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A mean field theory for Raman superradiance �SR� with recoil is presented, where the typical SR signatures
are recovered, such as quadratic dependence of the intensity on the number of atoms and inverse proportion-
ality of the time scale to the number of atoms. A comparison with recent experiments and theories on Rayleigh
SR and collective atomic recoil lasing �CARL� are included. The role of recoil is shown to be in the decay of
atomic coherence and breaking of the symmetry of the SR end-fire modes.
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I. INTRODUCTION

Superradiance, first proposed by Dicke �1�, is the en-
hanced radiation from a collection of coherently decaying
dipoles. It has been studied extensively theoretically �see
Ref. �2�, and references therein� and has been observed in
many different systems, including thermal gases �2�, and
Bose-Einstein condensates �BECs� �3–6�. There is mostly
agreement now on the fact that the collectivity is responsible
for superradiance, which is the same no matter whether the
medium consists of Bosons or Fermions �7–9�. In the case of
BEC, collectivity can be observed as matter wave stimula-
tion, or “Bosonic enhancement” �7�. BEC is unique in that
there is negligible Doppler broadening and the recoil mo-
mentum is measured easily and in fact was recently used to
demonstrate BEC superradiance �3–6�. In particular, superra-
diance can be described by “collective atomic recoil laser”
�CARL� equations in the bad cavity regime �3,10,11�. Col-
lective gain can be observed with CARL in the sense that it
depends nonlinearly on the density �12� and thus does not
occur for atomic densities below a certain critical value �13�.

Most experiments on superradiance were done using
pulsed pump lasers to “instantaneously” invert a two-level
system. The quantum stage of superradiance, where the ra-
diation field builds up from vacuum fluctuations, can then be
modeled to start only after the pump laser is turned off �2�.
For this case, pump lasers obviously have to be strong; at the
same time, experiments done with BECs use only weak
pump fields. We therefore call the one “strong pump super-
radiance” and the other “weak pump superradiance.” In the
latter case, the quantum stage happens while the pump field
is still on. In this article, we will focus on weak pump super-
radiance. Note that in this case the maximum instantaneous
superradiance rate is limited by the pump laser intensity,
while for strong pump superradiance no such limitation ex-
ists.

Mostly, earlier research concentrated on so-called Ray-
leigh superradiance �14–19� which happens for transitions
between different center of mass �c.m.� states while the in-
ternal state remains unchanged �20�. We will here discuss
Raman superradiance, where there are two different internal
ground states for the pump and the superradiant transition.
Recoil and different c.m. states are taken into account here as
well, but are, as we will show, of lesser consequence. It turns

out that Raman superradiance otherwise follows the same
basic patterns as Rayleigh superradiance. Although superra-
diance with Raman pumping has been analyzed in Ref. �21�,
the recoil effect was ignored and the Raman pumping time
was assumed to be short compared with the superradiance
time. It will be shown in this paper that recoil induces the
decay of Raman coherence and may make the superradiant
modes asymmetric. In Ref. �22� an incoherent cw pump laser
was considered numerically, also leading to superradiance.
Recently, Cola et al. �23� presented a quantum theory to
describe the Raman superradiance experiments with BECs
�4–6�. In comparison, our analysis can be applied to both
thermal atoms and BECs with emphasis on the effect of re-
coil. We also discuss the connection with CARL using sta-
bility analysis. In addition, we consider the asymmetry of
superradiant modes as the pump laser setup is changed which
helps to understand the underlying physics of superradiance.

This paper is organized as follows. In Sec. II we derive
the dynamical equations to describe Raman superradiance.
These equations are used to analyze the stability conditions
in Sec. III. Numerical calculations in comparison with ex-
periments are included in Sec. IV. Discussion and conclusion
follow in Sec. V.

II. MODEL

We consider a three-level �-type atomic system with ex-
cited state �1� and two ground states �2� and �3� �Fig. 1�.
When the detuning of a pump laser is much larger than both,
its Rabi frequency and the maximum Rabi frequency of the
superradiant field, the interaction picture Hamiltonian of this
system under dipole and rotating-wave approximation reads
�24–26�

H = �2
+Hc.m.�2 + �3

+�Hc.m. − ��3��3 + Hf

+ �
q�

�g3,q�
* e−i�q�−k�0�r��3

+aq�3
+ �3 + H.c.

