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We discuss collective monopole and quadrupole excitations of a collisionless gas of trapped Fermionic
atoms in the superfluid BCS phase, comparing the fully microscopic Bogoliubov–de Gennes and quasiparticle
random-phase approximation method with widely used semiclassical methods. In particular, the microscopic
treatment allows us to address the questions of temperature dependence and nontrivial dependence on the trap
parameters, which cannot be answered within the semiclassical approach. The main result concerning the
temperature dependence is a strong Landau damping at intermediate temperature, which disappears in the
limits of zero and critical temperature. However, even at zero temperature, considerable deviations from
superfluid hydrodynamics are found if the trap frequency is of the same order of magnitude as the pairing gap.
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I. INTRODUCTION

Dilute gases of alkaline-metal Fermionic and Bosonic at-
oms are superfluid at very low temperature: Bose-Einstein
condensates �BEC’s� have been obtained in the case of
Bosonic atoms �1�, while condensation of molecules �made
out of two atoms� has been observed in the case of Fermionic
atoms �2�. For Fermionic atoms in the weakly interacting
regime �kF�a��1, where kF is the Fermi momentum and a is
the s-wave scattering length� BCS superfluidity is expected
in the case of attractive interatomic interaction �a�0�.

A striking experimental evidence for BCS superfluidity is
still missing, even though various signals which would be
coherent with a superfluid behavior have been observed in
some experiments: the anisotropic expansion of the gas after
releasing it from the trap �3�, the measurement of the gap �4�,
the measurement of the frequencies and damping rates of the
breathing modes �5,6�.

However, the gap has been actually measured only in the
strongly interacting regime and no experimental values exist
for the weakly interacting case. The anisotropic expansion on
the one hand and the frequencies of the breathing modes on
the other hand can be predicted within a hydrodynamic ap-
proach for a superfluid gas �7–9�. In both cases the experi-
mental observations agree very well with the hydrodynamic
predictions, and this could actually be considered as an evi-
dence for superfluidity. However, the predictions for a super-
fluid gas are the same as those for a normal gas in the pres-
ence of collisions. It is true that at the very low temperatures
achieved in these experiments the Pauli principle is expected
to inhibit collisions. However, the experimental measure-
ments have been performed during the expansion of the gas
after releasing it from the trap. In such a situation momentum
space deformations are possible and collisions can survive
even at very low temperatures. So far, it has not been pos-
sible to completely control this problem from an experimen-
tal point of view and, for this reason, no firm conclusions
about superfluidity can actually be drawn.

Another limitation is related to the hydrodynamic ap-
proach: hydrodynamics can be safely applied only within the

limits of validity of semiclassical approaches, ����, where
� is the pairing gap and � is the trapping frequency. Effects
from the finite size and inhomogeneity, governed by the fi-
nite trap frequency �, are neglected. Moreover, the hydro-
dynamic formalism has been developed so far only for the
case of zero temperature �T=0�.

In this paper we deal with the excitation spectra in the
normal and superfluid phases of a dilute Fermi gas and we
analyze how these spectra are affected by superfluidity, both
in hydrodynamic and microscopic descriptions. In order to
study excitations similar to those observed experimentally
�the breathing modes� we focused our attention on the mono-
pole and quadrupole modes. However, while the breathing
modes have been observed for a cigar-shaped gas �and the
radial and axial frequencies have been measured�, we restrict
our analysis to a spherical gas for the sake of numerical
tractability. Moreover, while the experiments of Refs. �5,6�
have been done for strongly interacting gases, we treat a
weakly interacting system.

We analyze the excitation spectra within a finite-
temperature mean-field approach which provides a micro-
scopic treatment for the system. The Bogoliubov–de Gennes
�BdG� equations �10� are solved for the ground state and the
excitations are treated within the quasiparticle random-phase
approximation �QRPA� �11�. This approach has already been
developed for atomic Fermi gases in Ref. �12�, where the
spin-dipole and the quadrupole modes have been analyzed.
On the other hand, the monopole modes have already been
studied and compared to a schematic model in Ref. �13�.

In the present work we want to study systematically the
effects related to the temperature and to the trap frequency of
the system. In particular, we compare our results with the
corresponding hydrodynamic ones in order to check the va-
lidity of the semiclassical approach. In addition to the
strength distributions related to the excitation spectra, we
also present the transition densities which can give important
information on nature of the collective modes.

The paper is organized as follows. In Sec. II we briefly
sketch the quantum-mechanical and semiclassical formal-
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isms to describe collective modes in the superfluid phase and
in the normal phase in the collisionless limit. In Sec. III
results for the monopole and quadrupole excitations are
shown: the dependence on the temperature and on the fre-
quency of the trap are studied. In Sec. IV we draw our con-
clusions.

