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Bose-Einstein condensates �BEC�, with their coherence properties, have attracted wide interest for their
possible application to ultraprecise interferometry and ultraweak force sensors. Since condensates, unlike
photons, are interacting, they may permit the realization of specific quantum states needed as input of an
interferometer to approach the Heisenberg limit, the supposed lower bound to precision phase measurements.
To this end, we study the sensitivity to external weak perturbations of a representative matter-wave Mach-
Zehnder interferometer whose input are two Bose-Einstein condensates created by splitting a single condensate
in two parts. The interferometric phase sensitivity depends on the specific quantum state created with the two
condensates, and, therefore, on the time scale of the splitting process. We identify three different regimes,
characterized by a phase sensitivity �� scaling with the total number of condensate particles N as �i� the
standard quantum limit ���1/N1/2, �ii� the sub shot-noise ���1/N3/4, and the �iii� the Heisenberg limit
���1/N. However, in a realistic dynamical BEC splitting, the 1/N limit requires a long adiabaticity time
scale, which is hardly reachable experimentally. On the other hand, the sub-shot-noise sensitivity ��
�1/N3/4 can be reached in a realistic experimental setting. We also show that the 1/N3/4 scaling is a rigorous
upper bound in the limit N→�, while keeping constant all different parameters of the bosonic Mach-Zehnder
interferometer.
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I. INTRODUCTION

In the last few years theoretical and experimental efforts
have been devoted to the realization of an ultraprecise quan-
tum interferometer �for a review see Ref. �1��. High resolu-
tion phase measurements find applications in the detection of
ultraweak forces, as gravitational waves �2�, and inertial
forces �3�. The Mach-Zehnder �MZ� interferometer is a pro-
totypical apparatus employing both optical and matter
waves. In the optical MZ, the phase sensitivity depends on
the intensity of the laser field, which corresponds to a limit
on the average number N of photons. Typically, the sensitiv-
ity is bounded by the shot noise limit 1 /�N, which can be
reached with classical states �for example vacuum plus co-
herent state� as input of the interferometer. This limit, how-
ever, is not fundamental, and it can be surpassed with the use
of nonclassical states exploiting, in this way, quantum corre-
lations. The insuperable lower bound to precision phase mea-
surements is believed to be given by the Heisenberg limit
1 /N �4�. Its achievement has been theoretically demonstrated
in a large body of literature with a variety of states and
optimal performances �5–10�. Bose-Einstein condensates
�BEC�, with their coherence properties, have attracted a wide
interest for their possible application in ultraprecise interfer-
ometry �11� and ultraweak force sensors �12–14�. Conden-
sates, unlike photons, are interacting, and this property seems
very promising for the realization of quantum states to use as
input of an interferometer to approach the Heisenberg limit.
For example, the recent experimental creation of Fock states
�15� and of very stable double-well traps �16,17� bodes well
for the future of matter-wave interferometry.

In this paper, we analyze a BEC Mach-Zehnder interfer-
ometer. The initial state configuration is prepared by trapping

a condensate in a double-well potential with an interwell
barrier large enough to create the two independent conden-
sates that feed the interferometer. The height of the potential
barrier is decreased instantaneously, and a tunneling between
the two condensates is allowed for a time t�/2=� /2�, where
� is the condensate tunneling rate between the wells. The
barrier is then increased again in order to have a negligible
tunneling rate. During this time, the interaction of a weak
force with the condensates will shift their relative phase by
an amount proportional to the energy gradient induced by the
external field and the time of exposure. After a second � /2
pulse, the relative number of particles is measured, and in-
formation on the phase shift is recorded. Different measure-
ment schemes have been proposed, based on a positive op-
erator value measurement �18�, on a parity measurement
�19�, on a relative number fluctuation measurement �11,20�,
and on a collapse and revival detection �21�. We study in
detail the splitting processes by analyzing the produced
quantum states, and giving a prediction on the sensitivity of
the interferometer by using an error-propagation formula. We
assume, for simplicity, lossless devices �beam splitters�.
However, losses of atoms can degrade the sensitivity back to
the shot noise limit �22�. With this setup we expect an im-
provement of phase sensitivity, reachable with classical
states, toward the quantum Heisenberg limit. In fact, as ana-
lyzed by Jääskeläinen et al. �23�, for a complete adiabatic
split, a repulsive-interaction condensate will end in a Fock
state ���= �N /2��N /2�. With this state as input, the MZ phase
sensitivity is expected to scale at the Heisenberg limit �7�. In
this paper, we point out the existence of three different re-
gimes, which, in analogy with three corresponding regimes
existing in the dynamical Josephson effect �29�, we call
Rabi, Josephson, and Fock. These three regimes are charac-
terized by a MZ phase sensitivity scaling as N−1/2 ,N−3/4, and
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N−1, respectively, where N is the number of particles in a
single interferometric experiment. However, in a realistic dy-
namical splitting process, the 1/N limit requires a very long
adiabatic ramping of the potential well. Its achievement is
therefore strongly limited by the finite lifetime of the con-
densates. On the other hand, a sub-shot-noise scaling 1/N3/4

