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Quadrupole transitions near an interface: General theory and application to an atom
inside a planar cavity
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Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as
quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of the
Green'’s function of Maxwell equations. The equivalence of both approaches is shown. General expressions are
applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary
dielectric constant. It is shown that in the case where the atom is close to the surface, the total decay rate is
inversely proportional to the fifth power of distance between an atom and a plane interface.
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I. INTRODUCTION

In recent years the goal of science now has been moving
from consideration of the fundamental properties of atoms to
controlling and changing these properties. It is well known
that decay rates of atoms can be changed in cavities [1].
Many investigations have been devoted to a description of
the cavity QED effects [2]. They mainly concentrated on the
allowed (dipole) transitions. The decay rates of dipole tran-
sitions were investigated in the vicinity of spherical, cylin-
der, cone, spheroid, aperture, and more complicated nano-
bodies [3,4].

However, the influence of environment on the forbidden
(quadrupole) transitions is also of great interest. First of all,
it can help one study the forbidden transitions. Second, with
the help of the forbidden transitions one can describe the
long-living states, which are, in turn, very important in many
applications (quantum computers, quantum information). Fi-
nally, the atoms or molecules with forbidden (quadrupole)
transitions can be used as detectors of field inhomogeneites.

The first experiment dealing with quadrupole transitions
near a plane interface was carried out not too along ago. The
influence of interface on the absorption of Cs 6 2§ o) 2D5 n
transition was studied [5-7]. As for the theoretical works,
there were very few analyses on this topic. In [8,9], the clas-
sical calculations of decay rates of quadrupole transitions
near the plane dielectric interface were performed. The quad-
rupole transitions near sphere and cylinder were considered
within both the classical and QED approaches, and it was
shown that both approaches gave identical results, as shown
in [10,11]. However, there was no exact proof of equivalence
between the classical and QED pictures.

The aim of this paper is to find expressions for the quad-
rupole decay rates and to prove their equivalence in an arbi-
trary environment. In Sec. II we derive expressions for the
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total decay rate of a Lorenz oscillator in arbitrary environ-
ment through the Green function of Maxwell equations. In
Sec. III we find the expressions for total decay rate of an
atom in arbitrary environment within the QED approach, and
show that they are the same as those in the classical ap-
proach. Then we apply general results to find expressions for
quadrupole decay rates for an atom placed in a planar cavity
(Sec. IV). This problem is very important for some experi-
ments on reflection spectroscopy in thin cells [12]. General
expressions for quadrupole decay rates in planar cavity are
investigated for the case of dielectric or metallic walls in
Sec. V.

II. CLASSICAL DESCRIPTION OF QUADRUPOLE
RADIATION IN ANY ENVIRONMENT

It is easy to show that within classical electrodynamics
the total rate of work performed by the field can be presented
in the form of [13]

d_E - f &rl(r,0) - E(r,0) (1)

dt
where J(r,7) and E(r,7) are the density of current and
strength of the electric field, respectively. This power repre-
sents a conversion of electromagnetic field into mechanical
or thermal energy. In quasimonochromatic cases we have
instead of Eq. (1) the following expression:

dE = ! Re f &r) (r,w) - E(r,w) (2)
dt 2
where w is the frequency, and the * denotes the complex
conjugation.
The electric field can be expressed through current with
the help of the retarded Green function:

Ei(r;w)=ifdBr'Gﬁ(r,r’;w)Jj(r’;w)- (3)
w
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Here and below the lower Latin subscripts denote Carte-
sian coordinates and are to be summed over when repeated.

The retarded Green function (3) is the solution of Helm-
holtz wave equation

2
V X[V X GR(r,r";w)] - (f) e(r)GR(r,r"; w)

2
—477( )15(r r') (4)
c

where &(r) stands for dielectric constant of environment, and
for simplicity we assume that the media are nonmagnetic and
nondispersive.

Substituting Eq. (3) in Eq. (2) the expression for power
can be presented in the form

————Im fd3 fd3r’Jf(r,w)G§(r,r’;w)Jj(r’;w).