II. QUANTUM-MECHANICAL AND SEMICLASSICAL
FORMALISM

In this section we will briefly review the theoretical de-
scription of collective modes in trapped Fermi gases. As al-
ready mentioned in the introduction, one has to distinguish
between quantum-mechanical �“microscopic”� and semiclas-
sical approaches. The fully quantum-mechanical calculation
consists in solving the QRPA equations, which are the small-
amplitude limit of the time-dependent BdG equations. At
present such calculations are available only for systems con-
taining up to �104 atoms in the case of a spherically sym-
metric trap. These conditions are quite far from the experi-
mental ones, corresponding to particle numbers of �105–106

particles in a cigar-shaped trap. Up to now, the “realistic”
conditions can only be treated within semiclassical ap-
proaches. The simplest semiclassical approach is the hydro-
dynamic theory. This theory is valid in the superfluid phase
at zero temperature, since the pairing correlations keep the
Fermi surface spherical during the collective motion of the
system. However, hydrodynamics fails at nonzero tempera-
ture, unless the local equilibrium can be ensured by colli-
sions. Since we are interested in the weakly interacting re-
gime, the collision rate 1 /� is very small compared to the
frequency of the trap. In this “collisionless” regime, the
Fermi surface becomes locally deformed during the collec-
tive oscillation. This cannot be described by hydrodynamics,
but requires a description in the framework of the Vlasov
equation. The latter is valid in the normal phase, i.e., above
the critical temperature Tc. In the intermediate temperature
range 0�T�Tc, a semiclassical theory is still missing.

A. Quantum-mechanical formalism (QRPA)

The QRPA method has already been applied to trapped
Fermi gases in the weakly �12� as well as in the strongly
interacting regime �14� and here we will only give a short
summary.

We consider a gas of atoms with mass m in a spherical
harmonic trap with frequency �, assuming that the atoms
equally occupy two hyperfine states �= ↑ ,↓. Because of the
low temperature and density of the gas, the interaction be-
tween the atoms can be chosen as a zero-range interaction
and parametrized by the s-wave atom-atom scattering length
a. In order to simplify the notation, we will express all quan-
tities in harmonic oscillator �HO� units, i.e., frequencies in
units of �, energies in units of ��, temperatures in units
of �� /kB, and lengths in units of the oscillator length
lHO=�� / �m��. Furthermore, instead of the scattering length
we will use the coupling constant g=4	a / lHO as parameter
of the interaction strength.

As mentioned above, the QRPA describes small-
amplitude oscillations around the equilibrium state within the
BdG formalism. Therefore the first step consists in solving
the BdG equations �10�

�H0 + W�r��unlm�r� + ��r�vnlm�r� = Enlunlm�r� ,

��r�unlm�r� − �H0 + W�r��vnlm�r� = Enlvnlm�r� �1�

for the static case. In this way we obtain a set of quasiparticle
energies Enl and wave functions unlm and vnlm. In Eq. �1�, H0
denotes the Hamiltonian of the noninteracting HO minus the
chemical potential 
,

H0 =
1

2
�− �2 + r2� − 
 , �2�

while the interaction is accounted for in a self-consistent way
through the Hartree potential W and the pairing field �. Due
to spherical symmetry, the wave functions can be written as

unlm�r� = unl�r�Ylm��,�� , �3�

vnlm�r� = vnl�r�Ylm��,�� . �4�

The quantum numbers l and m are the angular momentum
and its projection, while n numbers different states having
the same l and m. In practice, the diagonalization of Eq. �1�
is done in a truncated harmonic oscillator basis, containing
the eigenfunctions of the trapping potential up to a certain
HO energy EC=NC+ 3

2 , i.e.,

2�n − 1� + l  NC. �5�

The self-consistency relates W and � to the wave func-
tions u and v. The mean field W is just proportional to the
density, i.e.,

W�r� = g�
nl

NC 2l + 1

4	
	vnl

2 �r��1 − f�Enl�� + unl�r�f�Enl�
 , �6�

where

f�E� =
1

eE/T + 1
�7�

denotes the Fermi function. The Hartree field is independent
of the cutoff NC if the latter is taken sufficiently large. The
calculation of the pairing field �, however, is more compli-
cated. The zero-range interaction leads to a divergence which
in the case of uniform systems can be regularized in a stan-
dard way by renormalizing the scattering length. This regu-
larization method has been generalized to the case of trapped
systems by Bruun et al. �15� and developed further by Bul-
gac and Yu �16� and two of the authors �17�. As a result, the
pairing field can be written as

��r� = − gef f�r��
nl

NC 2l + 1

4	
unl�r�vnl�r��1 − 2f�Enl�� , �8�

with an effective coupling constant gef f which allows to in-
clude the contribution from states beyond the cutoff NC
within the Thomas-Fermi approximation �TFA�. The explicit
expression for gef f reads
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1

gef f�r�
=

1

g
+

1

2	2� kF�r�
2

ln
kC�r� + kF�r�
kC�r� − kF�r�

− kC�r�� , �9�

where kF and kC denote the local Fermi and cutoff momenta,
respectively:

kF�r� = �2
 − r2 − 2W�r� , �10�

kC�r� = �2NC + 3 − r2. �11�

Once the static BdG equations are solved, we can calcu-
late the linear response of the system to a small time-
dependent perturbation. Following Ref. �12�, we have to
compute the QRPA response function �, which is a 4�4
matrix built out of 16 correlation functions:

���,r,r�� =
���̂↑�̂↑�� ���̂↑�̂↓�� ���̂↑�̂�� ���̂↑�̂

†��
���̂↓�̂↑�� ���̂↓�̂↓�� ���̂↓�̂�� ���̂↓�̂

†��
���̂�̂↑�� ���̂�̂↓�� ���̂�̂�� ���̂�̂†��
���̂†�̂↑�� ���̂†�̂↓�� ���̂†�̂�� ���̂†�̂†��

� ,

�12�

with the shorthand notation

��ÂB̂�� = − i�
0

� dt

2	
ei�t��Â�t,r�,B̂�0,r���� , �13�

where �� means the thermal average. The operators of the
normal and anomalous densities, �̂ and �̂, are defined in

terms of the field operators �̂ and �̂† as follows:

�̂��t,r� = �̂�
†�t,r��̂��t,r� , �14�

�̂�t,r� = �̂↓�t,r��̂↑�t,r� . �15�

In order to obtain �, we first compute the free or unper-
turbed response function �0, which is defined analogously to
Eq. �12�, but which does not include the effect of interactions
between the quasiparticles. Thus �0 can be obtained by re-

placing the field operators �̂ in Eqs. �14� and �15� by

�̂��t,r� = �
nlm

�bnlm�unlm�r�eiEnlt − �bnlm−�
† vnlm

* �r�e−iEnlt� ,

�16�

where b̂ and b̂† are annihilation and creation operators of
noninteracting quasiparticles. Inserting the resulting expres-
sions into Eq. �12� and using the relations 	b� ,b�
= 	b�

† ,b�
†


=0, 	b� ,b�
†
=����1− f�E���, and �b�

†b��= f�E�����, we ob-
tain explicit expressions for the 16 functions contained in �0
in terms of the u and v functions and the quasiparticle ener-
gies obtained from Eq. �1�.

Due to the spherical symmetry of the trap and the rota-
tional invariance of the interaction, excitations with different
angular momenta do not mix. Therefore it is useful to de-
compose �0 into contributions of different angular momenta:

�0��,r,r�� = �
LM

�0L��,r,r��YLM��,��YLM
* ���,��� .

�17�

The QRPA response �L for angular momentum L can
now be obtained from the quasiparticle response �0L by
solving the Bethe-Salpeter integral equation

�L��,r,r�� = �0L��,r,r��

+ �
0

�

dr�r�2�0L��,r,r��G�L��,r�,r�� ,

�18�

where G accounts for the residual interaction between the
quasiparticles:

G =
0 g 0 0

g 0 0 0

0 0 0 g

0 0 g 0
� . �19�

When calculating the 16 functions contained in �0L, one
observes that two of them, namely those related to ���̂†�̂��
and ���̂�̂†��, are divergent for NC→�. This divergence has
the same origin as that of the pairing field. Bruun and Mot-
telson �12� therefore suggested to use the same pseudopoten-
tial method as for the regularization of the pairing field in
order to remove the divergence. However, it is not clear how
in their prescription, Eq. �7� in Ref. �12�, the contribution of
states beyond the cutoff NC can be approximated �as we did
in the case of the pairing field by using the TFA�, which is
crucial for having convergence at reasonable values of the
cutoff NC. We therefore propose a simplified prescription:
when calculating �0L, we have to restrict the sum to states
below the cutoff, 2�n−1�+ lNC. To compensate the result-
ing cutoff dependence, the interaction in the pairing channel
must be replaced by the effective coupling constant given in
Eq. �9�. Thus we replace G in Eq. �18� by Gef f�r��, which is
defined by

Gef f�r� =
0 g 0 0

g 0 0 0

0 0 0 gef f�r�
0 0 gef f�r� 0

� . �20�

One can show that, in the case of a uniform system, this
simplified prescription coincides with the pseudopotential
method in the limit of excitations with long wavelengths and
low frequencies. We have checked the convergence of the
results using this regularization prescription.

Finally, we have to say how physical quantities of interest
can be extracted from the correlation function �. To that end
it is useful to look at the spectral representation

�
���

���̂��̂���� =� d��
S���,r,r��
� − �� + i�

, �21�

with
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S��,r,r�� = −
1

	
�
���

Im���̂��̂���� = �1 − e−�/T��
ij

e−Ei/T

Z
���

− Ej + Ei� � �
���

�i��̂��r��j��j��̂���r���i� , �22�

where �i� and �j� are eigenstates of the many-body Hamil-
tonian with total energies Ei and Ej, respectively, and Z
=�iexp�Ei /T�. In the present QRPA formalism Eq. �22� is
evaluated using the four upper left elements of the � re-
sponse function �12�, obtained with Eq. �18�.

