopy has
been developed recently by using infrared-visible spectros-
copy suitable to study the coupling between vibrational
modes at surfaces �15� and has been applied to the study of
lateral interactions between adsorbed molecules �16�. In view
of these high experimental performances, there is a need for
more detailed theoretical descriptions of the dynamics occur-
ring on adsorbed systems.

When a molecule is bounded to a substrate surface, its
partial charge density is altered by the substrate electrostatic

field which induces a distorsion of the molecular electronic
structure. This deviation of the partial charge distribution has
been modelized �17,18� and accounts for the electronic po-
larization and partial charge redistribution �19–21�. Because
of the molecular electronic distorsions taking place in the
adsorbed molecule, the molecular vibrational structure is
changed and, consequently, the resulting electron density of
the molecule is not anymore in equilibrium with the instan-
taneous molecular structure, implying a structural transfor-
mation of the molecule to reach new equilibrium positions.
As a consequence, the electronic potential surface and the
subsequent vibrational properties are changed accordingly
�22,23�.

From previous ab initio vibrational analysis of trans- and
cis-N-methylacetamide, energies, geometries, and force con-
stants have been calculated for two hydrogen bonded mol-
ecules, one at the NuH group and the other at the CvO
group �24–27�. In addition, other calculations on
N-methylacetamide solvated by water molecules �28,29�, ex-
hibited changes in bond lengths and bond angles, as well as
vibrational frequency shifts of the normal modes depending
on the number of surrounding water molecules. All these
observations strongly suggest interrelations between elec-
tronic and molecular structure distorsions, and motivated
their modelization �30–32�. Besides, it has to be mentioned
that while the charge response kernel expression has been
obtained by Morita and Kato using a coupled-perturbed
Hartree-Fock equation which explicitly includes the field
�33,34�, Cho got it from a sum over states �21� and relates
the partial charge and charge response kernel to the static
molecular polarizability, which strongly depends on the mo-
lecular structure.

In the present work, we emphasize the role played by the
substrate electrostatic field on the nonlinear optical response
associated to a sum-frequency generation process. In Sec. II,
we overview the general equations for electronic and vibra-
tional motions in the framework of the adiabatic Born-
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Oppenheimer approximation. In the usual Born-
Oppenheimer description, the partial charge term just gives
renormalized Born-Oppenheimer states and the transition
charge terms induce coupling between these vibronic mo-
lecular states. Then, in Sec. III, we establish the electronic
and vibrational equations of motion in terms of the diagonal-
ized vibronic molecular states at the depend of an effective
potential which is a function of the normal mode coordinates
and involves the interaction Hamiltonian of the electrostatic
field. From this equation, we can solve the vibrational eigen-
value problem in terms of the unperturbed one. This enables
the determination of the new equilibrium positions and fre-
quency shifts induced by the inhomogeneous electrostatic
field. Finally, in Sec. IV, we describe the sum-frequency pro-
cess taking place in the adsorbed molecule submitted to the
electrostatic field substrate. Numerical simulations are done
in Sec. V. In the limiting case of an homogeneous electro-
static field which is first examined, they show that besides
additional contributions to the zeroth-order optical suscepti-
bility which are generated by the homogeneous electrostatic
field on the induced dipole moments, we have supplementary
contributions which only exist if the adsorbed molecule has
permanent dipoles moment in its excited states. For the more
general inhomogeneous electrostatic field case, previous ad-
ditional contributions exist, but the dynamics underlying
these contributions are much more involved because of the Q
dependence of the partial charge distribution which modifies
the couplings between the various vibronic structures. It is
interesting to note that the permanent dipole moments can
affect quite differently the sum-frequency optical susceptibil-
ity according to the structure of the substrate surface electro-
static field. While for an homogeneous field we obtain a
decrease of the nonlinear response, the presence of inhomo-
geneities in the substrate electrostatic field enhances the
sum-frequency susceptibility.

II. DESCRIPTION OF THE ADSORBATE PERTURBED BY
THE SUBSTRATE ELECTROSTATIC FIELD

The time-dependent Schrödinger equation driving the
evolution of the molecular adsorbate perturbed by the elec-
trostatic field of the substrate and undergoing the excitation
induced by two laser beams can be described, in the frame-
work of the semiclassical description, by the Hamiltonian

H�q,Q,t� = H�q,Q� − � · E�r,t� , �2.1�

where H�q ,Q� stands for the molecular Hamiltonian in pres-
ence of the substrate, � is the dipole moment of the adsor-
bate, and E�r , t� the total laser field. Once the eigenvalue
problem of the molecular Hamiltonian is solved, the optical
nonlinearities can be evaluated right the way using the well-
known methods of the nonlinear optics �9�. Here, since the
electronic structure of the molecular adsorbate deviates from
that of the molecule in gas-phase due to the partial charge
distribution created by the electrostatic field, we have to
solve the eigenvalue problem

H�q,Q����q,Q�� = E���q,Q�� , �2.2�

where the molecular adsorbate Hamiltonian H�q ,Q�
=H0�q ,Q�+�sĉs�Q��s is made of the molecular Hamil-
tonian H0�q ,Q� and the perturbation �sĉs�Q��s resulting
from the presence of the substrate electrostatic field. As
usual, H0�q ,Q� involves electronic, nuclear, and mixed con-
tributions:

H0�q,Q� = T�q� + T�Q� + U�q,Q� + V�Q� , �2.3�

with T�q� and T�Q� the electronic and nuclear kinetic opera-
tors, U�q ,Q� the electron-electron and electron-nucleus po-
tential energy operator, and V�Q� the corresponding nucleus-
nucleus potential energy operator. Finally, ĉs�Q� stands for
the effective charge operator on site s and �s the electrostatic
potential acting on the effective charge. Taking advantage of
the adiabatic description of the Born-Oppenheimer �BO� mo-
lecular states �35,36�, from the electronic eigenvalue prob-
lem of the model Hamiltonian HBO=T�q�+U�q ,Q� written
as

�T�q� + U�q,Q����n
�BO��q,Q�� = En

�BO��Q���n
�BO��q,Q�� ,

�2.4�

the eigenvectors of H�q ,Q� can be developed into the form

��i�q,Q�� = �
n

��n
�BO��q,Q����ni�Q�� . �2.5�

If we introduce a perturbative treatment of the interaction
induced by the substrate electrostatic field, we get in the BO
molecular basis set of states defined by

�T�q� + U�q,Q� + �
s

ĉs�Q��s	��n�q,Q�� = En�Q���n�q,Q�� ,

�2.6�

where the electronic eigenenergies up to the second order are
expressed as

En�Q� = En
�BO��Q� + En

�1��Q� + En
�2��Q� + ¯

= En
�BO��Q� + �

s

Cnn
�s��Q��s

+ �
s,u

Kn
�su��Q��s�u + ¯ �2.7�

and the eigenvectors to first order take the form

��n�q,Q�� = ��n
�BO��q,Q�� + �

m�n

�s
Cmn

�s� �Q��s

En
�BO��Q� − Em

�BO��Q�

���m
�BO��q,Q�� + ¯ . �2.8�

These expressions result straightforwardly from crude pertur-
bative treatment. Notice that the evaluation of the electronic
wave function and their corresponding energies do not re-
quire the Hamiltonians T�Q� and V�Q�, which depend on the
normal mode coordinates only. They will be introduced in
the following for the evaluation of the vibrational eigenvalue
problem. Also, we have introduced the notations
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Cnm
�s� �Q� = 
�n

�BO��q,Q��ĉs�Q���n
�BO��q,Q�� ,

Kn
�su��Q� = �

m�n


�n
�BO��q,Q��ĉs�Q���m

�BO��q,Q��
�m
�BO��q,Q��ĉu�Q���n

�BO��q,Q��
En

�BO��Q� − Em
�BO��Q�

, �2.9�

which stand either for the electronic transition charge if m
�n or for the electronic partial charge if m=n and the charge
response kernel, respectively.