+ �
q�

�g2,q�
* e−i�q�−k�0�r��2

+aq�2
+ �3 + H.c., �1�

with coupling constants g2,k�
* = i���kc /2�0V��̂2 ·d�12��* /��

and g3,k�
* = i���kc /2�0V��̂3 ·d�13��* /��, in what follows as-
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sumed to be real. �̂i is the polarization direction. While the
c.m. Hamiltonian is Hc.m.=−��2 /2m��2 with m being the
mass and � being the Planck constant, the Hamiltonian of the
optical fields is Hf =�q��qcaq�2

+ aq�2+�qcaq�3
+ aq�3, where aq�2�aq�3�

is the field annihilation operator for the transition between �1�
and �2� ��3��, and q� the momentum of the radiation field. �i is
the atomic field operator, V the quantization volume, � and
� the pump field Rabi frequency and detuning, �3 the ac
Stark shift due to the pump laser, d12�d13� the dipole moment
between �1� and �2� ��1� and �3��. In Eq. �1�, the second line
describes the Rayleigh transition, the third line the Raman
transition. The ratio of g2,q� /g3,q� determines the branching
ratio between Rayleigh and Raman superradiance �4,5�.
While the Rayleigh superradiance has been studied exten-
sively �14,15,27�, this paper will focus on Raman superradi-
ance.

Using Fock representation, Eq. �1� can be written as

H/� = �
j,k

	kbjk
+ bjk + 	g2�

q,k
b

2k̄

+
a2q

+ b3k + H.c.
 + �
q

	qaq2
+ aq2,

�2�

where bjk�j=2,3� annihilates an atom in state �j� with mo-
mentum k and energy 	k=�2k2 /2m. b2k̄�b2,k+k0−q, 	q=cq
−	0+	23+�3, 	0=ck0 and 	23 is the atomic energy differ-
ence between �2� and �3�. For simplicity, the vector arrows
from q� and k� have been dropped here. We assume that g2,q
�g2 only weakly depends on q for the relevant range of
modes. From this form it is obvious that the total population
on �2� and �3� is conserved. The matter wave mode b3k is
coupled to different b2k̄ for different optical modes q. When
the detuning is large, however, collective linewidth or mul-
tiple scattering can be neglected �28� and we can drop the
coupling between different modes. In this article, we also
neglect the depletion of BEC due to other modes. Raman
transitions in different directions can thus be considered in-
dependently. From Eq. �2�, Maxwell-Bloch equations can be
derived:

d

dt
A = − i	kA − ig2�

k


k̄k − �A , �3a�

d

dt

k̄k = − i�	k − 	k̄�
k̄k − ig2�1 − 2Nk�A , �3b�

d

dt
Nk = i�g2
k̄kA − c.c.� , �3c�

where A= aq2�, 
k̄k= b
2k̄

+
b3k�, Nk= b3k

+ b3k�, with Nk being the

number of atoms in state �3k�. � is the effective radiation
field decay rate, if we neglect propagation in the mean field
approximation �27,29�. This approximation works well when
the medium is optically thin at the pump frequency, which is
the case here since the pump field is far detuned from reso-
nance. With L and D the length and diameter of the medium
and � the wavelength of the superradiant transition, the
Fresnel number F=D2 /L� gives approximately the number
of modes that fit in the medium in axial direction. If it is
around or bigger than 1 as in the experiments �4,5�, then �
=c /2L for axial modes �also called “end-fire modes” �3��,
which are the modes having largest gain for superradiance,
and �off �c /2L��1/F+1� for off-axial modes �29�. It will be
shown in Sec. III that in experiments �4,5�, � dominates over
all the other relevant characteristic rates and therefore makes
the end-fire modes most likely to superradiate. In the follow-
ing, we assume all superradiant modes to be axial.