In this paper we will consider excitation operators of the
form

V1�t,r� � r2YLM��,��e−i�t, �23�

with L=0 �monopole excitations� and L=2 �quadrupole ex-
citations�. The corresponding strength function SL���, which
gives the excitation spectrum, is defined by

SL��� = �
0

�

drr4�
0

�

dr�r�4�
���

SL��,r,r�� . �24�

Another interesting quantity is the transition density ��=�
−�0, where �0 denotes the density in equilibrium and � is the
density of the excited system. In the case of zero tempera-
ture, where the stationary system is in the ground state �0�,
the transition density for �=Ej −E0 is proportional to

���� = Ej − E0,r� � �
�

�j��̂��r��0� . �25�

In this case, the sum over i in Eq. �22� reduces to one term
�i=0�, and therefore the transition density can be obtained
from

����� = Ej − E0,r��2 � �
�−�

�+�

d��S���,r,r� , �26�

where � is supposed to be sufficiently small to avoid that
other states than the selected one ��j�� contribute.

B. Superfluid hydrodynamics

At zero temperature, superfluid hydrodynamics provides
the equations of motion for the density �per spin state� ��t ,r�
and the irrotational collective velocity field v�t ,r� of the su-
perfluid current �continuity and Euler equations� �18�:

�̇ + � · ��v� = 0, �27�

v̇ = − ��v2

2
+

Vext

m
+


loc

m
� . �28�

These equations can equally be used for Fermionic and
Bosonic systems, only the equation of state, relating the local
chemical potential 
loc to the density �, must be adapted
correspondingly. In the case of weakly interacting fermions,
where the density can be regarded as independent of the
pairing gap, this equation of state is given by the Thomas-
Fermi relation


loc��� =
pF

2

2m
+ g� =

�2�6	2��2/3

2m
+ g� . �29�

In the static �equilibrium� case, Eq. �28� together with this
equation of state gives immediately the usual Thomas-Fermi
equation for the density profile �0�r�,


loc��0�r�� + V0�r� = 
 , �30�

which is valid in both the normal and the superfluid phase.
While the TFA in the normal phase is valid if 
loc is much
larger than the discrete level spacing of the trapped system
��� in our case�, superfluid hydrodynamics requires in ad-
dition that also the pairing gap � is large compared with the
level spacing, which is much more difficult to satisfy.

Since the superfluid velocity field v is irrotational, it can
be written as a gradient. In order to establish a connection
with microscopic quantities, we write it in the form

v�r� =
�

m
� ��r� , �31�

where � is related to the phase of the pairing field by ��r�
= ���r��exp�2i��r��.

In this paper we are interested in small-amplitude motion.
We therefore split the density and the external potential into
their equilibrium values and small deviations, �=�0+�� and
Vext=V0+V1, and expand Eqs. �27� and �28� up to linear
order in the deviations. In addition, as we did in the preced-
ing subsection, we will specialize to the case of a spherically
symmetric harmonic trap and use the corresponding HO
units ��=m=�=1�, i.e., V0=r2 /2. We know that for an ex-
citation of the type �23� the solution must be of the form

��t,r� = ��r�YLM��,��exp�− i�t� �32�

and analogous for ��. Furthermore, we are interested in the
eigenmodes of the system, which persist even if V1=0. Then
Eqs. �27� and �28� can be transformed into an eigenvalue
equation for the eigenfrequencies � and the corresponding
eigenfunctions ��r�,

�d
loc

d�
�

�0

� 1

r2 �r2�0���� − L�L + 1��� = − �2� , �33�

where f� means df /dr, and an equation for the transition
density,

�� = − i���d
loc

d�
�

�0

�−1

� =
− i�

r
�0�� . �34�

The numerical solution of Eq. �33� is not difficult. How-
ever, in the present paper we are only interested in the lowest
monopole �L=0� and quadrupole �L=2� modes. For these
two modes, the velocity field v is practically linear in r, and
we can thus obtain a very accurate analytic approximation to
the numerical solution. Let us start with the quadrupole
mode �L=2�. We insert the ansatz ��ar2 into Eq. �33�, mul-
tiply the equation by �0�r�, and integrate over d3r. By this
integration the small deviations of the quadratic ansatz from
the exact solution of Eq. �33� are averaged out and one thus
obtains a very precise prediction for the frequency. After a
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lengthy calculation we reproduce the well-known result

�L=2 = �2, �35�

which is independent of the interaction.
In a similar way we can find an approximation for the

eigenfrequency of the lowest monopole mode �L=0�. In this
case the function � has the form ��r��a−br2. Inserting this
ansatz into Eq. �33�, taking the derivative with respect to r in
order to get rid of the constant a, multiplying by r, and
proceeding in the same way as in the case of the quadrupole
mode, we finally obtain

�L=0 = 2�1 +
3Eint

8Epot
, �36�

where Eint and Epot are the interaction and potential energies,

Eint =� d3rg�0
2�r�, Epot =� d3rr2�0�r� . �37�

Contrary to the quadrupole frequency, the monopole fre-
quency depends on the interaction. Since Eint is negative, the
frequency �L=0 is slightly lower than twice the trap fre-
quency, 2�. Finally, the ratio of the constants a and b, which
is needed in order to compute the transition density ��, can
be determined from the condition that the integral over ��
must vanish, since the total number of particles stays con-
stant.