can be actually reached. We restrict our discussion to a two-
mode analysis, using a combination of numerical and ana-
lytical tools.

II. TWO MODE APPROXIMATION

In this section, we review a two-mode analysis of two
weakly interacting BECs. The second quantization Hamil-
tonian of a system of dilute bosons is given by

Ĥ�t� =	 dz�̂†�z�
−
�2

2m

�2

�z2 + V�z,t���̂�z�

+
g

2
	 dz�̂†�z��̂†�z��̂�z��̂�z� , �1�

where �̂�z� is the bosonic field operator, and V�z , t� is the
time-dependent external symmetric double-well potential,
and g=4��2a /m is the strength of the interparticle interac-
tion, with a being the s-wave scattering length. The two-
mode ansatz reads

�̂�z� = �a�z�â + �b�z�b̂ , �2�

where �a,b�z� can be constructed as sum and difference of the
first symmetric and antisymmetric solutions of the Gross-
Pitaevskii equation of a double well trap, correspondently to
the ground and the first excited states, respectively. The op-

erators â† and b̂† �â , b̂� create �destroy� a particle in the
modes a ,b, respectively. In the two-mode approximation the
Hamiltonian of the system becomes �24,25�

Ĥ =
Ec

4
�â†â†ââ + b̂†b̂†b̂b̂� − K�t��â†b̂ + b̂†â� , �3�

where

Ec = 2g	 dz��a�z��4 = 2g	 dz��b�z��4, �4�

K�t� = −	 dz
 �2

2m

��a
*�z�

�z

��b�z�
�z

+ �a
*�z�V�z,t��b�z��

�5�

are the “one-site energy” and the “Josephson coupling en-

ergy,” respectively. The operator N̂= n̂a+ n̂b= â†â+ b̂†b̂ is the

total number of particles and commutes with Ĥ. By ramping
the potential wells, K�t� decreases with the decreasing of the
overlap between the wave functions. For a linear ramping, a
WKB approximation �26� gives an exponential decrease
K�t�=K�0�e−t/	, where the effective ramping time 	
=�tramp/ �d�V0−
� depends on the real ramping time �tramp,
on the final distance d between the wells, the height of the

potential barrier V0, and the chemical potential 
. Such a
time-dependent configuration has been realized by the MIT
group �16�.

We study Eq. �3� in a phase-states representation �25�. We
write a general state in the Hilbert space of the two-mode
system as

��� = 	
−�

+� d�

2�
���,t���� , �6�

where � is the relative phase between the two modes, and

��� = �
n=−N/2

N/2
ein�

�
N

2
− n�!�
N

2
+ n�!

�N/2 − n��N/2 + n�

�7�

are un-normalized vectors of the overcomplete phase basis,
written in the relative number of particles n. In this represen-
tation the action of any two-mode operator applied to ��� can
be represented in terms of differential operators acting on the
associated phase amplitude ��� , t�. The main consequence
of the overcompleteness is the nonstandard inner product
between phase vectors �7� �� ���= �2N /N ! �cosN���−�� /2�,
which affects both the inner product between states �6� and
the mean values of observable. By applying the Hamiltonian
�3� on the states �6� we obtain

Ĥ��� = 	
−�

+� d�

2�
�Hef f��,t����,t��e

2K�t�
Ec

cos ���� , �8�

where the effective Hamiltonian is

Hef f��,t� = 
−
Ec

2

�2

��2 − K�t�N cos � −
K2�t�

Ec
cos 2�� .