We come now to a detailed description of the vibrational
structure still based on the BO molecular states. The formal
solution of the total molecular Hamiltonian H�q ,Q� in Eq.
�2.2� is given by

�T�q� + U�q,Q� + �
s

ĉs�Q��s + T�Q� + V�Q�	
��

n

��n
�BO��q,Q����ni�Q��

= Ei�
n

��n
�BO��q,Q����ni�Q�� . �2.10�

From the eigenvalue problem of T�q�+U�q ,Q� expressed by
Eq. �2.4� and the scalar product obtained by projecting this
previous equation on the molecular BO zeroth-order elec-
tronic state ��p

�BO��q ,Q��, the previous equation becomes

��Ep
�BO��Q� − Ei����pi�Q�� + �

n
�

s

Cpn
�s��Q��s��ni�Q��

+ �
n


�p
�BO��q,Q��T�Q� + V�Q���n

�BO��q,Q����ni�Q��

= 0. �2.11�

According to details given in Appendix A, the eigenvalue
problem of the adsorbed molecule undergoing the electro-
static field of the substrate given in Eq. �2.11� reduces to

�Ep
�BO��Q� − Ei + �

s

Cpp
�s��Q��s + V�Q� + T�Q�

+ 
�p
�BO��q,Q��T�Q���p

�BO��q,Q��	��pi�Q��

+ �
n�p

��
s

Cpn
�s��Q��s

+ 
�p
�BO��q,Q��T�Q���n

�BO��q,Q��

−
h2

M
�
�p

�BO��q,Q��
�

�Q
��n

�BO��q,Q��� �

�Q	
���ni�Q�� = 0. �2.12�

For the sake of convenience, only one normal mode has been
accounted for here. Otherwise, a sum over the normal modes
has to be introduced.

In the past decades, it has been established in the studies
of nonradiative molecular transitions �37,38� that vibrational
states associated with different electronic states are coupled

through the interaction terms T�Q� and � /�Q. Here, due to
the presence of the electrostatic field substrate, an additional
coupling term induced by the charge operator ĉs�Q� appears
and is proportional to the electrostatic field substrate. There-
fore, a polarizable molecule undergoing such a field will
have its vibrational states relative to different electronic con-
figurations coupled in the same way as T�Q� and � /�Q pro-
ceed for internal conversion process. In order to solve the
vibrational equation of the molecular adsorbate in presence
of the electrostatic field which can be inhomogeneous, we
take advantage of the adiabatic approximation usually intro-
duced to express the molecular state in electronic and vibra-
tional parts. If we neglect the nondiagonal couplings in Eq.
�2.12�—say, 
�p

�BO��q ,Q��T�Q���n
�BO��q ,Q�� ∀p ,n�p and


�P
�BO��q ,Q���� /�Q���n

�BO��q ,Q�� ∀p ,n, which are the spe-
cific assumptions of the adiabatic BO description—the re-
sulting BO eigenstates provide a convenient representation.
In this basis, these residual terms will be responsible for
internal conversion. When the substrate electrostatic field is
acting on the adsorbate molecule, to preserve this adiabatic
representation, we must neglect the term �sCpn

�s��Q��s, which
we will introduce as an additional residual coupling later.
The resulting adiabatic molecular states take the form

��pi
�BO��q,Q�� = ��p

�BO��q,Q����pi�Q�� . �2.13�

Therefore, the vibrational equation of motion can be ex-
pressed as

�T�Q� + Vef f
�BO��Q� − Ei���pi�Q�� = 0, �2.14�

where the effective potential Vef f
�BO��Q� stands for

Vef f
�BO��Q� = V�Q� + Ep

�BO��Q�

+ 
�p
�BO��q,Q��T�Q���p

�BO��q,Q��

+ �
s

Cpp
�s��Q��s. �2.15�

As mentioned by Cho �30�, we note that the perturbation
induced by the electrostatic field of the substrate surface
modifies the electronic potential surface driving the nuclear
motion of the molecule. Consequently, there is a modifica-
tion of the equilibrium positions and vibrational frequencies
of the normal modes with respect to the ones of the isolated
molecule. For the sake of simplicity, they will be evaluated
in the next section on a different representation built from the
molecular eigenstates of the adsorbate and electrostatic field
Hamiltonian.
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III. EVALUATION OF THE SECOND-ORDER
OPTICAL SUSCEPTIBILITY

Among the theoretical approaches devoted to second-
order optical molecular susceptibilities �9,39,40�, the Liou-
villian formalism �14,41� is of particular interest to describe
the dynamical evolution of the adsorbed molecule located in
the electrostatic field of the substrate. For the sake of sim-
plicity, we introduce the various Liouvillians L, L0, and LBO
corresponding to the Hamiltonians H, H0, and HBO, respec-
tively. Also, LV stands for the interaction between the ad-
sorbed molecule and the two laser beams, say

LV = �− � · E�r,t�,�

if E�r,t� = �
f=1

2

�E f
�ei�ft−ikf·r + E fe

−i�ft+ikf·r� , �3.1�

where the star symbol stands for the complex conjugate
quantity. Therefore, the dynamical equation takes the form

�	�t�
�t

= −
i



�L + LV�t��	�t� − �	�t� , �3.2�

where � stands for the damping operator accounting for the
radiative and nonradiative Markovian processes occurring in
the molecular adsorbate. Quite often, the nonradiative con-
tributions to � arise from the interaction terms

�p

�BO��q ,Q��T�Q���n
�BO��q ,Q�� and 
�p

�BO��q ,Q���� /�Q�
���n

�BO��q ,Q��. If we define the transformation 	�t�
=e−�i/
�L�t	�I��t� with the usual notation L�=L− i
�, the dy-
namical equation �3.2� becomes

�	�I��t�
�t

= −
i



LV

�I��t�	�I��t� , �3.3�

with the additional notation

LV
�I��t� = e�i/
�L�tLV�t�e−�i/
�L�t. �3.4�

The second-order perturbation term, pertinent to the descrip-
tion of second-harmonic generation and sum-frequency gen-
eration, results straightforwardly from Eq. �3.3� and can be
written as

	�I��2��t� = −
1


2

ti

t

d�2

ti

�2

d�1 LV
�I���2�LV

�I���1�	�ti� ,

�3.5�

because, at the initial time ti, the density matrix is diagonal.
Of course, the definition of the initial density matrix must
account for the influence of the electrostatic field of the sub-
strate surface. Therefore, from the adiabatic approximation,
	�ti� will be expressed in terms of the molecular eigenstates

��
�q,Q�� = �
l

��l�q,Q����l
�Q�� , �3.6�

where ��n�q ,Q�� stands for the electronic eigenstates defined
by Eq. �2.6� and ��n
�Q�� their corresponding vibrational
states, which are solutions of the equation

�En�Q� − E
 + V�Q� + T�Q� + 
�n�q,Q��T�Q���n�q,Q���

���n
�Q�� + �
l�n

�
�n�q,Q��T�Q���l�q,Q��

−

2

M
�
�n�q,Q��

�

�Q
��l�q,Q��� �

�Q
	��l
�Q�� = 0,

�3.7�

and reduces to

�T�Q� + Vef f�Q� − E
���n
�Q�� = 0, �3.8�

where, according to the assumptions which validate the adia-
batic description of this new basis states,
the terms 
�n�q ,Q��T�Q���l�q ,Q�� ∀ l ,n� l and

�n�q ,Q���� /�Q���l�q ,Q�� ∀ l ,n have been neglected. These
assumptions are similar to the ones introduced previously for
the electronic BO states, but are now applied to the eigen-
states ��l�q ,Q��. A complete description will require the in-
troduction of the residual coupling terms previously rejected.
Here the effective potential Vef f�Q� corresponds to

Vef f�Q� = En�Q� + V�Q� + 
�n�q,Q��T�Q���n�q,Q��

= V�Q� + En
�BO��Q� + 
�n�q,Q��T�Q���n�q,Q��

+ �
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u + ¯ �3.9�

as long as the partial charge interaction �sĉs�Q��s can be
treated perturbatively. To solve the vibrational equation of
motion �3.8�, we use the well-known small-amplitude motion
approximation. Then vibrational solutions can be expressed
in terms of harmonic oscillator wave functions whose param-
eters like equilibrium position Qn

�0�+�Qn
�0� and frequency �n

will be related to the corresponding parameters Qn
�0� and �n

�0�

of the unperturbed oscillator. Notice that while the electro-
static field substrate cancels, the equilibrium condition is
given by

�

�Q
�V�Q� + En

�BO��Q�

+ 
�n
�BO��q,Q��T�Q���n

�BO��q,Q���Q=Qn
�0� = 0.