C. Vlasov description

Let us now consider a normal Fermi gas just above Tc. In
the weakly interacting limit, Tc is very small as compared
with the Fermi energy, i.e., except for the fact that the system
is not superfluid, we can neglect temperature effects. We will
also assume that the effect of collisions can be neglected.
Under this condition the system cannot come to local equi-
librium during the collective motion. In order to describe this
effect, we will use the Wigner function f�t ,r ,p�. In equilib-
rium and within the TFA, this function simply describes a
Fermi sphere:

f0�r,p� = �„pF�r� − p… . �38�

Out of equilibrium, if the particles do not undergo enough
collisions to restore the isotropic momentum distribution, the
local Fermi surface will assume a more complicated shape.
The equation of motion for the Wigner function is the Vlasov
equation

ḟ = ��V� · ��pf� −
p

m
· ��rf� , �39�

where V�t ,r�=Vext�t ,r�+g��t ,r� is the total �external
+mean-field� potential and �r and �p are acting in coordi-
nate and momentum space, respectively.

Contrary to the hydrodynamic equations in the superfluid
phase, it is very difficult to solve the Vlasov equation di-
rectly. We are therefore again looking for approximate solu-
tions for the special case of small-amplitude monopole and
quadrupole oscillations in a spherical harmonic trap. We will

employ the “generalized scaling ansatz” �19�, which has
been used with great success to describe giant resonances in
atomic nuclei and which has also been applied to trapped
atomic Fermi gases �7�. In this approach, the possible defor-
mations of the local Fermi surface are restricted to quadru-
polar shape. Introducing a small displacement field ��t ,r�,
one can write

f�t,r,p� = f0�r�,p�� , �40�

with

r� = r − ��t,r� , �41�

p� = p − m�̇�t,r� + �r�p · ��t,r�� . �42�

The velocity field is then simply given by v= �̇, and the last
term in Eq. �42� describes the deformation of the Fermi
sphere. For the form of the velocity field we make the same
ansatz as before, i.e.,

��t,r� = a � r2YLM��,��e−i�t, �43�

with L=0 �monopole mode� or L=2 �quadrupole mode�. In
analogy to the procedure in the preceding subsection, we
linearize the Vlasov equation �39� with respect to �, multiply
by p ·�* and integrate over d3p and d3r. Using Eqs. �30� we
reproduce after a tedious calculation the results originally
derived in Ref. �7�,

�L=0 = 2��1 +
3Ekin

8Epot
, �L=2 = 2��1 −

3Ekin

4Epot
. �44�

Note that the monopole mode has the same frequency in the
normal phase as in the superfluid phase. This can be under-
stood as follows. If the displacement field is purely radial
���r�, as it is the case for the monopole mode, one can see
from Eq. �40� that the Fermi surface stays spherical. There-
fore hydrodynamics gives the same frequency as the Vlasov
equation. The frequency of the quadrupole mode in the nor-
mal phase, however, is higher than in the superfluid phase by
a factor of approximately �2. From Eq. �40� one can see that
in this case the Fermi surface gets a quadrupole deformation
perpendicular to the deformation of the density profile in
coordinate space. This deformation costs energy and there-
fore increases the frequency of the mode as compared to
hydrodynamics.

III. RESULTS

In this section we will compare QRPA and semiclassical
results for monopole and quadrupole oscillations in a spheri-
cal trap. We are mainly interested in the limits of validity of
superfluid hydrodynamics, since this theory is widely used in
order to analyze experimental results. For instance, a recent
experiment of the Innsbruck group showed that the axial
breathing mode in a cigar-shaped trap follows the hydrody-
namic behavior throughout the BCS-BEC crossover, while
the radial breathing mode deviates considerably from the hy-
drodynamic predictions �6�, especially on the BCS side of
the crossover region. This contrasts a similar experiment at
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Duke University �5�, of course with different trap param-
eters, where the frequency of the radial breathing mode was
in reasonable agreement with hydrodynamics. In both ex-
periments the systems were still very strongly interacting
even on the BCS side of the crossover �in the Innsbruck
experiment, the strongest deviations happened when kF�a�
was of the order of 2�, such that our weak-coupling theory
�valid for kF�a��1� cannot directly be compared to these
experiments. Nevertheless, it is clear that the limits of valid-
ity of hydrodynamics should be clarified.