�9�

In the first part of this work, we solve numerically and, in
some limit, analytically the eigenvalue equation

Hef f����gs��� = Egs�gs��� �10�

for different values of K. This will provide the limit of an
adiabatic splitting of the condensate. In the second part we
study the dynamical equation

i�
����,t�

�t
= Hef f��,t����,t� �11�

for different ramping times of the interwell barrier. In both
cases we give predictions of the Mach-Zehnder interferom-
eter phase sensitivity, as discussed in the following section.

III. MACH-ZEHNDER INTERFEROMETER

For a compact analysis of the Mach-Zehnder interferom-
eter, we introduce the Hermitian operators �5,27�

Ĵx = 1
2 �â†b̂ + b̂†â� , �12�

Ĵy =
1

2i
�â†b̂ − b̂†â� , �13�
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Ĵz = 1
2 �â†â − b̂†b̂� . �14�

These operators form a su�2� Lie algebra �Ĵi , Ĵj�= i�i,j,kĴk and

commute with the total number of particles N̂. The action of
the Mach-Zehnder interferometer elements �beam splitter

and phase shifter� on the vector Ĵ= �Ĵx , Ĵy , Ĵz� can be repre-
sented by rotations in three-dimensional space. In particular,
the whole interferometer can be represented by a rotation of

Ĵ around the y axis of an angle � corresponding to the rela-
tive phase shift in the two arms. In our model, the informa-
tion on the phase shift is inferred from the measure of the

total N̂ and the relative mean �Ĵz
out� number of atoms in the

two final condensates. We have

�Ĵz
out� = − sin ��Ĵx� + cos ��Ĵz� , �15�

��Ĵz
out�2 = sin2���Ĵx�2 + cos2���Ĵz�2 + sin � cos ��2�Ĵx��Ĵz�

− �ĴxĴz� − �ĴzĴx�� , �16�

where the expectation values are taken on the input state.
The sensitivity of the interferometer for the measure of the
relative phase can be calculated by using the following equa-
tion �5�:

����2 =
��Ĵz

out�2

���Ĵz
out�/���2

. �17�

For the optimal working pointy ��0 and for perfect sym-

metric splitting of the condensate, �Ĵz�=0. By using Eqs. �15�
and �16�, we have

����2 =
�Jz

2�
�Jx�2 . �18�

This equation allows us to predict the sensitivity of the MZ
interferometer by knowing the input states. Because of its
simplicity, this equation has been widely used in the litera-

ture to give predictions on the phase sensitivity of the Mach-
Zehnder interferometer �see, for example Ref. �30�, and ref-
erences therein�. We note, however, that this equation is
based on the assumption that phase distributions are Gauss-
ian, a property that, in general, is not satisfied for states
which are not coherent. According to the central limit theo-
rem, to obtain a Gaussian phase distribution, we have to
combine several independent measurements p, each having
N=NT / p particles. Therefore, Eq. �17� usually gives the right
scaling but a wrong prefactor. The exact MZ phase sensitiv-
ity can be obtained only with a rigorous Bayesian analysis
�28�, which is rather cumbersome, and it will not be at-
tempted here. We also remark that Eq. �17� is obtained in the
linear case, i.e., with noninteracting particles. This limit can
be reached by switching off the interatomic interactions of
the condensate after the creation of the initial state. In the
general case, Eq. �17� gives a lower bound for the MZ phase
sensitivity. In the phase basis, we have

Ĵx��� = 	
−�

+� d�

2�

sin �

�

��
+ 
N

2
+ 1�cos �����,t���� ,

�19�

Ĵy��� = 	
−�

+� d�

2�

cos �

�

��
− 
N

2
+ 1�sin �����,t���� ,

�20�

Ĵz��� = 	
−�

+� d�

2�
i

�

��
���,t���� , �21�

and

Ĵz
2��� = − 	

−�

+� d�

2�

�2

��2���,t���� . �22�

We calculate the expectation values as in Eq. �18�, taking
into account the properties of this base. We find

����2 =

− 	
−�

+� d


2�
	

−�

+� d�

2�
�
����*�
,t�
 �2

��2���,t��
�	

−�

+� d


2�
	

−�

+� d�

2�
�
����*�
,t�
sin �

�

��
+ 
N

2
+ 1�cos �����,t��2

, �23�

where

�
��� =

cosN

 − �

2
�

	
−�

+� d


2�
	

−�

+� d�

2�
�*�
,t����,t�cosN

 − �

2
� . �24�
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Analytical calculations of the quantity �23� can be obtained
in certain interesting limits. As we will discuss later, in the
Rabi and Josephson regimes we can consider a Gaussian
phase amplitude ��� , t��e−�2/�4�2� and approximate the in-

ner product as cosN��
−�� /2��e−N/2�
 − ��2
. If ���, we can

extend the integral to ±�, obtaining

����2 =

N

�1 + 4N�2�

�
N

2
+ 1�
1 − �2
1 + 2N�2

1 + 4N�2�� − 
1 + 2N�2

1 + 4N�2��2
.