)

To compare classical and quantum calculations it is con-
venient to consider stored energy as Ey=fiw. As a result the
expression for decay rate will take the following form:

1dE 1

class 3 s

Yiot E() O e Im fd%l‘fcpr’.]l-(r,w)
><G§-(r,r ;) (r' ;o). (6)

For the relative decay rate we will have, respectively,

lass ’
ot _ Im [ d [ &' T (r,0)GR (rr';0)J(r';w)
’Y;‘Lf(tl,g Im fd3rfd2r"li (r»w)Gl‘j (r»r 7(1))‘]/(1' ,(1))
)
where Hf?f)s and GR O(r,r'; ) are the total decay rate and the
Green function in unlform (free) space, respectively,

GEO(r,r ) = |:k2(5ij_ nn;) +(nn; - 5;)

L
r—r'|

1 ik . ,
X _ iklr-r | 8
(|r—r'|3 ||>} ®)

In Eq. (8), n=(r-r’)/(Jr—r’|) is the unit vector in the
direction from the atom to the observation point and k
=w/c is the wave vector of free space.

In the case of quadrupoles the current and charge densities
have the following form:

1
PQ(I') = ;2 QijViVj5(r -r'), )
i

) iw ,
JP0 =32 0,V;00r - x'), (10)
. l,j
where r is the radius vector of the observation point, r’ is the

radius vector of the quadrupole position, and Q;; is the trace-
less quadrupole momentum tensor

Qi f dr pO(r)(Brir; = 178). (11)
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FIG. 1. Some kinds of quadrupoles and the corresponding quad-
rupole momentum tensors.

As is known [13], any quadrupole can be built out of two
dipoles that are equal in amplitude and opposite in orienta-
tion. In Fig. 1 some quadrupoles and the related quadrupole
momenta are shown.

Now, after a substitution of Eq. (10) into Egs. (6) and (7)
and a partial integration, the final expressions for full and
relative decay rates will take the following form:

s 1
yﬁol‘,’“Q—EIm hm 0,0,V Gi(r.r';0), (12)

. * R
fssp 1M 1lim 0;;0uV;V|Gylr,r";0)
’}/;m _ r—r’
,}flau 0~
tot,0

Im lim Q;,0,V,V,G(r.r" ;) (13)

r—r’

In Egs. (12) and (13) and hereafter, V,V’ mean the dif-
ferentiation over r or r’, respectively. By calculating the
limit in Eq. (12) for the free-space Green function (8), we
obtain that the expression for quadrupole decay rate in free
space gets the following simple form:

lass. Q 2 14
’y;t)t 0 36Oﬁ | ( )
Substituting this expression into Eq. (13) we obtain the

following expression for relative quadrupole decay rate:
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class,0 Im lim Q; iOuVj V GR(r,r";w)
: 0

tot r—
=5 . (15)
lass,
Yior0 © kSE,.j |0,

Thus, to calculate quadrupole decay rates it is suffice to
determine the respective derivatives of the Green function of
the Helmholtz wave equation. This result was quite expected
as we know that electric quadrupoles interact with field gra-
dients.

III. QED DESCRIPTION OF QUADRUPOLE RADIATION
IN ANY ENVIRONMENT: LINEAR RESPONSE
THEORY

To calculate the quadrupole decay rate in arbitrary envi-
ronment we use the work of [14,15], but apply a minimal
coupling Hamiltonian with generalized Coulomb gauge

H ©_(pAm) +AMP)+ -
= r r
nt 2mcp P 2mc?

A%(r),

div(e(r)A(r)) = 0. (16)

Here p is the operator of electron linear momentum and

A(r) is the vector potential at the electron position r. The last
term in Eq. (16) gives no contribution to the calculation of
decay rates.

Assuming that the matrix element of the electron momen-
tum between initial |i) and final |f) states is zero, that is,
(fp|i)=0, the Hamiltonian (16) can be presented in the form

A i -

e
Hiy=— V,,')"'(rj_
2mc&r] ’

PPl (17)

where r’ is the vector of atom position.
In first order, the transition rate from initial atomic state
i) to a final state |f) is given by Fermi’s golden rule [16],

i \mc O d Jt

27 e \? if
Ryi= _<_> lim __DfD g rE (DA (r)|F)
X(FlA;(x! )|I>5(EF+Ef_E1_Ei)’ (18)

where Df,’f:(ﬂ[(rj—r’ )pilli) and capital letters denote eigen-
states of the rest of the total system under consideration,
neglecting its interaction with the atom of interest. Such
eigenstates might involve, and depend on, the coupling be-
tween the radiation field, other atoms (dielectric environ-
ment), and heat reservoir. A particular example of Hamil-
tonian H, of the total system can be found in [17]. For
simplicity we assume here that the rest of the total system is
in thermal equilibrium at a temperature T, p(])
=exp(—BE)) /2, exp(—BE,) with 8=(kgzT)™", is the probabil-
ity that the field is in state 1.