It is known that hydrodynamics works at zero temperature
and if the level spacing �� is much smaller than the gap �,
but both conditions are generally not fulfilled in the experi-
ments. Since experiments cannot be done at zero tempera-
ture, it is interesting to see what kind of temperature effects
can arise below the critical temperature Tc. The second con-
dition is also very strong, especially if the trap is strongly
deformed and the transverse trap frequency is large, and it is
therefore important to know up to which ratio �� /� hydro-
dynamics can be trusted.

A. Temperature dependence

In this subsection we will study how the properties of
collective modes change in the small temperature range from
zero to the critical temperature Tc. For this investigation we
are using the parameter set 
=32�� and g=−0.965 �in HO
units�. With these parameters, the number of particles is ap-
proximately 17 000 and the gap in the center of the trap at
zero temperature is approximately 6��; one can therefore
expect that at least at zero temperature hydrodynamics
should work very well.

In Figs. 1 and 2 we show the monopole and quadrupole
response functions, respectively, for three different values of
the temperature. The figures on the left show the response at
zero temperature. The solid lines correspond to the QRPA
results while the dashed lines represent the free quasiparticle
response. In principle, the response function consists of a
very large number of discrete levels. For the purpose of

graphical presentation, these delta functions must be smeared
out, and we therefore introduce a small imaginary part of �
=0.015� in the denominators of the correlation functions
�see Eq. �22��. For T=0, the QRPA quadrupole response
shows one single collective peak whose frequency is very
close to that predicted by hydrodynamics �see Table I�. The
QRPA response is completely different from the free quasi-
particle response, which has a broad and almost continuous
distribution of strength between �1.8� and �2.7�. As has
been realized before �12,14�, the threshold of the two-
quasiparticle strength is related to the energy of the lowest-
lying quasiparticles which are located near the surface of the
atomic cloud.

In the case of the monopole mode the good agreement
between QRPA and hydrodynamics �Table I� is even more
surprising than in the case of the quadrupole mode, since the
frequency of the monopole mode is so high that it lies in the
two-quasiparticle continuum �see dashed line in Fig. 1� and
one would therefore expect a certain amount of Landau
damping.

Apart from the study of the frequencies of the collective
modes, the comparison between hydrodynamics and QRPA
can be extended also to the analysis of the character of such
modes. We display in Fig. 3 the transition densities of the
two collective modes, which, since the density profile is
known, can be related to the velocity field �see Eq. �34��. The
normalization of the QRPA transition density is obtained
from the integral of the corresponding peak in the strength
function, while that of the semiclassical transition density
has been adjusted to the QRPA one. We see that the simple
formulas from Sec. II B are in good agreement with the
QRPA transition densities. However, the QRPA transition
densities exhibit small Friedel-like oscillations, especially
near the surface where the gap is small and the local Fermi
surface is therefore relatively sharp.

Let us now consider an intermediate temperature between
0 and Tc. For the present set of parameters the critical tem-
perature is Tc�2.8�� /kB; we therefore choose T
=1.4�� /kB�Tc /2. As can be seen in the middle of Figs. 1

FIG. 1. Free quasiparticle response �dashed
line� and QRPA response �solid line� of the
monopole excitation as a function of the fre-
quency � �in units of the trap frequency ��, for
three different temperatures: kBT=0, 1.4��, and
3�� �from left to right�.

FIG. 2. Free quasiparticle response �dashed
line� and QRPA response �solid line� of the quad-
rupole excitation as a function of the frequency �
�in units of the trap frequency �� for three differ-
ent temperatures: kBT=0, 1.4��, and 3�� �from
left to right�.
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and 2, due to the presence of thermally excited quasiparticles
the free quasiparticle response starts now already at �=0. As
a consequence, both the collective monopole and quadrupole
modes become strongly fragmented and damped. Qualita-
tively, this strong Landau damping at temperatures between
zero and Tc could be related to the damping mechanism
which is responsible for the experimentally observed damp-
ing of breathing modes on the BCS side of the BEC-BCS
crossover �5,6�. Interesting is also the double-peak structure
which can be seen in the quadrupole response, as if there
were two damped modes, one corresponding to the hydrody-
namic mode and another one corresponding to the quadru-
pole mode in the collisionless normal phase �see below�.
This can be interpreted in the sense of the two-fluid model
�20�, which states that between T=0 and T=Tc the system
effectively behaves as if it consisted of a mixture of normal
and superfluid components.