�25�

In the opposite limit, when the phase uncertainty is of order
of 2�, we can neglect the inner product and consider the
phase amplitude ��� , t���1+� cos ��. In this limit, �→0,
we have

����2 =
2 + �2

�N + 2�2 . �26�

The whole phase sensitivity range can be exploited with the
variational phase amplitude ��� , t��e� cos �. We obtain

����2 =

2�	
−�

+�

d��cos ��N�cos �I1�2� cos �� − ��sin ��2�I0�2� cos �� + I2�2� cos ����	
−�

+�

d��cos ��NI0�2� cos ��


	
−�

+�

d��cos ��N��N + 1�cos �I1�2� cos �� − ��sin ��2�I0�2� cos �� + I2�2� cos �����2 ,

�27�

where I��x� are Bessel functions of first kind and degree �.

IV. ADIABATIC SPLITTING

Following the notation introduced in Ref. �29� in the con-
text of quantum tunneling between BECs in a two-well sys-
tem, we can distinguish three main regimes depending on the
ratio K /Ec and the number of particles N. As we will see,
these three regimes correspond to different input states of the
MZ interferometer and, in particular, to three different scal-
ings of the MZ phase sensitivity with the total number of
particles.

Rabi Regime K /Ec�N: This corresponds to a regime in
which the two wells are not completely separated, the poten-
tial barrier is of the order of the chemical potential, and a
strong tunneling exists between the two condensates. In this
limit, we can neglect the cos � potential term in Eq. �9�, and
write

Hef f��� = −
Ec

2

�2

��2 −
K2

Ec
cos 2� . �28�

We note that this effective Hamiltonian does not depend on
the total number of particles. A simple harmonic oscillator
estimation gives

��
2 =

1

4

Ec

K
, �29�

which means that the phase dispersion is very small ���
2

�1/N� and independent of N. The strong tunneling charac-

terizing this regime keeps the relative phase between the two
condensates well defined. However, the ground state of the
Hamiltonian �28� is given by a function with peaks at �=0
and �= ±�. To eliminate the unphysical peak at �= ±� it is

necessary to take into account the correction term e
2K
Ec

cos �,
contained in the full Hamiltonian Eq. �8�. This correction
term has the same width �29� as the ground state of the
Hamiltonian Hef f. The corrected phase amplitude ���� can
be well approximated by a Gaussian of width given by half
of Eq. �29�:

���� =

e− �2

4
Ec

8k

�2�
Ec

8k�1/4 . �30�

In the Rabi regime, taking into account that N��
2 �1, from

Eq. �25�, we obtain

�� =
1

�N
, �31�

which corresponds to the classical shot noise limit. We note
that the phase amplitude �30� does not depend on the total
number of particles. The N dependence in �� is merely a
consequence of the inner product �24�. The sensitivity scal-
ing as �1/�N is what we expect for a MZ interferometer fed

by the coherent state ���= �N ! �−1/2�â†+ b̂†�N�vac�.
Josephson Regime 1/N�K /Ec�N: In this limit, we ne-
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glect the cos�2�� term in the effective Hamiltonian �9�, ob-
taining

Hef f��� = −
Ec

2

�2

��2 − KN cos � . �32�

As in the previous regime, we can approximate the phase
amplitude with a Gaussian of width

��
2 =

1

2
� Ec

KN
. �33�

In this case, however, the correction term e
2K
Ec

cos � gives a
negligible contribution. From Eq. �25�, we obtain

�� = 
4K

Ec
�1/4 1

N3/4 . �34�

We note that this result is recovered neglecting the inner
product �24�. This is a consequence of the fact that in the

Josephson regime the two functions �gs���, and �̃gs���
=�−�

+�d
�gs�
�cosN��
−�� /2� have the same width.
Fock Regime K /Ec�1/N: The effective Hamiltonian is

still given by Eq. �9�, but now we have a nearly free evolu-
tion. In this case the phase amplitude spreads over the whole
2� interval and we can approximate it by