�3.10�

If we express the vibrational equation of motion �3.8� in the
BO basis set, we get
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�T�Q� +�V�Q� + En
�BO��Q� + 
�n

�BO��q,Q��T�Q���n
�BO��q,Q�� + �

m�n


�n
�BO��q,Q��T�Q���m

�BO��q,Q��
�s

Cmn
�s� �Q��s

En
�BO��Q� − Em

�BO��Q�

+ �
m�n


�m
�BO��q,Q��T�Q���n

�BO��q,Q��
�s

Cmn
�s�+

�Q��s
�

En
�BO��Q� − Em

�BO��Q�
+ �

p�n
�
q�n


�q
�BO��q,Q��T�Q���p

�BO��q,Q��

�
�s

Cpn
�s��Q��s

En
�BO��Q� − Ep

�BO��Q�

�u
Cnq

�u�+
�Q��u

�

En
�BO��Q� − Eq

�BO��Q�
+ �

s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u�	��n
�Q�� = E
��n
�Q�� , �3.11�

where the perturbational expansions �2.7� and �2.8� have
been used. Owing to the adiabatic approximation, we just
retain the diagonal contributions of T�Q� with respect to the
electronic states, so that

�T�Q� + �V�Q� + En
�BO��Q� + 
�n

�BO��q,Q��T�Q���n
�BO��q,Q��

+ �
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u�	��n
�Q��

= E
��n
�Q�� , �3.12�

if the third-order diagonal term

�
m�n


�m
�BO��q,Q��T�Q���m

�BO��q,Q��� �s
Cmn

�s� �Q��s

En
�BO��Q� − Em

�BO��Q�
�2

�3.13�

is neglected. In presence of the substrate surface electrostatic
field, the equilibrium position is defined by the condition

� �V�Q�
�Q

�
Qn

�0�+�Qn
�0�

= 0, �3.14�

where

V�Q� = V�Q� + En
�BO��Q� + 
�n

�BO��q,Q��T�Q���n
�BO��q,Q��

+ �
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u. �3.15�

Therefore, if we develop the Q dependence up to first order,
the condition �3.16� gives

�Qn
�0� = −

� �V�Q�
�Q

�
Q=Qn

�0�

� �2V�Q�
�Q2 �

Q=Qn
�0�

�3.16�

or, more explicitly, on account of the definition of Qn
�0� given

by Eq. �3.10�,

�Qn
�0� = − � �

�Q��
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u�
Q=Qn

�0�
	

�� �2

�Q2�V�Q� + En
�BO��Q�

+ 
�n
�BO��q,Q��T�Q���n

�BO��q,Q��

+ �
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u�
Q=Qn

�0�
	−1

,

�3.17�

which specifies the variation of the oscillator equilibrium
position induced by the electrostatic field. If we introduce the
expression of the unperturbed oscillator frequency given by

�n
�0� = � 1

M

�2

�Q2 �V�Q� + En
�BO��Q�

+ 
�n
�BO��q,Q��T�Q���n

�BO��q,Q���Q=Qn
�0�	1/2

�3.18�

to lower orders, we can rewrite �Qn
�0� as

�Qn
�0� = − � �

�Q��
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u�
Q=Qn

�0�
	

� �M�n
�0�2

+
�2

�Q2��
s

Cnn
�s��Q��s

+ �
s,u

Kn
�su��Q��s�u�

Q=Qn
�0�
	−1

. �3.19�

We still have to determine the frequency change due to the
perturbation. From the Q expansion of V�Q� up to Q2, we
obtain from Eq. �3.12�, if the substrate electrostatic field is
not applied,
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�T�Q − Qn
�0�� +

1

2�� �2�V�Q� + En
�BO��Q� + 
�n

�BO��q,Q��T�Q���n
�BO��q,Q���

�Q2 �
Q=Qn

�0�
��Q − Qn

�0��2 − En

�0� + V�Qn

�0�� + En
�BO��Qn

�0��

+ 
�n
�BO��q,Qn

�0���T�Q���n
�BO��q,Qn

�0���	��n

�0��Q − Qn

�0��� = 0, �3.20�

because the sum of the first derivatives is zero from equilibrium conditions. From this previous equation �3.20�, usual
eigenstates and eigenenergies of the unperturbed harmonic oscillator can be determined and are given in Appendix B. In the
presence of the substrate surface electrostatic field, we get, in turn,

�T�Q − Qn
�0� − �Qn

�0�� +
1

2
�Q − Qn

�0� − �Qn
�0��2 �2

�Q2�V�Q� + En
�BO��Q� + 
�n

�BO��q,Q��T�Q���n
�BO��q,Q�� + �

s

Cnn
�s��Q��s + �

s,u

�Kn
�su��Q��s�u�

Q=Qn
�0�−�Qn

�0�
− En
 + V�Qn

�0� + �Qn
�0�� + En

�BO��Qn
�0� + �Qn

�0�� + 
�n
�BO��q,Qn

�0� + �Qn
�0���T�Q�

���n
�BO��q,Qn

�0� + �Qn
�0��� + �

s

Cnn
�s��Qn

�0� + �Qn
�0���s + �

s,u
Kn

�su��Qn
�0� + �Qn

�0���s�
�u
	��n


�0��Q − Qn
�0� − �Qn

�0��� = 0, �3.21�

whose eigenstates and eigenenergies of the perturbed har-
monic oscillator are given in Appendix B. Its vibrational fre-
quency corresponds to

�n = � 1

M

�2

�Q2�V�Q� + En
�BO��Q�

+ 
�n
�BO��q,Q��T�Q���n

�BO��q,Q��

+ �
s

Cnn
�s��Q��s + �

s,u
Kn

�su��Q��s�u�
Q=Qn

�0�+�Qn
�0�
	1/2

.

�3.22�

Notice that radiative and nonradiative relaxation processes
are accounted for by the introduction of the additional con-
stants �n
. From the previous analysis, the perturbed vibra-
tional eigenfunctions can be deduced from the unperturbed
ones at the cost of the displacement �Qn

�0� and frequency
change ��n=�n−�n

�0� given by

��n �
1

2M�n
�0�

�2

�Q2��
s

Cnn
�s��Q��s

+ �
s,u

Kn
�su��Q��s�u�

Q=Qn
�0�+�Qn

�0�
, �3.23�

according to the expansion �1+x�1+x /2. Of course, fre-
quency change and displacement are interdependent, as
shown in Appendix B. At this stage, it can be mentioned for
the case of an homogeneous substrate electrostatic field that
we have neither displacement nor frequency change of the
oscillator associated with the normal mode.

In the next section, we will take advantage of these quan-
tities to describe the vibrational structure on account of the
influence of the electrostatic field substrate for the particular
process of sum-frequency generation.

IV. APPLICATION TO THE STUDY OF A
SUM-FREQUENCY GENERATION PROCESS

To discuss and evaluate more quantitatively the role
played by the substrate surface electrostatic field on sum-
frequency generation we first establish, from the general dy-
namical equation, the second-order optical susceptibility.