Now we increase the temperature further to T=3�� /kB,
which lies slightly above Tc, i.e., the system reaches the nor-
mal phase, but still the temperature is very low compared
with the Fermi energy. In the normal phase, the BdG equa-
tions become identical to the usual Hartree-Fock equations,
and the QRPA becomes equal to the usual RPA. In the case
of the monopole mode �right panel of Fig. 1�, the QRPA
response is almost identical to that at zero temperature �left
panel of Fig. 1�, although the free quasiparticle response is
quite different. Again there is one collective mode having the
same frequency as at T=0. This is not very surprising. As
mentioned in the preceding section, the Vlasov equation pre-
dicts the same frequency as superfluid hydrodynamics, since
in the case of the monopole mode there is no deformation of
the local Fermi surface. This is different in the case of the
quadrupole mode �right panel of Fig. 2�. Also here a collec-
tive mode reappears, but it is situated at a different frequency

than at zero temperature. The higher frequency in the normal
phase compared with the superfluid phase is due to the
Fermi-surface deformation and is well described by the Vla-
sov equation �cf. Table I�.

B. Dependence on the size of the system

Let us now investigate the importance of the discrete level
spacing at zero temperature. In the case without superfluidity,
the semiclassical �→0 limit �TFA in equilibrium and the
Vlasov equation in the dynamical case� is known to work
very well if the number of particles is sufficiently large. The
reason is very simple: The only dimensionless parameter on
which corrections can depend is �� /
, which becomes very
small for large numbers of particles. In the current experi-
ments involving �105–106 atoms this type of corrections is
completely negligible. For our study we choose, as in the
preceding subsection, a chemical potential of 
=32��. This
is large enough to make these corrections small, and the
numerical calculations are still tractable. The corresponding
numbers of atoms lie between �14 000 and �17 000 de-
pending on the chosen values of the coupling constant g due
to the Hartree field �see Table II�.

In the case of superfluidity, however, another dimension-
less parameter becomes important, which is �� /�. Since in
the BCS phase ��
, this parameter is not necessarily small
even if the number of particles is very large. In order to study
the validity of hydrodynamics as a function of �� /�, we
change � by varying the coupling constant g between −0.636
and −0.965 �in HO units�. As a measure for � we take its
value at the center of the trap, ��0�. The values of ��0�
corresponding to the different coupling constants are listed in
Table II.

We are now going to analyze the finite-size effects on the
quadrupole response function by using the different values of
the coupling constant listed in Table II. Note that, since we
are using HO units, changing the coupling constant g
�a / lHO is equivalent to changing the oscillator length lHO

and thus the radius of the cloud R=�2
 /��lHO. Anyway, as
argued above, the important parameter for finite-size effects
is the ratio �� /��0� and not the cloud size itself.

For the strongest coupling, g=−0.965 �in HO units�, the
central value of the gap, ��0�, is large compared with ��,
and hydrodynamics works almost perfectly at zero tempera-
ture, as we have already seen in the preceding subsection.

TABLE I. Frequencies �in units of the trap frequency �� of
monopole �L=0� and quadrupole �L=2� modes for 
=32�� and
g=−0.965 �in HO units� at zero temperature and above Tc. The
QRPA results for T�Tc were obtained with T=3�� /kB.

T=0 T�Tc

QRPA Hydro. �Q�RPA Vlasov

L=0 1.9 1.88 1.9 1.88

L=2 1.4 �2 2.2 2.22

FIG. 3. Transition densities for the collective monopole �left
panel� and quadrupole �right panel� modes as a function of r �in
units of the oscillator length lHO�, at T=0. Solid and dashed lines
represent the QRPA and the semiclassical results, respectively.

TABLE II. Chosen values of the coupling constant g �first col-
umn; in HO units� and corresponding results for the number of
particles, N �second column�, and for the gap at the center of the
trap, ��0� �third column; in units of ���. The remaining parameters
were fixed to 
=32�� and T=0.

g N ��0�

−0.965 16500 6.0

−0.8 15000 2.9

−0.7 14300 1.4

−0.636 13900 0.7
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Figure 4 shows, from top to bottom, the evolution of the
quadrupole response at T=0 for decreasing coupling constant
g, i.e., for increasing importance of the discrete level spac-
ing. Besides the QRPA response �solid lines�, we also show
the free quasiparticle response �dashed lines�. For g=−0.8 �in
HO units�, the gap at the center is still larger than �� by a
factor of 3, but now we find considerable deviations of the
QRPA response from the hydrodynamic result. Since the free
quasiparticle response is now shifted to lower frequencies,
the hydrodynamic mode becomes fragmented, which experi-
mentally would show up as damping effect, and its frequency
���1.1�� lies below the hydrodynamic prediction ��2��.
For g=−0.7 and g=−0.636 �in HO units�, the central value of
the gap is comparable to �� and it is clear that hydrodynam-
ics must fail. Indeed, the QRPA response becomes more and
more similar to the free quasiparticle response which in the
case of weak pairing looks very different from the strong-
pairing case. The double-peak structure is a consequence of
the two types of transitions which are allowed by the selec-
tion rules of the harmonic oscillator, i.e., transitions inside an
oscillator shell ��N=0, where N denotes the number of os-
cillator quanta� and transitions with �N=2. As the interaction
decreases, the strength of the �N=0 transitions becomes less
important while the �N=2 transitions become stronger. This
can be understood from the fact that in the limit of a nonin-
teracting harmonic oscillator without pairing �g→0� the
�N=0 transitions are forbidden by Pauli principle and only
the �N=2 transitions survive. In this limit the response has a
single peak at �=2�, in exact agreement with the prediction
from the Vlasov equation. In the semiclassical language, one
can say that in this case the pairing is too weak to restore the
spherical shape of the Fermi sphere during the oscillation,
and therefore one finds the normal collisionless frequency
instead of the hydrodynamical one.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the properties of collective
monopole and quadrupole modes in superfluid Fermi gases