Expressing the & function of Eq. (18) in the integral form
we find
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1 e 2 . J d ” ’
RFE(_) lim ———- [ dKA,(r,)A;(r'.0))
r

mc/ . 0 o J
XDjfl’DJf,l, exp(iwpt), (19)

where wy=(E;~E;)/%. In Eq. (19) angular brackets indicate
an ensemble average and A(r,7) is an interaction picture op-
erator, evolving as if Eq. (16) were not present,

A(r,t) = exp(éH@)A(r,O)exp(— éHOI) . (20)

In Eq. (20), H, is the Hamiltonian of the whole system
including heat reservoir and without taking into account in-
teraction with the atom of interest.

Further, one can rewrite Eq. (19) as a Fourier component
of the two-point correlation function, G’;,(r,r’ i)
=(A(r,nA;(r",0))

1 e\ ..
Rﬁ:ﬁ E hm

/(?] r],

i—G (r,r";wo)DEDY . (21)

Jljl

As in our gauge E=—1/ cA, it is possible to show that Eq.
(21) can be presented as

1 2 J 9
Rﬂ=—<i) lim ——G (r,r’ wO)fo lf,,,

W \mw,/ rarﬂ

(22)

where Gi,(r,r’ ;1)=(E{(r,t)E;(r’,0)) is the two-point corre-
lation function of the electric field. It is convenient to express
it through the retarded Green function defined as

Gl ') = L ErDE (0D, (23)

In Eq. (23) square brackets denote a commutator and O(z) is
the Heaviside step function.
By applying the fluctuation-dissipation theorem [18] we
obtain
1/ e 2Im GR (r,r"; o))
R;=~— lim —— jf ’fl
ﬁ mwo r—r' &r 6’}’/ J [1 _exp( ﬁﬁwo)]

(24)

where
Gﬁ,(r,r';wo):J dt Gﬁ,(r,r’;t)exp(iwot) (25)

is the Fourier component of the retarded Green function of
electric field.

The temperature dependence, which appears in the form
of an occupation number, will be important only for (kzT)
=hw,. Since we are interested primarily in the atomic tran-
sition energies of the order of a Rydberg, we can set T
=0 K in this equation. As a result the quadrupole decay rate
will have the following form for 7=0:
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2( e J 9
Rf,:—( )hm ——-DiDY, Im G, (r.x" ;o).
: Mo/ .y O dr;,

(26)

As Gg,(r,r’ ; w) describes the response of the system, it is
possible to show that this function is the solution of Maxwell
equations [19]:

V X[V X G%(r,r’;w)] - (§>zs(r)Gek(r,r’;w)

—477( )15(1‘ r'). (27)

For quadrupole transitions with the changing of principal
or orbital quantum numbers the following identity is true:
“ox

i
J

Substituting the identity into Eq. (24) and using the defi-
nition of quadrupole momentum Q{;=e((3xixj—x25,»j)>ﬂ we
obtain the following expression for decay rates for arbitrary
quadrupole transitions:

d

> = b (28)

K= g7 m VVi00[ Im Gfrr'ian). (9

where Gfk(r,r’;wo) is the retarded Green function of Max-
well equation (27).

It is very important to remember that this expression is
valid for any media, including media with losses.