In a BEC, only the k=0 state is present, and thus Eqs. �3�
become

d

dt
A = − i	kA − ig2N
0̄0 − �A , �4a�

d

dt

0̄0 = i	r
0̄0 − ig2�1 − 2N0�A , �4b�

d

dt
N0 = i�g2
0̄0A − c.c.� , �4c�

where 
0̄0= b
2,0̄

+
b3,0� with b2,0̄=b2,k0−q, the recoil energy

�	r=�2�k0−q�2 /2m, and N the total number of atoms in the
system. Because we assume � to be very large it follows
from Eq. �4a� that

A � − ig2N
0̄0/� . �5�

Substituting A into Eqs. �4b� and �4c�, we arrive at

d

d�

0̄0 = i	r
0̄0 − g2

2�2N0 − 1�
0̄0,

d

d�
N0 = − 2g2

2�
0̄0�2. �6�

Here, we scale the time such that �=Nt. It is therefore obvi-
ous that the timing of the resulting process scales with 1/N,
in the same way as in traditional superradiance �2�. From Eq.
�5� we know that the output field amplitude A is proportional
to N and thus the intensity is proportional to N2. These are
typical characteristics of superradiance. Note that without re-
coil 	r=0, Eqs. �6� are completely equivalent to Eqs. �6.36�
of Ref. �2�, which describe standard superradiance: a radia-

FIG. 1. Center of mass manifolds associated with three-internal-
state atomic system. State �2� is the one-particle state of the initial
BEC. Both Rayleigh transition and Raman transition are present
with Raman field aq�2 and Rayleigh field aq�3. The pump laser Rabi
frequency � is much smaller than the detuning ���.
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tion cascade down the pseudospin ladder from Jz=N /2 to
Jz=−N /2, giving a hyperbolic secant solution for the depen-
dence of the upper-level population on time �2�. For BEC,
the term with 	r, which is due to recoil, only contributes to
the phase evolution of Raman coherence, not to its decay,
while for thermal atoms recoil does induce the decay of Ra-
man coherence, as discussed in the next paragraph.

For thermal atoms, Eq. �3b� describes quantum diffusion
as well as generation of Raman coherence. In particular, the
term −i�	k−	k̄�
k̄k in Eq. �3b� shows that coherence stored
in different levels experiences quantum diffusion, since the
term will have different values for different k. To understand
how the quantum diffusion works, we assume Raman coher-
ence has been generated uniformly for all levels, which
means 
k̄k�0�=
�0�pk with 
�0� being the coherence for one
level and pk the probability distribution of atom at level k. If
we set field amplitude A to zero, the solution of Eq. �3b� is

k̄k�t�=
�0�pke

−i�	k−	k̄�t. The coherence is then 
�t�
=�k
k̄k�t�=
�0��kpke

−i�	k−	k̄�t. To proceed, we need to
specify pk at temperature T. Here, either Bose-Einstein dis-
tribution for Bosons or Fermi-Dirac distribution for Fermi-
ons are appropriate. For simplicity, however, we assume
Lorentzian distribution pk= �1/����p / �k2+�p2�� with
�p2 /2m=kBT /2, which describes the atoms well even at sub-
recoil temperatures �30�. The summation can be approxi-
mated by an integral and it follows that the Raman coherence
decays exponentially


�t� =� 1

�

�p

k2 + �p2
k̄k�t�dk = 
�0�ei	�te−�t, �7�

where �=2k0
�kBT /m sin � /2, 	�=2�k0

2 sin2 � /2, and � is
the angle between q� and k�0. It is clear now that the decay rate

� depends on the pump laser direction k̂0 relative to the
superradiant pulse direction q̂. Thus, Eq. �3b� can be rewrit-
ten as

d

dt

 = �i	� − ��
 − ig2�1 − 2
33�A , �8�

where 
33=�kNk is the population in state �3�. If we would
use a Gaussian rather than Lorentzian density of states, the
inverse 1/e decay time would be �2� rather than �. As an
example, for Rb at the Doppler limit temperature of 143 �K,
�=1.35�106 s−1.