in the BCS phase �kF�a��1,a�0� in a spherical harmonic
trap. Having briefly recalled the quantum-mechanical and
semiclassical formalisms �QRPA, hydrodynamics, Vlasov
equation�, we presented numerical results and compared the
different formalisms. Our main interest was focused on two
types of effects: temperature and finite-size effects. Both can-
not be treated within the semiclassical approaches available
in the present literature, and they can therefore only be stud-
ied in the framework of the fully microscopic QRPA formal-
ism.

In the case of a sufficiently large system �large meaning
�����, superfluid hydrodynamics can be used to describe
the properties of collective modes at zero temperature. Our
results confirm earlier findings �12� which show that already
for parameters which lead to ��0�=6�� the extremely
simple theory of superfluid hydrodynamics is in almost per-
fect agreement with the numerically heavy QRPA method.
This is not only true for the frequencies, but also for the
transition densities, i.e., the velocity fields associated with
the collective modes. However, experiments can never be
done at zero temperature. The critical temperature Tc being
extremely low, it is clear that already at very low tempera-
tures between 0 and Tc the properties of the collective modes
must undergo dramatic changes. This is evident if the hydro-
dynamic frequency �T=0� is different from that in the colli-
sionless normal phase �T=Tc�, like in the case of the quad-
rupole mode. In the case of the monopole mode we also find
a strong temperature dependence, although its frequency at
T=0 is the same as at T=Tc. In the intermediate temperature
range between 0 and Tc the collective modes exhibit strong
Landau damping. When the critical temperature is reached,
the damping disappears and the collective modes can be very
well described by the semiclassical Vlasov equation within
the generalized scaling approximation.

It is interesting to compare these temperature effects with
those found previously in the case of the twist mode �21�,
which is an excitation where the upper hemisphere rotates
against the lower one. Near Tc, the behavior is rather similar:
At T=Tc the twist mode is a collective mode which can be
described by the generalized scaling approximation to the
Vlasov equation and whose frequency is slightly higher than
the trap frequency. If the temperature is lowered, the twist
mode becomes strongly damped, like the quadrupole and
monopole modes. However, an important qualitative differ-
ence appears near zero temperature. Since the velocity field
of the twist mode cannot be written as a gradient, the twist
mode disappears completely at zero temperature, whereas the
quadrupole and monopole modes have an irrotational veloc-
ity field and they reappear at zero temperature as hydrody-
namic modes. In the case of the twist mode, the disappear-
ance of the 1/� weighted integrated strength could be well
described within a rather simple two-fluid model �21,22�. It
remains to be studied if a generalization of the two-fluid
model to the dynamical case can also explain the damping of
the quadrupole and monopole modes and the two-peak struc-
ture in the quadrupole response function at temperatures be-
tween 0 and Tc.

In addition to temperature effects, we studied how the
properties of the quadrupole mode change at zero tempera-
ture when the condition for the validity of the hydrodynamic

FIG. 4. Unperturbed response �dashed line� and QRPA response
�solid line� of the quadrupole excitation as a function of the fre-
quency � �in units of the trap frequency �� for T=0 and 

=32�� and four different values of the coupling constant: g
=−0.965, g=−0.8, g=−0.7, and g=−0.636 �in HO units; from top to
bottom�.
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approach, ����, is no longer satisfied. For parameters
leading to ��0��3�� the QRPA already shows considerable
deviations from the hydrodynamic theory. In the case of the
quadrupole mode, the frequency for these parameters is
found to be lower by 20% than the hydrodynamic prediction,
and a certain fragmentation of the excitation spectrum
�i.e., damping of the collective mode� can be observed.
If ��0����, the hydrodynamic mode has more or less
disappeared. At the same time, a fragmented strength appears
in the excitation spectrum near the frequency of the collec-

tive quadrupole mode in the normal collisionless phase.
These results should be kept in mind when frequencies of

collective modes measured in experiments with strongly de-
formed traps are compared with the hydrodynamic predic-
tions. Due to the strong deformation, the radial trap fre-
quency �r is often much higher than the axial one, �z. Even
in the case of strong pairing, the gap might be of the order of,
say, 3��z, and considerable deviations from hydrodynamics
are possible.

We thank Nguyen Van Giai for fruitful discussions.
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