The quadrupole decay rate in free space is described by
the same expression but with free space of the Green func-
tion Gf};o(r,r’ ;wp), instead

1
RQO:IS_h hva 1040 Im Gi°(r,x" ;) =

5
o 2
o7 > 12ol"

(30)

r—r

As a result relative decay rates gets the following form:

11m V v QfQjJ,Z Im GA (v, 1" ; wp)
L=5 (31)
—LQ .
Rf kSEU |Qij|2

Comparing expression (31) with the classical expression
(15) one can see that they are identical. It means that both
classical and QED models are equivalent for description of
the total decay rate. Comparison of Egs. (30) and (14) re-
veals the difference by the factor of 4. The same difference
takes place in the case of dipole transitions and is related to
different definitions of dipole and quadrupole momenta in
classical and quantum mechanics.

One should also remember that these equations describe
the total decay rates. To find the radiative decay rates one
should use other approaches, which allows one to take into
account the radiation patterns of photons. It can be done, for
example, within the classical approach.
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FIG. 2. Geometry of the problem of quadrupole radiation of an
atom placed in a planar cavity.

IV. QUADRUPOLE DECAY RATES OF AN ATOM PLACED
IN A PLANAR CAVITY

To calculate the decay rates of quadrupole transition in an
atom placed between two dielectric half-spaces (Fig. 2) one
should find the electric Green function of Maxwell equation.
It is very important to ensure that this function should satisfy
the symmetry condition and the Lorenz reciprocity relation,
which follows from the definition (23). The approach sug-
gested in [20] allows one to build such a function. According
to [20] the Green function in layered media can be presented
in the following form (z>z7'):

K o
G(r,r';w) =J (zw)zezk(p—p G(k,2,7' ;)

Wlh LS E;(k,0,2)E; (- k,0,2')
q

GKk,z,z ;0) = — -
Bi & 1- r‘{2r‘{3e2’31L

q=ps

(32)
In (32), E l(k ®,2), qu( -k, w,z’) are the mode functions

Eq>1 (K, w,z) = é;l(k)e’ﬁl (=) 4 r‘{zé;I(k)e"Bl L)

Sk ,2') =&, (K)e P17+ rf3e] (K)ePr, (33)

and

1 N _
epi(k) = (5 Bk +k2) = &,(- k),

1
& (k)=k X 2=—-&,(- k). (34)

Here B;=\k; - kz—\s"a,kg—k%kozw/c) is the longitudinal
wave vector and r{,,r{; are the conventional Fresnel reflec-
tion coefficients
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? = M’ "?j: M (35)
B+ eiB; Bi+ B;

for p and s polarized waves, and L is the distance between
plane interfaces.

Now by substituting this function into Eq. (29) and inte-
grating it over angle ¢ in the x-y plane (l€X=cos go,lgy
=sin ¢) we obtain the expression of the quadrupole decay
rate.

In the case of the z-oriented quadrupole, that is in the case
when

-172 0 0
Q=0 0 -1/2 0 (36)
0 0 1

the decay rate in free space according to Eq. (30) gets the
following form:

150
0 0xzz
= 37
’yZL 60 ( )
and the expression for the relative decay rate has the follow-
ing form:

¢ 15 ” 1 = r,e?P)(1 = e?Przo
- vantctrsgen
Y/ 2k 0 (1 = rfyri;e™1%)

(38)

In the case of a single interface with [(L—zy)=s— ] we
have a more simple result [8]

¢ 15 * .
(l) =—5Re f I dk By(1 = r{3e*Pro0)
Y/ = 2kO 0

15 ” .
=1-—=<Re f K dk B, 5e*Préo, (39)
2k0 O .

This coincidence is very interesting because the Green
function used for the calculation of the decay rate [8] is
asymmetric.

In the case of xy+yx quadrupole or in the case of
xx—yy quadrupole, where

010

Q=0,|1 0 0], (40)
000
1 0 0

Q=0,/0 -1 0, (41)
0 0 0

the decay rates in free space according to Eq. (30) get the
following form:

o Ky
o450
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512
0 _ kOQxx

) 42
yxx 45 ( )

and for the relative decay rate we have, respectively,

SR E)
Y0/ xy Y0/ xx
RERY f‘” 5 dk[ (1= ) (1 = ye?Prc)

4kg o Bl (1= ryrfse®Pih)
L (14 PP (1 4 ) ye?Pro) }

: (1= riprize®#t)

(43)

In the case of s— o, that is in the case of single interface,
we have a more simple result [8]