Comparing the result for thermal atoms in Eq. �8� with the
result for a BEC in Eq. �4b�, we see that thermal distribution
contributes additional coherence decay, otherwise these
equations are the same as expected. We can therefore gener-
alize the results to

d

dt
A = − i	kA − ig2N
 − �A , �9a�

d

dt

 = i	�
 − ig2�1 − 2
33�A − �R
 , �9b�

d

dt

33 = i�g2
A − c.c.� , �9c�

where the total coherence decay �R=�R� +�. �R� can be intro-
duced phenomenologically to contain collisions, magnetic
gradients, etc., and �=0 for BECs. These equations are now
analogous to Eqs. �13�–�15� in Ref. �23�, but can be applied
to both BEC and thermal atoms.

III. LINEAR STABILITY ANALYSIS

In this section, we will determine the necessary conditions
for Raman superradiance to happen, which is easiest using
linear stability analysis �20,31,32�. Obviously, A=0, 
=0,
and 
33=1 give a stationary solution of Eqs. �9�. Rewriting
Eqs. �9� for A=0+�A, 
=0+�
, and 
33=1+�
33 leads to a
two-dimensional linear system with the characteristic equa-
tion

S2 + �i�	k − 	�� + � + �R�S + �− i	� + �R�� − Ng2
2 + 	k	�

+ i	k�R = 0. �10�

�The third equation is equivalent to zero in this case and can
be dropped.� In comparison with the cubic instability equa-
tion for Rayleigh superradiance �20�, this is a quadratic equa-
tion. The physical reason for such a change is that for a
Rayleigh transition, the initial and final internal states are the
same and thus only atoms with different c.m. states may
contribute to the gain �see Eq. �49� of Ref. �20��; for a Ra-
man transition, the initial and final internal states are differ-
ent and thus all atoms contribute to the gain regardless of the
c.m. states.

The above quadratic equation has two roots for S, S+, and
S−. Since S is the exponent of the state vector ���A ,�
�
= (�A�0� ,�
�0�)exp St�, the zero solution becomes unstable
if at least one of S+ or S− has a positive real part. The larger
real part �let us call the respective root S+=S+�+ iS+�� is there-
fore defined as an instability factor. If S+��0, then the system
is dynamically unstable, from which the threshold pump in-
tensity can be derived. From Eq. �10�, it can be easily seen
that S+� depends nonlinearly on the number of atoms N. Note
that nonlinear dependence on N is the essence of collective
instability �20�. In the bad cavity regime as is the case for the
experiments �4,5�, � is large, the system therefore depends
linearly on the atomic density and therefore may display su-
perradiant behavior. In a good cavity, however, � is much
smaller and thus the collective gain depends on the density
nonlinearly �11,12�.

Since 	� and 	k can be shown to have only a minor effect
on S+� under the experimental conditions of Refs. �4,5�, we
set 	�=	k=0. In this case, the instability factor is

S+� =
− �� + �R� + ��� + �R�2 + 4�Ng2

2 − ��R�
2

. �11�

In particular, for vanishing coherence decay �R=0, the sys-
tem is unstable and therefore superradiant for any pump laser
power. This is different from the case of Rayleigh superradi-
ance which always has a nonzero threshold pump laser in-
tensity �20�. In the case of thermal atoms, however, �R can
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be considerable, and the threshold pump intensity is quite
high in the bad cavity limit. This explains why collective
gain was not observed in Refs. �4,5�. It should be possible
experimentally to minimize the decay due to quantum diffu-
sion if the pump laser is collinear with the sample. Raman
superradiance or collective gain might perhaps be observed
in this case even in thermal atoms.

When � is much larger than any other frequency in Eq.
�10�, i.e., ���Ng2

2, 	k, 	r, as in the experiments �4,5�, the
instability factor can be simplified to

S+� �
1

�
�Ng2

2 − �R�� . �12�

In this case, S+� is linear in N, which means experiments in
Refs. �4,5� would be purely in the superradiant regime.

IV. NUMERICAL SIMULATIONS

To compare our theory with experiments, we solve Eqs.
�9� for both BEC and thermal atoms. In the simulations, we
use the initial value of 
�0�= �2/N�1/2, which is determined
by quantum noise �29,33�. Other parameters are calculated
using the data in Ref. �5�: g2=0.5�106 s−1, �=1.76
�1012 s−1. 	r is negligible in this context.