FIG. 1. Electronic configurations participating to the sum-
frequency process. The unperturbed and perturbed configurations
are drawn on the right and left sides, respectively. As discussed in
the paper, the ground configuration is not altered by the electrostatic
field of the substrate surface.
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With this goal in mind, the density matrix in the Schrödinger
picture will be written in the following as

	�2��t� = −
1


2

ti

t

d�2

ti

�2

d�1 G�t − �2�

�LV��2�G��2 − �1�LV��1�	�ti� , �4.1�

with G��1− ti�=1, if the adsorbate molecule is initially in a
stable state. From the analysis done in the previous section,
we know that vibronic levels associated with different elec-
tronic configurations are coupled. In the initial ground con-
figuration, at least at room temperature, there is no quasi-
isoenergetic vibronic states pertaining to the upper electronic
configuration and the eigenstates ����q ,Q�� reduce to the BO
vibronic states in the ground configuration as shown in Fig.
1. Then the initial density matrix of the adsorbates can be
conveniently described by

	�ti� = �
v

Pv��g
�BO��q,Q����gv�q,Q��
�gv�q,Q��
�g

�BO��q,Q�� ,

�4.2�

where Pv=e−Egv/kT /Z, with Z=�v�e
−Egv�/kT the partition func-

tion. The various pathways participating to the evaluation of
	�2��t� are given in Table I. Therefore, we are left with the
evaluation of the various matrix elements of the interaction
terms

LVgv�1
1gvgv��1� = 
�g
�BO��q,Q��gv�Q��

�����1
�q,Q���1
1

�Q�� · E1ei�1�1−ik1·r,

LVgv�2
2gv�1
1
��2� = 
��1

�q,Q���1
1
�Q��

�����2
�q,Q���2
2

�Q�� · E2ei�2�2−ik2·r,

LV�1
1gvgvgv��1� = − LVgv�1
1gvgv
� ��1� ,

LV�2
2gv�1
1gv��2� = − LVgv�2
2gv�1
1

� ��2� , �4.3�

assuming the rotating-wave approximation and both fields 1
and 2 quasiresonant with vibronic transitions gv↔�1
1 and
�1
1↔�2
2, respectively. Also, the matrix elements of the
evolution Liouvillian are given by

Ggv�1
1gv�1
1
��2 − �1� = e−�i/
��Egv

�BO��Q�−E�1
1
�Q����2−�1�,

Ggv�2
2gv�2
2
�t − �2� = e−�i/
��Egv

�BO��Q�−E�2
2
�Q���t−�2�,

G�1
1gv�1
1gv��2 − �1� = Ggv�1
1gv�1
1

� ��2 − �1� ,

G�2
2gv�2
2gv�t − �2� = Ggv�2
2gv�2
2

� �t − �2� . �4.4�

To evaluate the second-order optical susceptibility, we first
perform the time integration to get the explicit expression of
	�2��t�. It can be expressed as


�g
�BO��q,Q��gv�Q��	�2��t����2

�q,Q���2
2
�Q�� = −

1


2

ti

t

d�2

ti

�2

d�1
�g
�BO��q,Q��gv�Q���2

�q,Q���2
2
�Q��G�t − �2�

���g
�BO��q,Q��gv�Q���2

�q,Q���2
2
�Q��
��1

�q,Q���1
1
�Q��

�����2
�q,Q���2
2

�Q�� · E2ei�2�2−ik2·r
�g
�BO��q,Q��gv�Q���1

�q,Q���1
1
�Q��

�G��2 − �1���g
�BO��q,Q��gv�Q���1

�q,Q���1
1
�Q��
�g

�BO��q,Q��gv�Q��

�����1
�q,Q���1
1

�Q�� · E1ei�1�1−ik1·r	gvgv�ti� . �4.5�

Performing the double time integration we get, in the limit ti→−�, the expression of the second-order optical polarization
P��1+�2 ,k1+k2 , t�=Tr�	�2��t��� in the direction k1+k2. It takes the form

P��1 + �2,k1 + k2,t� =
ei��1+�2�t−i�k1+k2�·r

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�

��1

�q,Q���1
1
�Q��

�� · E2���2
�q,Q���2
2

�Q��
�g
�BO��q,Q��gv�Q��� · E1���1

�q,Q���1
1
�Q��
��2

�q,Q���2
2
�Q���

���g
�BO��q,Q��gv�Q�� . �4.6�

From the identification of the l component of the polarization just established and the definition of the second-order optical
susceptibility,

Pl��1 + �2,k1 + k2,t� = �
m,n

�lmn��1 + �2�E1,m�t�E2,n�t� , �4.7�

if Ef ,p stands for the p component of the f field, we obtain
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�lmn��1 + �2� =

��2

�q,Q���2
2
�Q���l��g

�BO��q,Q��gv�Q��

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�

�g

�BO��q,Q��gv�Q���m���1
�q,Q���1
1

�Q��

�
��1
�q,Q���1
1

�Q���n���2
�q,Q���2
2

�Q�� . �4.8�

As long as the perturbation induced by the surface electro-
static field on the adsorbed molecule is weak enough,
�lmn��1+�2� can be expressed from the perturbative expres-
sions of the energies and molecular states given by Eqs. �2.7�
and �2.8�. It provides the basic expression which enables us
to discuss the peculiar role played by the surface field on a
particular second-order process. From the previous evalua-
tion, we have all the required informations to evaluate the
various contributions of �lmn��1+�2�.

At this stage, we would like to stress the influence of the
substrate electrostatic field on the nonlinear optical suscepti-
bility associated to a sum-frequency generation process. In
fact, this field modifies simultaneously the electronic ener-
gies and the vibrational frequencies, as well as the Franck-
Condon factors, because of the conformational changes re-
sulting from the different equilibrium positions of the normal
modes in presence of the electrostatic field. To discuss the
various additional contributions to the nonlinear optical sus-
ceptibility resulting of the presence of the substrate field, we
will introduce in the following a partition of �lmn��1+�2� in
terms of the different additional processes induced by the
electrostatic field.

In the following, we will consider successively the homo-
geneous and the inhomogeneous cases. To this end, we show
in Fig. 2, the vibrational states which participate to the dy-
namics on account of our approximation, implying that the
quasi-isoenergetic states give the dominant contribution in
the perturbation expansion.

We first consider the case of an homogeneous electrostatic
field. Therefore, Cij

�s��Q� is not anymore Q dependent and
can be taken arbitrarily at Q�0�, the minimum of the potential
surface energy. In the Condon approximation, the various
matrix elements can be factorized. In the general case, the
perturbed vibrational states and their corresponding frequen-
cies can be expressed in terms of the previous unperturbed
vibrational states associated with the displaced equilibrium
positions �Qn

�0� and their corresponding frequency shifts
��n. From the evaluation of �lmn

hom��1+�2� done in the first
part of Appendix C, we are able to discuss the contributions
introduced by the homogeneous electrostatic field in the

nonlinear susceptibility of the sum-frequency process. The
contributions to �lmn

hom��1+�2� can be decomposed first into a
zeroth-order part �lmn

�0�hom��1+�2� given by

TABLE I. Description of the various pathways entering in the evaluation of the sum-frequency signal
induced on the adsorbed molecule and generating the contributions to 	�2��t�.

G�t−�2� LV��2� G��2−�1� LV��1� 	�ti�

gv�2
2 gv�2
2 gv�2
2 gv�1
1 gv�1
1 gv�1
1 gv�1
1 gvgv gvgv
�2
2gv �2
2gv �2
2gv �1
1gv �1
1gv �1
1gv �1
1gv gvgv

FIG. 2. We show the dynamical processes giving the main con-
tributions to the sum-frequency process in the unperturbed elec-
tronic configurations. Also, the lowest vibronic states of the ground
electronic configuration are not modified by the electrostatic field of
the substrate surface.
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�lmn
�0�hom��1 + �2� =

1

�Egv
�BO��Q� − E�1
1

�BO��Q� + 
�1��Egv
�BO��Q� − E�2
2

�BO��Q� + 
�1 + 
�2�

��2

�BO��q,Q���l��g
�BO��q,Q��
�g

�BO��q,Q��

��m��e1

�BO��q,Q��
�e1

�BO��q,Q���n��e2

�BO��q,Q��
�e2
2
�Q − Qe2

�0����gv�Q − Qg
�0���
�gv�Q − Qg

�0����e1
1
�Q − Qe1

�0���

�
�e1
1
�Q − Qe1

�0����e2
2
�Q − Qe2

�0��� �4.9�

and generated by the induced dipole moment between ground and excited states or between the excited states themselves.
Notice that in the limit of negligible homogeneous electrostatic field substrate, the eigenenergies E�j
j

→Eejnj
for j=1,2, and

we recover the usual sum-frequency optical susceptibility. Next, we get as expected a contribution induced by the presence of
the substrate electrostatic field �IDM� on the induced dipole moment and corresponding to