���� =
e� cos �

�2�I0�2��
, �35�

where � is a variational parameter and I0�2�� is the Bessel
function of the first kind of degree zero. The behavior of � as
a function of the parameters Ec ,K ,N, can be found by mini-
mizing the total energy

E = 	
−�

+� d�

2�
�*���
−

Ec

2

�2

��2 − NK cos ���*��� , �36�

where we have not taken into account the inner product �24�.
If we impose �E /��=0, we obtain the equation

I0�2��I1�2�� + 
� −
4NK

Ec
��I0

2�2�� + I0���I2�2�� − 2I1
2�2���

= 0. �37�

In the limit �→0, we are in the Fock regime, the input state

is given by ���= �â†�N/2�b̂†�N/2�vac� and the phase amplitude
becomes flat ����→1/�2�. The Fock state is characterized
by a random phase �31�. This property renders the Fock state
not useful in Young double-slit interferometry. In fact the
interference fringes obtained in a single experiment are
washed out by statistical averaging over many experimental
runs. In this limit, approximating Eq. �35� with �����1
+� cos �, and by neglecting terms of order o��2� in �26�, we
obtain

�� =
�2

N
. �38�

which corresponds to the Heisenberg limit of phase sensitiv-
ity. Correcting this equation to higher order in the variational

parameter �, it would be possible to exploit Eq. �27�, and
express the Bessel functions I����, �=0, 1, 2 with the series
expansion

I���� = 
�

2
��

�
k=0

+� � �
2 �2k

k ! ��k + 1�
. �39�

The corresponding MZ phase sensitivity is shown by the
blue line in Fig. 1.

In Fig. 1 we plot the phase sensitivity with N=1000, Ec
=0.001 ms−1, as a function of K. We emphasize the three
different regimes for the Mach Zehnder interferometry sen-
sitivity characterized by a different scaling with the number
of particles. We notice that the Josephson region becomes
wider by increasing the number of particles N and while
keeping constant all other parameters. Therefore, strictly
speaking, the phase sensitivity of the BEC MZ interferom-
eter studied in this paper is bounded by 1/N3/4 in the limit
N→�, when all other parameters are kept constant.

V. DIABATIC SPLITTING

We now study the dynamical splitting of the condensate
by directly solving the Schrödinger equation �11�, focusing
on the dephasing process �32�. In particular, here we analyze
the sensitivity of the Mach-Zehnder interferometers fed by
states created by a finite time, diabatic splitting. As shown in
Ref. �32�, initially the relative phase between the two split
BECs has a very narrow distribution, corresponding to a
BEC in a coherent state. While the height of the interwell
barrier increases, K�t� decreases, and the phase spreads in
time over the whole 2� domain. Because of the periodic
boundary conditions, the phase distributions eventually over-
lap around the region �� ±�, developing interference

FIG. 1. �Color online� Mach-Zehnder phase sensitivity �� as a
function of K as given by Eq. �23�. Here N=1000 and Ec

=0.001 ms−1. The green lines are the analytical predictions in three
regimes: �i� Rabi Regime, K�NEc, where ��=1/�N, �ii� Joseph-
son Regime, Ec /N�K�NEc, where ��= �4K /Ec�1/41 /N3/4, and
�iii� Fock Regime, K�Ec /N, where ��=�2/N. The blue line is
given by the variational approach with the wave function �35�,
which reduced to Eq. �30� in the Rabi and Josephson regimes. Red
points represent numerical solutions of Eq. �10�.
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fringes with a wavelength increasing with 	. Using Eqs. �18�
and �23�, we study how the sensitivity of the MZ interferom-
eter changes for different ramping times 	. The larger 	, the
more adiabatic the dynamics, and the closer it will follow the
static model analyzed above �see Fig. 1�. If the breakdown of
adiabaticity occurs in the Rabi-Josephson regime, the phase
amplitude is sufficiently narrow so that we can study the
dynamics with a variational approach using a Gaussian func-
tion �25,32�. We consider �33�

���,t� =
1

�2���t�2�1/4e− �2

4��t�2 ei
��t�

2
�2

, �40�

where ��t� and ��t� are time dependent variational param-
eters satisfying the differential equations

�̇�t� = Ec��t���t� �41�

�̇�t� =
Ec

4�4�t�
− Ec��t�2 − Nk�t�e−�2/2 −

4k�t�
Ec

e−2�2
. �42�

The variational wave function �40� is in very good agreement
with the numerical calculation in the regime ��1. In Fig. 2
we compare the mean-square fluctuation ��t� obtained by the
variational calculation �Eqs. �41� and �42��, with the square
root of the second moment of the phase amplitude obtained
by the exact numerical solution of the Schrödinger equation
�11�. The agreement is very good until the phase amplitude
touches the borders ±�. As discussed in Ref. �32�, this hap-
pens when ��1.