In Fig. 2 we show that the intensity of superradiance is
proportional to N2 and the superradiance delay time is pro-
portional to 1/N at least as long as there is no Raman coher-
ence decay, i.e., if we assume a BEC. The numerical delay
time 75–150 �S also reproduces the experimental data well
�4,5�.

Figure 3 shows that when the Raman coherence decay
rate �R is increased, the radiation intensity decreases and the
delay time increases. This is similar to two-level superradi-
ance: dipole-dipole interaction decreases the coherence be-
tween atoms and thus competes with superradiance. Because
of the effective population mixing caused by Raman coher-
ence decay there is always a finite number of atoms in the
Rayleigh lower state �3� at any time for a finite �R. For ther-
mal atoms at Doppler cooling limit T=143 �K, �=1.35
�106 s−1, and the instability factor S+� is smaller than zero
and no superradiance happens.

The roles of photon and atomic coherence are intertwined
for superradiance. Collectivity can be attributed to either
photons or atoms, or both. In the case of weak pump super-
radiance, the pulse exits the medium and thus decays much
faster than the �atomic� Raman coherence. Thus the intensity
of the superradiant pulses is small, and stimulation of pho-
tons by photons is not critical in this case. For example, if in
the calculation the pump laser is turned off before all the
atoms have radiated and then turned on again, superradiance
continues nearly at the same point it was interrupted. This is
true for an interruption that lasts longer than the photon co-
herence time �which is here just the escape time of the pho-
tons of about 1 ps�, but shorter than the Raman coherence
time, which is between infinity and 1 ms in our simulations.
The conclusion is that atomic coherence is more important
than stimulated emission in this case for superradiance to
happen.

It was claimed in Ref. �5� that the output photon number,

Np, enhances the superradiance Ṅr� �Nr+Np+1�, where Nr is

FIG. 2. �Color online�Effect of number of atoms and detuning
on the evolution of �a� the intensity �A�2 and �b� the population 
33

as a function of time. Parameters used in the calculations are from
Ref. �5�. The 1/N dependence of the delay time and the N2 depen-
dence of the maximum intensity can be clearly seen. The finite
population left in state �3� is due to the decay of Raman coherence.

FIG. 3. �Color online� Effect of Raman coherence decay rate �R

on the evolution of �a� the intensity �A�2 and �b� the population 
33

as a function of time. �R�0 is responsible for a longer superradi-
ance delay time and a lower maximum intensity. For this figure,
N=2�106. Other parameters are the same as in Fig. 2.
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the number of atoms having superradiated. Indeed, it was

assumed that Np=Nr �5�, then Ṅr� �2Nr+1�. However, no
cavity was used in Ref. �5�, which means the average Np is
small within the sample and can be neglected, as is done in
Refs. �3,4�. Note that the collecting of photons in the �ring�
cavity modifies the rate �34,35�. But in a high-Q cavity, the
coupling between atoms and field is strong and a perturba-
tion approach of Fermi’s golden rule as used in Ref. �5� may
not apply. Detailed analysis of this is beyond this paper.

Now we consider the effect of the field decay rate � on
determining the direction of the superradiant field modes. If
the Fresnel number F is around 1 as in the experiments �4,5�,
the decay rate of the off-axial modes is much bigger than that
of the axial mode, and thus only the axial mode superradi-
ates. Since the decay rates of the Raman coherence for the
axial modes and their directly neighboring modes are almost
equal to each other, the field decay rate determines the radia-
tion direction. On the other hand, if F is much bigger than 1,
the off-axial modes do not have a decay rate much different
from the axial ones, and thus they may also superradiate. In
this case, the quantum fluctuation stage determines which
modes are fired. The random dots in the simulation of Ref.
�14� show the effect of the fluctuations in this case. In gen-
eral, many modes might fire simultaneously as long as the
population in state �3� is not depleted. If the delay time of
one mode is shorter than the sum of the delay and superra-
diance time of the axial mode, then this mode also superra-
diates. The same is obviously also true for the competition
between Raman and Rayleigh superradiance �4�.