�lmn
�IDM�hom��1 + �2� =


�g
�BO��q,Q���m��e1

�BO��q,Q��

�Egv
�BO��Q� − E�1
1

�BO��Q� + 
�1��Egv
�BO��Q� − E�2
2

�BO��Q� + 
�1 + 
�2�
�
�e2

�BO��q,Q���l��g
�BO��q,Q��

�
�s

Cge1

�s��
�s

�

Ee1

�BO��Q� − Eg
�BO��Q�


�g
�BO��q,Q���n��e2

�BO��q,Q�� +
�s

Ce1e2

�s���s
�

Ee2

�BO��Q� − Ee1

�BO��Q�

�e1

�BO��q,Q���l��g
�BO��q,Q��

�
�e1

�BO��q,Q���n��e2

�BO��q,Q��	
�e2
2
�Q − Qe2

�0����gv�Q − Qg
�0���
�gv�Q − Qg

�0����e1
1
�Q − Qe1

�0���

�
�e1
1
�Q − Qe1

�0����e2
2
�Q − Qe2

�0��� . �4.10�

Finally, we have an additional contribution �PDM� which only exists if the adsorbate has a permanent dipole moment in the
electronic excited states e1 and e2, in presence of the substrate electrostatic field. It takes the form

�lmn
�PDM�hom��1 + �2� =


�e2

�BO��q,Q���l��g
�BO��q,Q��

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�
� �s

Cge1

�s� �s

Ee1

�BO��Q� − Eg
�BO��Q�


�g
�BO��q,Q��

��m��g
�BO��q,Q��
�e1

�BO��q,Q���n��e2

�BO��q,Q�� + 
�g
�BO��q,Q���m��e1

�BO��q,Q��
�e1

�BO��q,Q���n

���e1

�BO��q,Q��
�s

Ce1e2

�s� �s

Ee2

�BO��Q� − Ee1

�BO��Q�
	
�e2
2

�Q − Qe2

�0����gv�Q − Qg
�0���
�gv�Q − Qg

�0����e1
1
�Q − Qe1

�0���

�
�e1
1
�Q − Qe1

�0����e2
2
�Q − Qe2

�0��� . �4.11�

Of course, there are many other high-order contributing
terms which are not considered here. This leaves the optical
susceptibility for sum-frequency generation into the form

�lmn
hom��1 + �2� = �lmn

�0�hom��1 + �2� + �lmn
�IDM�hom��1 + �2�

+ �lmn
�PDM�hom��1 + �2� + ¯ . �4.12�

Therefore, from Eqs. �3.21�–�3.23� as well as Eqs.
�4.9�–�4.11�, we see that the influence of the electrostatic
field is twofold. It shifts the electronic transition energies
through the modifications of the electronic energies in the
various electronic configurations and alters the efficiency of
the dynamical process by introducing additional contribu-
tions which can enhance or decrease significantly the optical
response associated to the sum-frequency generation process.

We come now to the more intricate case of an inhomoge-
neous electrostatic field. Here, because of the inhomogene-
ities of the field, the Q dependence needs to be preserved and

will be introduced explicitly for the sake of simplicity. For
our purpose, we assume a weak dependence so that

Cij
�s��Q� = �ij

�s��0��Q�0�� + �ij
�s��1��Q�0��Q +

1

2
�ij

�s��2��Q�0��Q2

+ ¯ . �4.13�

As a consequence, we will have displacements and distor-
sions of the oscillators as discussed previously. Then, starting
from Eq. �4.8�, the second-order optical susceptibility clearly
shows that, due to the presence of the field inhomogeneity,
the couplings of the vibrational states pertaining to different
electronic configurations strongly modify the optical suscep-
tibility with respect to the homogeneous case. Then the
second-order optical susceptibility for a sum-frequency pro-
cess acting on adsorbates sticking on a surface with an inho-
mogeneous electrostatic field can be decomposed as
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�lmn
inh ��1 + �2� = �lmn

�0�inh��1 + �2� + �lmn
�IDM�inh��1 + �2�

+ �lmn
�PDM�inh��1 + �2� + ¯ , �4.14�

where the zeroth-order term is straightforwardly obtained
from the homogeneous case

�lmn
�0�inh��1 + �2� = �lmn

�0�hom��1 + �2� �4.15�

if the change of notation Cij
�s�→�ij

�s��0��Q0� is introduced.
Then the next term associated with the presence of the sur-
face electrostatic field corresponds to

�lmn
�IDM�inh��1 + �2� =


�g
�BO��q,Q��gv�Q − Qg

�0����m��e1

�BO��q,Q��e1
1
�Q − Qe1

�0� − �Qe1

�0�,�e1
+ ��e1

��

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�
�
�e1

�BO��q,Q��e1
1
�Q − Qe1

�0�

− �Qe1

�0�,�e1
+ ��e1

���n��e2

�BO��q,Q��e2,
2
�Q − Qe2

�0� − �Qe2

�0�,�e2
+ ��e2

��
�e1

�BO��q,Q��e2
2
�Q − Qe2

�0�

− �Qe2

�0�,�e2
+ ��e2

���l

�s
Ce1e2

�s�+
�Q��s

�

Ee2

�BO��Q� − Ee1

�BO��Q�
��g

�BO��q,Q��gv�Q − Qg
�0��� + 
�g

�BO��q,Q��e1
1
�Q − Qe1

�0�

− �Qe1

�0�,�e1
+ ��e1

���n

�s
Cge1

�s�+
�Q��s

�

Ee1

�BO��Q� − Eg
�BO��Q�

��e2

�BO��q,Q��e2
2
�Q − Qe2

�0� − �Qe2

�0�,�e2
+ ��e2

��

�
�e2

�BO��q,Q��e2
2
�Q − Qe2

�0� − �Qe2

�0�,�e2
+ ��e2

���l��g
�BO��q,Q��gv�Q − Qg

�0���	 . �4.16�

Finally, the contribution induced by the existence of permanent dipole moments takes the form

�lmn
�PDM�inh��1 + �2� =


�e2

�BO��q,Q��e2
2
�Q − Qe2

�0� − �Qe2

�0�,�e2
+ ��e2

���l��g
�BO��q,Q��gv�Q − Qg

�0���

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�
�
�g

�BO��q,Q��gv�Q

− Qg
�0����m

�s
Cge1

�s� �Q��s

Ee1

�BO��Q� − Eg
�BO��Q�

��g
�BO��q,Q��e1
1

�Q − Qe1

�0� − �Qe1

�0�,�e1
+ ��e1

��
�e1

�BO��q,Q��e1
1
�Q − Qe1

�0�

− �Qe1

�0�,�e1
+ ��e1

���n��e2

�BO��q,Q��e2
2
�Q − Qe2

�0� − �Qe2

�0�,�e2
+ ��e2

�� + 
�g
�BO��q,Q��gv�Q − Qg

�0���

��m��e1

�BO��q,Q��e1
1
�Q − Qe1

�0� − �Qe1

�0�,�e1
+ ��e1

��
�e1

�BO��q,Q��e1
1
�Q − Qe1

�0� − �Qe1

�0�,�e1
+ ��e1

��

��n

�s
Ce1e2

�s� �Q��s

Ee2

�BO��Q� − Ee1

�BO��Q�
��e1

�BO��q,Q��e2
2
�Q − Qe2

�0� − �Qe2

�0�,�e2
+ ��e2

��	 . �4.17�

Expressions �4.16� and �4.17� describe the contributions of
the induced transition dipole moment �lmn

�IDM�inh��1+�2� and
permanent dipole moment �lmn

�PDM�inh��1+�2� to the nonlinear
optical susceptibility for sum-frequency generation associ-
ated with the inhomogeneous electrostatic field. We note that
the main difference with respect to the homogeneous case
lies on the many-phonon transitions resulting from the Q
dependence of the substrate field and the modifications of the
electronic potential surface which imply distorsions of the
adsorbate structure.

V. NUMERICAL SIMULATIONS AND DISCUSSION

In the present section, we will perform some numerical
simulations on the formal results previously established. The

cases of an homogeneous and next of an inhomogeneous
substrate electrostatic field will be analyzed successively. For
this purpose, we first introduce the main physical parameters
which characterize the molecular adsorbate sticked on the
substrate surface.