In a realistic experimental setup, the two condensates ini-
tially are in the Rabi regime. While increasing the interwell
barrier, the phase amplitude adiabatically follows the de-
creasing of the effective potential energy in Eq. �9�, which is
proportional to K�t�2. After the breakdown of adiabaticity tad,
the phase distribution continues to spread but at a slower
rate. When the Josephson coupling energy is sufficiently
small, the dynamical evolution becomes essentially free, and

the phase uncertainty increases as a consequence of excita-
tions of the system. In Fig. 3 we plot the MZ phase sensitiv-
ity ����2 �Eq. �23�� for different values of 	 ; the blue line
represents the adiabatic behavior. The dynamics are calcu-
lated with the variational wave function �40�. Notice that the
minimum of the phase fluctuation is below the point of
breakdown of adiabaticity.

We now study the MZ sensitivity by parametrizing the
phase error as

����2 =
�

N� . �43�

Here we assume that the prefactor � does not depend of the
number of particles N, as we have numerically verified in the
limit N�1. In Fig. 4 we plot the quantity � as a function of
t /	=ln�K�0� /K� obtained by calculating the scaling between
the cases N=10 000 and N=1000, with fixed parameters Ec
=0.001 ms−1, and K�0�=100 ms−1. The blue line represents
the adiabatic behavior, and we can clearly distinguish the
three regions described above. The points in Fig. 4 corre-
spond to the MZ sensitivity at the breakdown of adiabaticity.
As we can see, the limit 1 /N can be reached only with a very
long adiabatic ramping, a circumstance that is strongly lim-
ited by the finite lifetime of the condensate. However, the
sub-shot-noise limit 1 /N3/4 can be achieved under currently
available experimental conditions �16,17�. We remark that,
by increasing N and 	 while keeping the same initial condi-
tions, there are two interesting effects that take place: �i� the
minimum of the phase uncertainty tends to coincide with the
breakdown of adiabaticity, and �ii� the increase of the phase
uncertainty after reaching the minimum is rather slow. Both
these two effects can be understood if we approximate the
evolution of the phase amplitude after tad with a free expan-
sion model �k�t�=0 for t� tad� �34�. In this case

�2�t� = �2�tad� +
EC

4��2�tad�
�t − tad�2. �44�

The bigger �2�tad�, the slower the dynamics of the phase
amplitude. In the temporal range tad� t� tad+2�2�tad�� /Ec,

FIG. 2. Comparison between the mean-square fluctuation �, as
obtained by the variational equations �41� and �42� �line� and the
one obtained by the exact numerical solution of the Schrödinger
equation �11� �points�. The parameters are N=1000, Ec

=0.001 ms−1, K�0�=100 ms−1, and 	=10 ms.

FIG. 3. �Color online� Plot of ����2 as given by Eq. �23� for
different values of t /	 �in ms�. The parameters are N=1000, Ec

=0.001 ms−1 and K�0�=100 ms−1. The blue line represents the
adiabatic behavior.
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the dynamical spreading is almost frozen. On the other hand,
if we increase N and 	 by keeping the other initial conditions
K�0� , Ec, constant, the breakdown of adiabaticity occurs at
larger values of ��tad� �24�. As a consequence, by increasing

N and 	 the MZ sensitivity will freeze after the breakdown of
adiabaticity, and the minimum of phase sensitivity is main-
tained for a longer time.