¢ 5 7k dk A
(l) =—=Re | ——[Bi(1-ri3e?F0)
Yo/ 4ky o B
+ k%(l + 1,62 P170)]
5 © Kdk :
=1+_5Re [Kir}; = Birsle* e,
0 o Bi
(44)
Finally, in the case of xz+zx or yz+zy quadrupoles, where
_O . -
Q=0,0 00 (45)
|1 0 0]
(00 0
Q=0,/0 0 1 (46)
10 1 0]

the decay rates in free space according to Eq. (30) get the
following form:

’}’O — k(S)szcz
o457
k5Q2
0 0*=yz
Ne= g5 (47)

and for relative decay rate we, respectively, have

¢ ¢ s * k dk
(l) =<l> =—5Ref —_— (B%_k2)2
Yo/xz \Yo/y: 4kg o B
(1+ r,e?P1) (1 + re¥Pre0)
(1= ety
. 2k2(1 _ rsl'zeZiﬁm)(l _ rsl'SeZiﬁlzo)
11 (1= riprize®it)

|

In the case s — o, that is, in the case of a single interface,
we have a more simpler result [8]
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Y0/ xz Y0/ yz

5 * kdk :
=—5Re | —=[(B - K)(1 +r;e*Pr0)
4ky Jo B
+ BIkE(1 = 1}z Preo)]
“ kdk .
=1+ 5Re | ——[(B1 - )y~ risBikile o,
4ko Jo B

(49)

As mentioned above, these results describe the total decay
rates, i.e., radiative and nonradiative. Generally, it is difficult
to separate these contributions. However, one can assume
that this separation can be made on the basis of the classical
energy flux method. It should be noted that a purely radiation
channel may exist, in this geometry, in an ideal case of mat-
ter without losses. At negligibly small losses, the radiation
energy would not go to infinity. This is the difference be-
tween the geometry under consideration and an open geom-
etry, at which the radiation might go to infinity throughout a
free space.

V. ANALYSIS OF RESULTS AND ILLUSTRATIONS

The expressions that had been obtained in the previous
section are rather complicated and their calculation is an in-
dependent problem, in a general case. The complexity is due
to the fact that the integrands are the complex functions with
a set of the singular points, which might be both the branch-
ing points, and the poles. These peculiarities are connected
with physical properties of the problem. In any case, in the
integrand there are the branching points at k=+vek,. If the
mode wave propagation is formed in a cavity (metallic mir-
rors) then the poles appear in the integrands. So, in different
physical situations, the calculations are to be performed with
an account of these factors.

A. Atom between perfect metallic mirrors

In the case of the well conducting metallic mirrors, the
expressions (38), (43), and (48), in which the reflection co-
efficients are substituted by their analogs for the case of an
ideal conductivity,

P=1, r=-1 (50)

will be good approximations for the rates.
The expressions for the decay rates of quadrupole states
may be reduced to the form

y\?_Is f F s sin(Bys)sin(Bizy)
( 7/0)& - k(s) m 0 ek Bl Sin(ﬂ]L) ’ (51)
7 \? (7)9 5 f“lédk ;o
XV (2 2 .
< 70>xy Y0/ xx 2k(s) " 0 Bl [Bl " 1]
sin(Bys)sin(B;zp)
8 sin(B,L) ’ (52)
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Im &
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Imp,

4 kO ReBI

FIG. 3. Contours of integration in the case of ideally conducting
MIITOorS.

x Qz(z)Qz_iI Tkdk o o g
()’0>xz Y0/ yz 2k(5) m o Bi [(By )*+ Biki]
cos(Bys)cos(B12p)
8 sin(B,L) (53)

Because the ideal conductivity is the limiting case for a
real metal, where the poles must lie above the horizontal axis
of integration, the integration circuit of the ideal conductivity
must envelope the poles from below, as shown in Fig. 3.