The electronic energies of the ground �g� and excited �e1�
and �e2� configurations correspond to 0, 10 000, and
16 500 cm−1, respectively. The vibronic levels participating
to the sum-frequency signal are �g0�, �e11�, and �e20� and
their corresponding linewidths are given by �g0g0g0g0=0,
�e11e11e11e11=10 cm−1, and �e20e20e20e20=15 cm−1. Since we
are dealing with the most general case of displaced and dis-
torted oscillators, the equilibrium positions of the normal co-
ordinate are set to Qg

�0�=1, Qe1

�0�=1.2, and Qe2

�0�=1.5 in the
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three different electronic configurations with their corre-
sponding frequencies �g=300, �e1

=250, and �e2
=220 cm−1. Also, the constant 
 and the reduced mass M of
the mode under investigation are set arbitrarily equal to 1
and 0.01, respectively. To deeply analyze the influence of the
substrate electrostatic field, it is more convenient to adopt
resonant-nonresonant laser excitation conditions. To this end,
the first laser beam frequency �1 is tuned around the first
electronic transition, while the second laser beam frequency
is chosen strongly nonresonant by lower value at 6000 cm−1.
Then, only the n=0 vibrational level of the highest electronic
configurations will participate to the dynamics of the sum-
frequency process. Finally, the induced dipole moments are
chosen equal and the permanent dipole moments in the ex-
cited configurations are given by �gg=0.5�ge1

and �e1e1
=0.8�ge1

. Besides, the perturbation parameter in the higher
electronic configuration is fixed all along, at the value
�e1e2

�1� =−1.
We first discuss the results presented in Fig. 3 showing the

spectrum ISFG
�0� ��1� of the sum-frequency signal as a function

of the laser frequency �1 for the case of an homogeneous
substrate electrostatic field. This spectrum is related to the
nonlinear susceptibility of the sum-frequency process by the
relation

ISFG
�0� ��1 + �2� = ��lmn

�0�hom��1 + �2��2 �5.1�

and has been drawn for different magnitudes of the pertur-
bation induced by the substrate electrostatic field. Each spec-
trum is characterized by two resonances corresponding to the
cases where either the laser frequency �1 is resonant with the
first vibronic transition �g0�→ �e11� or the sum of the laser
frequencies �1+�2 is resonant with the �g0�→ �e20� transi-
tion. For increasing values of �gej

�0� we observe an overall
decrease of the spectrum. In addition, the resonance around
10 460 cm−1 is weakly affected because of the small magni-
tude of the perturbation �e1e2

�0� acting on the upper configura-
tion. Concerning the variations of the resonance around
10 220 cm−1, we note a redshift of the peak resonance and a

decrease of their corresponding amplitude with the increase
of ��gej

�0��. As previously discussed, these observations reflect
the change of just the resonance frequencies under the influ-
ence of the perturbating electrostatic field. At this stage, it is
important to stress that the variations observed on the spectra
strongly depend on the initial equilibrium positions of the
normal coordinate in the various electronic configurations as
well as on the sign and magnitude of the perturbating field
terms. It means that different variation patterns could be ob-
tained as well, revealing the high sensitivity of the spectrum
to the substrate electrostatic field effect. We come now to the
influence of the perturbating substrate field on the additional
contribution generated by the induced transition dipole mo-
ment. The associated variations can be expressed by the re-
lation

�ISFG
�IDM���1 + �2� = ��lmn

�0�hom��1 + �2� + �lmn
�IDM�hom��1 + �2��2

− ISFG
�0� ��1 + �2� , �5.2�

and the values of the perturbating substrate field chosen for
the simulations are identical to the ones of Fig. 3. If the
substrate electrostatic field cancels, �ISFG

�IDM���1+�2�=0.
When the substrate field is acting on the adsorbate, we re-
cover the same resonance structure as in the case of the spec-
tra of the sum-frequency signal, except that the contributions
are negative. This implies for the molecular adsorbate char-
acterized by the set of physical parameters chosen here that
the presence of the substrate electrostatic field is unfavorable
to the realization of the sum-frequency processes. Of course,
for different molecular adsorbates, the opposite situation can
be found as well, depending on the sign of �ge1

�0� . We recover
the high sensitivity of this additional contribution induced by
the perturbating field, and the additional contribution
�ISFG

�IDM���1+�2� increases with the increase of the electro-
static field. Notice that while arbitrary units have been used
to represent the spectra of the sum-frequency signal, the
same scaling is adopted to represent the various contribu-
tions to the total sum-frequency signal intensity. This is a
required condition to make a comparative analysis of the
various terms shown in Figs. 4 and 5. Finally, we discuss the
contribution induced by the substrate electrostatic field
through the permanent dipole moment for the homogeneous
case. It corresponds to

�ISFG
�PDM���1 + �2� = ��lmn

�0�hom��1 + �2� + �lmn
�IDM�hom��1 + �2�

+ �lmn
�PDM�hom��1 + �2��2 − ISFG

�0� ��1 + �2�

− �ISFG
�IDM���1 + �2� . �5.3�

A similar resonance structure is recovered because the three
terms �lmn

�0�hom��1+�2�, �lmn
�IDM�hom��1+�2�, and �lmn

�PDM�hom��1

+�2� have the same resonant factor, as can be seen from
their respective expressions �4.9�–�4.11�. Also, the influence
of the substrate field is comparable to the one resulting from
the induced transition dipole moment. It shows a redshift and
an increase of the resonance magnitude with the increase of
the electrostatic field strength. In the limit of zero-field am-
plitude, this contribution goes almost linearly to zero within
our approximation, and the weakness of this contribution is

FIG. 3. We show the spectra ISFG
�0� ��1� of the sum-frequency

signal as a function of the laser frequency �1 for the case of an
homogeneous electrostatic field substrate. Four different values of
�ge1

�0� which characterize the perturbation induced by the substrate

electrostatic field have been considered, say, �ge1

�0� =0 �solid line�, −8
�dotted line�, −20 �dashed line�, and −32 �dash-dotted line�. The
values of the other physical parameters are given in the text.
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just the consequence of the respective values chosen for the
induced transition and permanent dipole moments. As men-
tioned in the discussion of the previous term �ISFG

�IDM���1

+�2�, here again �ISFG
�PDM���1+�2� is negative and the pres-

ence of the substrate electrostatic field tends to decrease the
sum-frequency signal intensity. No general conclusion can be
drawn since this is just a matter of a particular model. De-
pending on the relative positions of the electronic energy
curves and sign of the perturbation parameter �ge1

�0� , the op-
posite situation could be obtained as well. However, for a
given configuration, the comparative analysis and sensitivity
of the substrate field are relevant.

We still have to discuss the case of an inhomogeneous
substrate electrostatic field. From previous analysis devel-
oped in Sec. III, we have seen that in the inhomogeneous
case, the perturbating electrostatic field can displace and dis-
tort the electronic energy curves of the various configura-
tions. These changes which are expressed by Eqs. �3.17� and
�3.23�, can be approximated to lower order by

�Qej

�0� = − �gej

�1�/M�ej

�0�2
, j = 1,2, �5.4�

which is a first-order term while

��ej
= �gej

�2�/2M�ej

�0�, j = 1,2, �5.5�

is a second-order term which is arbitrarily chosen as �gej

�2�

=���gej

�1�� because �gej

�1� �0. Now the Franck-Condon factors
are deeply altered because of the Q dependence of the elec-
tronic partial charge. Assuming the Condon approximation
and a linear Q dependence of the interaction term, the addi-
tional contributions �lmn

�IDM�inh��1+�2� and �lmn
�PDM�inh��1+�2�

have been evaluated and are given explicitly in the last part
of Appendix C. From their expressions we emphasize, in Fig.
6, the influence of the substrate electrostatic field inhomoge-
neity on the spectra of the sum-frequency signal. All the
values of the physical parameters are kept identical to the
homogeneous case except that we will consider here the con-
tribution associated with the inhomogeneity as described in
relation �4.16�. In order to compare the influence of the in-
homogeneous term with respect to the homogeneous one
previously analyzed, we set �ge1