Let us consider the symmetry of the superradiating
modes. The two axial modes in opposite directions in the
experiments �3–5� show identical behavior: the recoil pattern
is symmetric. One of the reasons for this is that the field
decay rate for these modes is the same. Also the recoil in-
duced decay �R is zero for a BEC. This is also true for an
initially fully inverted two level system �2�. However, if the
pump laser is parallel to the sample axis �longitudinal pump-
ing�, the recoil induced decay for thermal atoms can be can-
celled if the superradiance mode is parallel to the pump laser.
This breaks the symmetry of the two axial modes and privi-
leges the parallel mode over the antiparallel one. In Fig. 3 we
see that the mode with small �R is stronger than other modes
and may suppress superradiance for them by depleting the
population 
33. The broken symmetry indicates that the
equivalence of a three-level system with a far detuned pump
laser and a two-level system does not hold in this case. Note
that if the atoms are not fully inverted, the symmetry could
also be broken due to stored coherence �36�. However, for
BECs, since recoil does not contribute to the decay of Raman
coherence significantly, two superradiant modes would still
fire even with longitudinal pump.

V. DISCUSSION AND CONCLUSION

Rayleigh superradiance does not happen without recoil. In
comparison to this, recoil is not critical for Raman superra-
diance to happen, which means that atomic bunching and

density grating pictures do not apply for explaining Raman
superradiance, as they do for Rayleigh superradiance. Inter-
ference between pump laser and superradiance output �27�
equally does not apply in a case where both transitions radi-
ate light with different polarization. We therefore believe that
collective effects, which might be called Bosonic stimulation
in the case of Bosons, are the main players in Raman super-
radiance.

Interesting is the relationship between Rayleigh and Ra-
man superradiance. States with different momentum may be
considered to be orthogonal �14� in the same way as different
internal levels, and thus the Rayleigh transition can be
looked upon as a Raman transition between different mo-
tional states �32,37,38�. Indeed, the gain coefficients have a
similar functional dependence on the atomic density �13�. In
particular, in the case of thermal atoms with a pump laser not
parallel to the sample axis, i.e., with large �R, it can be
shown from Eq. �11� that the instability factor S+� depends
linearly on N. This was the regime discussed in Refs.
�32,37,38� in which the Raman transition is considered to be
in the �linear� single-atom gain regime �39�. Although atom
statistics are not critical for superradiance �27�, the Fermi
momentum kF in Rayleigh scattering is replaced by the rela-
tive momentum difference in Raman scattering, thus the
problem with a very short coherence time in the case of
fermions due to recoil might be overcome �8�. As is done for
Rayleigh superradiance �40�, also atom-atom interaction can
be included, and will be presented in a forthcoming publica-
tion.

Finally, we would like to differentiate two concepts: col-
lectivity and collective gain or collective instability. Collec-
tivity means that all atoms in the system contribute to the
same mode �41�, while collective gain or collective instabil-
ity �12� means that the gain depends on the number of atoms
N nonlinearly. While the experiments are in the noncollective
gain regime, collectivity still plays a major role in Raman
superradiance. Raman superradiance therefore shows that it
is the collective effect rather than “Bosonic stimulation” that
is responsible for superradiance �7–9�. It was claimed �13�
that if the pump laser makes the two-photon detuning for
superradiant mode zero, and thus the Rayleigh transition cor-
responds to a Raman transition between different c.m. states
there would be a single-atom gain instead of collective gain
�39�. However, we tried to show that even in a pure Raman
transition, collective gain is still possible if a cavity is in-
cluded.

To conclude, we developed a mean field theory for Raman
superradiance. Raman superradiance does not necessarily
have an intrinsic threshold for pump laser intensity even if
the decay of the optical field is included. We found that re-
coil induced decay of Raman coherence may break the sym-
metry of the two axial modes if the atoms are pumped lon-
gitudinally, in which case it is possible to realize Raman
superradiance even in thermal atoms while at the same time
it might not be possible to realize Rayleigh superradiance.
We also note that both the Rayleigh and Raman superradi-
ance experiments were done in the regime where the pump

THEORY FOR RAMAN SUPERRADIANCE IN ATOMIC GASES PHYSICAL REVIEW A 72, 043804 �2005�

043804-5



laser is far detuned, such as not to populate the excited state.
What happens in the case of a resonant pump laser is under
investigation presently.
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