VI. CONCLUSIONS

We have studied the phase sensitivity of a Mach-Zehnder
interferometer fed by quantum states produced by the split-
ting a single Bose-Einstein condensate in two parts. We stud-
ied the process in the two-mode approximation, and we ana-
lyzed the sensitivity of the MZ interferometer by projecting
into an overcomplete phase basis and by using an error
propagation formula. We have first calculated the Mach-
Zehnder phase sensitivity in the adiabatic splitting limit. We
distinguished three different regimes �Rabi, Josephson, and
Fock� characterized by a different scaling of the phase sen-
sitivity with the number of particles in a single experiment.
While the 1/N scaling can hardly be reached in realistic
experiments, the limit �1/N3/4, corresponding to the Joseph-
son regime, can be achieved with current technology �16,17�,
offering a considerable improvement in phase sensitivity
over the shot noise 1/�N obtainable in the classical limit.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
under the Contract No. W-7405-ENG-36 and DOE Office of
Basic Energy Sciences.

�1� V. Giovanetti, S. Lloyd, and L. Maccone, Science 306, 1330
�2004�.

�2� C. M. Caves, Phys. Rev. D 23, 1693 �1981�.
�3� J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and

M. A. Kasevich, Phys. Rev. A 65, 033608 �2002�.
�4� Z. Y. Ou, Phys. Rev. A 55, 2598 �1997�.
�5� B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,

4033 �1986�.
�6� R. S. Bondurant and J. H. Shapiro, Phys. Rev. D 30, 2548

�1984�.
�7� M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355

�1993�.
�8� M. Hillery and L. Mlodinow, Phys. Rev. A 48, 1548 �1993�;

C. Brif and A. Mann, ibid. 54, 4505 �1996�.
�9� J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,

Phys. Rev. A 54, R4649 �1996�.
�10� D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098

�2000�.
�11� P. Bouyer and M. A. Kasevich, Phys. Rev. A 56, R1083

�1997�.
�12� D. M. Harber J. M. Obrecht, J. M. McGuirk, and E. A. Cor-

nell, Phys. Rev. A 72, 033610 �2005�.
�13� M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 70,

053619 �2004�.
�14� G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and

M. Inguscio, Phys. Rev. Lett. 92, 230402 �2004�.

�15� M. Greiner et al., Nature 415, 39 �2002�.
�16� Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard,

A. E. Leanhardt, Phys. Rev. Lett. 92, 050405 �2004�.
�17� M. Albiez R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and

M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 �2005�.
�18� B. C. Sanders and G. J. Milburn, Phys. Rev. Lett. 75, 2944

�1995�.
�19� R. A. Campos, C. C. Gerry, and A. Benmoussa, Phys. Rev. A

68, 023810 �2003�.
�20� T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, Phys.

Rev. A 57, 4004 �1998�.
�21� J. A. Dunningham and K. Burnett, Phys. Rev. A 70, 033601

�2004�.
�22� S. F. Huelga, C. Macciavello, T. Pellizzari, A. K. Ekert, M. B.

Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 �1997�.
�23� M. Jääskeläinen, W. Zhang, and P. Meystre, Phys. Rev. A 70,

063612 �2004�.
�24� J. Javanainen and M. Yu. Ivanov, Phys. Rev. A 60, 2351

�1999�.
�25� J. R. Anglin, P. Drummond, and A. Smerzi, Phys. Rev. A 64,

063605 �2001�.
�26� I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A 57, R28

�1998�.
�27� R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A

40, 1371 �1989�.
�28� C. W. Helstrom, Quantum Detection and Estimation Theory

FIG. 4. �Color online� Plot of the scaling parameter � with the
number of particles �see Eq. �43��. The calculation has been made
with N=10 000 and N=1000, and with fixed parameters Ec

=0.001 ms−1, and K�0�=100 ms−1. The blue line represents the
adiabatic behavior; the points correspond to the minimum of MZ
phase sensitivity occurring for different values of 	 �in ms�.

SUB-SHOT-NOISE PHASE SENSITIVITY WITH A … PHYSICAL REVIEW A 72, 043612 �2005�

043612-7



�Academic Press, New York, 1976�;A. S. Holevo, Probabilistic
Aspects of Quantum Theory �North-Holland, Amsterdam,
1982�.

�29� A. J. Leggett, Rev. Mod. Phys. 73, 307 �2001�.
�30� J. P. Dowling, Phys. Rev. A 57, 4736 �1998�.

�31� Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 �1997�.
�32� L. Pezzé et al., New J. Phys. 7, 85 �2005�.
�33� A. Smerzi and S. Raghavan Phys. Rev. A 61, 063601 �2000�.
�34� A. J. Leggett and F. Sols, Phys. Rev. Lett. 81, 1344 �1998�.

PEZZÉ et al. PHYSICAL REVIEW A 72, 043612 �2005�

043612-8