�0� =�e1e2

�0� =0. Also, the values

of �ge1

�1� , the inhomogeneous linear Q term of Cge1

�s� �Q�, are

chosen in a similar range as previously considered for �ge1

�0� in
the homogeneous contribution. This is required to make a
comparable analysis between the two different situations.
Like previously observed for the homogeneous case, we ob-
serve a redshift of the sum-frequency spectrum which in-
creases with �ge1

�1� . Even if the magnitude of the resonance
lines decreases more slowly than for the homogeneous case,
there is no drastic difference. Next, in Fig. 7, we show the
additional contribution �ISFG

�IDM���1+�2� induced by the sub-
strate electrostatic field through the induced transition dipole
moment for the inhomogeneous case. Two points are relevant
here. Again, we note that a redshift is observed in presence
of field inhomogeneities. In addition, the magnitude of
�ISFG

�IDM���1+�2� is increased roughly by a factor of 4. Fi-
nally, in the last Fig. 8, we represent the frequency depen-
dence of �ISFG

�PDM���1+�2� associated with the presence of
permanent dipole moments. Here a remarkable feature is the

FIG. 4. We represent the additional contribution �ISFG
�IDM���1

+�2� induced by the substrate electrostatic field through the in-
duced transition dipole moment for the homogeneous case. Again,
the values of �ge1

�0� are set equal to 0 �solid line�, −8 �dotted line�,
−20 �dashed line�, and −32 �dash-dotted line�. While the variations
of ISFG

�0� ��1� have been done in Fig. 3 in arbitrary units, the present
variations are done using the same scaling.

FIG. 5. We exhibit the additional contribution �ISFG
�PDM���1+�2�

induced by the substrate electrostatic field through the permanent
dipole moment for the homogeneous case. The values of �ge1

�0� are
still set equal to 0 �solid line�, −8 �dotted line�, −20 �dashed line�,
and −32 �dash-dotted line�, and the frequency dependence is again
done with the same scaling adopted in Figs. 3 and 4.

FIG. 6. We show the spectra ISFG
�0� ��1� of the sum-frequency

signal as a function of the laser frequency �1 for the case of an
inhomogeneous substrate electrostatic field. Like previously, four
different values of �ge1

�0� =�ge1

�1� have been considered—say, �ge1

�0� =0
�solid line�, −8 �dotted line�, −20 �dashed line�, and −32 �dash-
dotted line�. The values of the other physical parameters are given
in the text. The frequency dependence is again done with the same
scaling adopted from Figs. 3–5.
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change of sign of the contribution �ISFG
�PDM���1+�2�, meaning

that while for the homogeneous case the permanent dipole
moments tend to decrease the sum-frequency spectrum, on
the contrary the presence of field inhomogeneities tends to
increase the sum-frequency spectrum in presence of perma-
nent dipole moments. Of course, as discussed before, these
variations are specific to a particular electronic structure.
However, the differences obtained for the homogeneous and
inhomogeneous cases in the same model demonstrate the
peculiar effects and the sensitivity of the substrate electro-
static field. It can be noted that for higher-order processes
these differences could still be enhanced because of the mul-
tiplicative structure of the Frank-Condon factors in the ex-
pression of the higher-order nonlinear susceptibility and also
because the inhomogeneities of the electrostatic field can in-
duce large values of the parameters �ij

�n�.

VI. CONCLUSION

In this work, we took advantage of the work initiated by
Cho on the correlation existing between the electronic distri-
bution and the molecular structure changes when a molecular
adsorbate undergoes the electrostatic field of the substrate to

describe and next evaluate the influence of the molecular
structure distorsions on the nonlinear optical response asso-
ciated to a sum-frequency generation process. Of course, any
other second-order process can be obtained, as well. From
our analytical description, we have described the role of the
frequency changes and equilibrium displacements of the po-
tential energy surfaces induced by the substrate surface elec-
trostatic field on the nonlinear susceptibility. Two different
cases have been stressed. For the homogeneous electrostatic
field case, we have shown that the perturbating electrostatic
field generates, through the induced dipole moment, addi-
tional contributions to the nonlinear susceptibility. Besides,
we obtain supplementary contributions which only exist if
the molecule has permanent dipole moments in the excited
electronic configurations. In addition, the electrostatic field
shifts the electronic energies and introduces internal cou-
plings among the vibronic states which are weighted by the
Franck-Condon factors associated to the unperturbed mo-
lecular structure of the adsorbate participating to the sum-
frequency process. Finally, owing to the inhomogeneous sub-
strate electrostatic field case, while previous observations are
still pertinent, we have a strong modification of the couplings
in the vibronic structure which comes from the Q depen-
dence of the effective charge operator. Here, the coupling
strengths induced by the electrostatic substrate field are re-
distributed through the matrix elements of the various pow-
ers of the normal mode coordinate operator which is a sig-
nature of the field inhomogeneity. Also, the coupling
strengths are weighted by the Franck-Condon factors of the
perturbed molecule, implying that they depend on the mo-
lecular structure modified by the substrate electrostatic field.

APPENDIX A

Here we evaluate the diagonal �n= p� and nondiagonal
�n�p� contributions of the last term in Eq. �2.12�. To this
end, we first note that T�Q� is a second-order differential
operator �−
2 /2M���2 /�Q2� so that

T�Q���p
�BO��q,Q����pi�Q��

= −

2

2M
�� �2

�Q2 ��p
�BO��q,Q�����pi�Q��

+ 2� �

�Q
��p

�BO��q,Q���� �

�Q
��pi�Q���

+ ��p
�BO��q,Q��

�� �2

�Q2 ��pi�Q���	 , �A1�

and a similar expression is true for the nondiagonal terms.
We then get

FIG. 7. We represent the additional contribution �ISFG
�IDM���1

+�2� induced by the substrate electrostatic field through the in-
duced transition dipole moment for the inhomogeneous case. Again,
the values of �ge1

�1� are set equal to 0 �solid line�, −8 �dotted line�,
−20 �dashed line�, and −32 �dash-dotted line�. The present varia-
tions are done using the same scaling used from Figs. 3–6.

FIG. 8. We exhibit the additional contribution �ISFG
�PDM���1+�2�

induced by the substrate electrostatic field through the permanent
dipole moment for the inhomogeneous case. The values of �ge1

�1� are
still set equal to 0 �solid line�, −8 �dotted line�, −20 �dashed line�,
and −32 �dash-dotted line�. The frequency dependence is again
done with the same scaling adopted in Figs. 3–7.
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�Ep
�BO��Q� − Ei���pi�Q�� + �

n


�p
�BO��q,Q���

s

ĉs�Q��s��n
�BO��q,Q����ni�Q�� + 
�p

�BO��q,Q����−

2

2M

�2

�Q2 ��p
�BO��q,Q�����pi�Q��

−

2

M
� �

�Q
��p

�BO��q,Q���� �

�Q
��pi�Q��� + ��p

�BO��q,Q���−

2

2M

�2

�Q2 ��pi�Q���	 + 
�p
�BO��q,Q��V�Q���p

�BO��q,Q����pi�Q��

+ �
n�p


�p
�BO��q,Q����−


2

2M

�2

�Q2 ��n
�BO��q,Q�����ni�Q�� −


2

M
� �

�Q
��n

�BO��q,Q���� �

�Q
��ni�Q��� + ��n

�BO��q,Q��

��−

2

2M

�2

�Q2 ��ni�Q���	 + �
n�p


�p
�BO��q,Q��V�Q���n

�BO��q,Q����ni�Q�� = 0. �A2�

Note that the term


�p
�BO��q,Q���n

�BO��q,Q���−

2

2M

�2

�Q2���ni�Q��

cancels for n�p. Next, taking advantage of the very weak Q
dependence of the electronic part of the molecular state we
have, on account of the adiabatic approximation,


�p
�BO��q,Q��V�Q���p

�BO��q,Q����pi�Q�� � V�Q���pi�Q��

� �
n�p


�p
�BO��q,Q��V�Q���n

�BO��q,Q����ni�Q�� � 0.