To calculate the integrals (51)—(53) it is convenient to use
the variable 3,= V’k(z)—kz,

e © _ 5 o ,sin(B;s)sin(Bzy)
( )’o>zz K fm i (ko= BB sin(8,L)
(54)
Y\ _(2\ .5 f o 4
<yo>xf ( m>xf g m ) ko= BDdy
sin(B;s)sin(3;z)
% sin(B,L) ’ (35)
0 o 5 K
(%) = (ylo): “ ™ f ) dBi[(2B7 - k3)* + Biko]
y cos(ﬁ.ls)cos(,Blzo) (56)
sin(B,L)

where the path of integration is shown in Fig. 3. By calcu-
lating the integrals (54)—(56) with the residue theorem one
can obtain the following results:
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£=-200+0.11, kKL =8
35 r r v

3t Xy+yX ZZ

FIG. 4. The quadrupole decay rates of different quadrupoles
versus their position in the case of a hypothetic material with e
=-200+0.1/, and in the case of an ideal conductivity (dotted line).

( y)Q 1577"'““x<7m>2 (wn)z . 2( 7Tnzo>
= = —|[1-{=] [sin ;
Yo/ z L »n=1 \ L L L

(57)
(2= (2) 225 (2] e m2)
Yo Xy Yo/xx 2L n=1 L L

PARNN AL B U n\* |
= =— + 1-2( —
Yo Xz Yo vz 2L 2 n=1 L
2
+ (77_:1) cos2<m>) , (59)
L L

where n,,, =[L/] is integral part of L/, and L=koL

Figure 4 illustrates the quadrupole decay rates in a reso-
nator formed by a hypothetic metal with £=-200+0.01i in
respect to the position and orientation of a quadrupole. As
seen from the figure, the asymptotic expressions (57)—(59)
approximate well the exact expressions (38), (43), and (48),
excluding the region that is in a close proximity to the metal
surface. However, in the vicinity of the surface, the nonradi-
ative losses connected with imaginary parts of the dielectric
constant are of the main importance. These losses result in a
fast increase in the total losses [see Egs. (64)—(66)]. In the
case of an ideal conductor, the losses are absent, and there is
a difference between the decay rates of a hypothetic metal
and an ideal conductor.

In the case of real metals, that difference might be still
more profound because the imaginary part of the permittivity
is not negligibly small as compared to the real part. Figure 5
illustrates the decay rates for a microresonator with silver
mirrors. From the figure one can see that the rate of sponta-
neous decays in the real resonator differs from the decay rate
in the cavity with ideal walls substantially.

PHYSICAL REVIEW A 72, 043809 (2005)

£=—-15.37+0.23i, kL = 10

10°

FIG. 5. The quadrupole decay rates of different quadrupoles
versus their position between two thick silver (Ag:e=-15.37
+0.231i, A=632.8 nm [22]) mirrors (dotted lines correspond to the
case of the ideally conducting walls).

B. Atom between dielectric mirrors

A planar cavity can also be realized on the basis of two
opposite dielectric half-spaces. No propagating waveguiding
modes are formed in that case, and the integrand, respec-
tively, has no poles in a complex plane near a real axis. This
should simplify a numerical calculation of the integrals. Fig-
ures 6 and 7 demonstrate the dependencies of the quadrupole
decay rates on the atomic position and structure of the quad-
rupole moment for a planar resonator with silica walls.

In the case of a quite large-size cavity (microcavity, Fig.
6) one can observe an increase in the rate of spontaneous
decays as an atom is approaching the wall. In contrast to the
case of metallic mirrors, such an increase is due to the cou-
pling of the nonpropagating near fields emitted by the quad-
rupole, with the propagating fields inside the dielectric
(silica). One can notice the influence of the intrinsic nonra-
diative processes at a distance less than 1 nm only, because
the imaginary part of the quartz permittivity is very small at

£=2.1+10" (silica), kL = 10

N

XZ+ZX

Xy+yx

0.5

FIG. 6. The spontaneous decay rates of different quadrupoles
versus their position between two quartz half-spaces with e=2.1
+0.000 000 001; (silica) in the case of a microresonator (kL=10).
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e=2.1+10"1, kL =1

6
5k
4.5
zz
4r Xy+yx

01 015 02 025 03 035 04 045 05
kzo

FIG. 7. The spontaneous decay rates of different quadrupoles
versus their position between two quartz half-spaces with e=2.1
+0.000 000 001 (silica) in the case of a nanoresonator (kL=1).

optical frequencies [see Egs. (64)—(66)]. At such distances
one should take into account the random inhomogeneities of
the surface structure.

As the distance between dielectric walls is small (nano-
cavity, Fig. 7), the electric fields are near fields one, at any
atom position between the walls, and there occurs the effec-
tive field transformation into the wave propagation over a
dielectric. This provides a considerable acceleration of the
transitions. The intrinsic nonradiative decay channel is
formed at distances closer to the wall, and this is unseen on
the picture.

Note that all the energy of an excited atom will be emitted
in the dielectric, and all the losses will, therefore, be nonra-
diative. But in the case of the weakly absorbing dielectrics,
including silica, it is not unreasonable to distinguish between
the regions of the effective transformation into the propagat-
ing waves and the regions of the intrinsic radiative losses.

C. Atom inside ultrathin cells

Very interesting spectroscopy experiments are carried out
now with atoms inside an extra thin dielectric cell. Suffice it
to say that the width of the cell can be as small as 20 nm
[21]. So, it is very interesting in understanding the behavior
of decay rates in that case.

All dimensional parameters are small in comparison with
wavelength. As a result we can use the quasistatic approxi-
mation to calculate decay rates found in a previous section.
The quasistatic approach here is equivalent to the case of k
> ko=w/c. In this limit the Fresnel reflection coefficients can
be simplified substantially

e—1
rh=riy=r="
rip=r3=0. (60)

As aresult the decay rate in the small width of cavity case
will have the following form:
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<1>Q=—Elm2r2””< 2 1
Z

% 8 % \[Ln+ D [5+In]’
_ ;> 61)

<1>Q=—Elmzr2"“< — 2 - 1~
Yo xy 16 n=0 [L(n + 1)]5 [:S:'+ Ll’l]s

) ;) .

r2n+1( 2r + 1
n=0 [Z(I’L + 1)]5 [3:+ Zn]s
1
+ —~> : (63)
[Z~0 + Ln]s
where 7,5 ,L stand for kozo,kos , koL, respectively. In the case

when an atom is very close to one surface ZO<Z only one
term (n=0) is important in this series

2 45
<l> =—Imr, (64)
Yo/ 2z 8Z0
¢ 15
(l> =—=Imr, (65)
Yo/xy 1625
¢ 15
<l> = Imr. (66)
Yo/x 1625

From this asymptotics one can see that the total decay rate
increases inversely proportional to the fifth power of distance
to the surface z=0. This behavior is different substantially
from the dipole case, where decay rates increase inversely
proportional to the third power of the distance to the surface.
Another interesting point one can get from Eqgs. (64)—(66), is
that the zz quadrupoles suffer a sixfold enhancement in com-
parison with other components.

VI. CONCLUSIONS

In this paper, the processes of the spontaneous quadrupole
atomic radiation in an arbitrary environment were considered
within the framework of both classical and quantum electro-
dynamics. The general equations derived for the rates of
quadrupole transitions were expressed through the spatial de-
rivatives of the retarded Green function corresponding to the
classical problem of electrodynamics. It was shown that the
expressions differ by a numerical coefficient 4 only, which is
connected with the definition of quadrupole moments which
have a different physical sense in the classical and quantum
mechanics. The expressions for the relative decay rates, i.e.,
the rates normalized by the uniform space rate, prove to be
identical.
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QUADRUPOLE TRANSITIONS NEAR AN INTERFACE....

The results obtained are applied to a description of quad-
rupole atomic transitions in a planar cavity. The explicit ana-
lytical expressions for the rates of any quadrupole transition
were found for such a cavity. The results have been analyzed
in detail for the planar cavities with dielectric and metallic
walls. It was found that the quadrupole transitions are accel-
erated with decreasing resonator size. In the case of dielectric
walls, such an acceleration is due to the transformation of the
near dipole fields into the propagating waves inside the di-
electric. In the case of metallic mirrors, the acceleration be-
comes more profound, and is due to the radiation absorption
at the surface layer of a metal.

In this paper we restrict ourselves to the investigation of
quadrupole decay rates. However, our approach can be also
applied to a description of frequency shifts of quadrupole
transitions in nanoenviroment. Again, general expressions
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for frequency shifts will be expressed through space deriva-
tives of the retarded Green function. We will present detailed
investigation of frequency shifts of quadrupole transitions in
a nanoenviroment in a separate publication.
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