�A3�

In addition, it is well known that the average value of the
momentum operator for an electronic bound state vanishes,
so that

−

2

M

�p

�BO��q,Q��
�

�Q
��p

�BO��q,Q�� = 0. �A4�

This leaves Eq. �2.11� into the more convenient form

�Ep
�BO��Q� − Ei + �

s

Cpp
�s��Q��s + V�Q� + T�Q�

+ 
�p
�BO��q,Q��T�Q���p

�BO��q,Q��	��pi�Q��

+ �
n�p

��
s

Cpn
�s��Q��s + 
�p

�BO��q,Q��T�Q���n
�BO��q,Q��

−

2

M
�
�p

�BO��q,Q��
�

�Q
��n

�BO��q,Q��� �

�Q	��ni�Q��

= 0. �A5�

APPENDIX B

The eigenenergies and their corresponding eigenfunctions
of the unperturbed harmonic oscillator described in Eq.
�3.20� have the usual forms

En

�0� = En

�BO��Qn
�0�� + V�Qn

�0��

+ 
�n
�BO��q,Qn

�0���T�Q���n
�BO��q,Qn

�0���

+ �
 +
1

2
�
�n

�0� + i
�n


2
,

�n

�0��Q − Qn

�0�� = � 1

2

!
� 


M�n
�0��
	1/2�M�n

�0�

�

�1/4

� �M�n
�0�



�Q − Qn

�0�� −
d

dQ
	


�e−�M�n
�0�/2
��Q − Qn

�0��2
, �B1�

where we have introduced the imaginary part which accounts
for the finite lifetime of the vibronic state. For the perturbed
harmonic oscillator described by Eq. �3.21�, we have in turn

En
 = En
�BO��Qn

�0� + �Qn
�0�� + V�Qn

�0� + �Qn
�0��

+ 
�n
�BO��q,Qn

�0� + �Qn
�0���T�Q���n

�BO��q,Qn
�0� + �Qn

�0���

+ �
s

Cnn
�s��Qn

�0� + �Qn
�0���s

+ �
s,u

Kn
�su��Qn

�0� + �Qn
�0���s�u + �
 +

1

2
�
�n + i

�n


2
,

�n
�Q − Qn
�0� − �Qn

�0��

= � 1

2

!
� 


M�n
�
	1/2�M�n

�

�1/4�M�n



�Q − Qn

�0�

− �Qn
�0�� −

d

dQ
	


�e−�M�n/2
��Q − Qn
�0� − �Qn

�0��2
, �B2�

where �n stands for the vibrational frequency of the har-
monic oscillator. In addition, for a given mode, its frequency
change and displacement of the equilibrium position induced
by the electrostatic field are interdependent. This dependence
is expressed by the relation
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��n �
1

2M�n
�0�

�2

�Q2�1 + �Qn
�0� �

�Q
	�
�n

�BO��q,Q���
s

ĉs�Q��s��n
�BO��q,Q��

+ �
m�n


�n
�BO��q,Q���s

ĉs�Q��s��m
�BO��q,Q��
�m

�BO��q,Q���u
ĉu�Q��u��n

�BO��q,Q��

En
�BO��Q� − Em

�BO��Q�
�

Q=Qn
�0�

, �B3�

which is, to lower order, just the linearized relation between displacement and frequency change. Of course, to higher orders
in Q, which are required if the perturbating electrostatic field increases, this dependence becomes more intricate.

APPENDIX C

For an homogeneous field, the situation is quite simple because �Qn
�0�=��n=0, and we get

�lmn
hom��1 + �2� =


��2
�q,Q���l��g

�BO��q,Q��
�g
�BO��q,Q���m���1

�q,Q��
��1
�q,Q���n���2

�q,Q��

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�

��2
2

�Q���gv�Q��

�
�gv�Q����1
1
�Q��
��1
1

�Q����2
2
�Q�� . �C1�

In the weak-perturbation limit, electronic eigenstates and eigenenergies can be introduced according Eqs. �2.7� and �2.8�. Also,
because the vibrational states of the electronic configurations �1 and �2 have been evaluated exactly from Eq. �3.21�, we do not
need their expressions in terms of the unperturbed vibrational states. They can be expressed straightforwardly as ���1
1

�Q��
= ��e1
1

�Q−Qe1

�0� ,�e1
�� and ���2
2

�Q��= ��e1
2
�Q−Qe2

�0� ,�e2
��. Therefore, we get the final expression for �lmn

hom��1+�2� in the form

�lmn
hom��1 + �2� =

1

�Egv
�BO��Q� − E�1
1

�Q� + 
�1��Egv
�BO��Q� − E�2
2

�Q� + 
�1 + 
�2�

��
�e2

�BO��q,Q���l��g
�BO��q,Q�� +

�s
Ce1e2

�s� ��s
�

Ee2

�BO��Q� − Ee1

�BO��Q�

�e1

�BO��q,Q���l��g
�BO��q,Q��	

��
�g
�BO��q,Q���m��e1

�BO��q,Q�� +
�s

Cge1

�s� �s

Ee1

�BO��Q� − Eg
�BO��Q�


�g
�BO��q,Q���m��g

�BO��q,Q��	
��
�e1

�BO��q,Q���n��e2

�BO��q,Q�� + 
�e1

�BO��q,Q���n��e1

�BO��q,Q��
�s

Ce1e2

�s� �s

Ee2

�BO��Q� − Ee1

�BO��Q�

+
�s

Cge1

�s� ��s
�

Ee1

�BO��Q� − Eg
�BO��Q�


�g
�BO��q,Q���n��e2

�BO��q,Q�� +
�s

Cge1

�s� ��s
�

Ee1

�BO��Q� − Eg
�BO��Q�


�g
�BO��q,Q���n��e1

�BO��q,Q��

�
�s

Ce1e2

�s� �s

Ee2

�BO��Q� − Ee1

�BO��Q�
	
�e2
2

�Q − Qe2

�0�,�e2
���gv�Q − Qg

�0���
�gv�Q − Qg
�0����e1
1

�Q − Qe1

�0��,��e1
��

�
�e1
1
�Q − Qe1

�0��,�e1
���e2
2

�Q − Qe2

�0�,��e2
�� , �C2�

because, for the present purpose, the electronic eigenstates
reduce to


��2
�q,Q�� = 
�e2

�BO��q,Q�� +
�s

Ce1e2

�s� ��s
�

Ee2

�BO��Q� − Ee1

�BO��Q�

�
�e1

�BO��q,Q�� ,

���1
�q,Q�� = ��e1

�BO��q,Q�� +
�s

Cge1

�s� �s

Ee1

�BO��Q� − Eg
�BO��Q�

���g
�BO��q,Q�� . �C3�

As long as perturbation expansion is valid, relation �C2� de-
scribes the adsorbate optical susceptibility for sum-frequency
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generation in presence of an homogeneous substrate electro-
static field.

Owing to the inhomogeneous case, with the restriction
previously introduced for the perturbational expansion, say,

the lowest vibronic ground states are not perturbed and the
lowest vibronic states in the excited electronic configurations
are coupled to the isoenergetic vibronic states of the nearest
lower electronic configuration only, we have


��1
�q,Q�� = 
�e1

�BO��q,Q�� + �
s

�s
�

E�1

�BO��Q� − Eg
�BO��Q�


�g
�BO��q,Q��Cge1

�s� +�Q�

���2
�q,Q�� = ��e2

�BO��q,Q�� + �
s

�s

E�2

�BO��Q� − E�1

�BO��Q�
Ce1e2

�s� �Q���e1

�BO��q,Q�� . �C4�

Therefore, the various matrix elements of the dipole moment can be expressed as


��2
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2
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As long as the Condon approximation is valid, the various contributions to the second-order optical susceptibility can be
obtained similarly, except that the Franck-Condon factors are now replaced by the matrix elements of the various powers of the
normal coordinate operator, so that
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Finally, we give the expressions of �lmn
�IDM�inh��1+�2� and �lmn

�PDM�inh��1+�2� for the case of an inhomogeneous field on account
of the Q dependence modelized by the relation �4.13�
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and
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�PDM�inh��1 + �2� =
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